
Stochastic Optimisation

Solutions to Problem Sheet 1

1. The generating function of X1 is given by

G1(z) = E
[
zX1

]
=

∞∑
n=0

P (X1 = n)zn.

But X1 is Poisson with parameter λ1, so P (X1 = n) = λn1e
−λ1/n!. Substituting this above, we get

G1(z) =

∞∑
n=0

(λ1z)
n

n!
e−λ1 = eλ1ze−λ1 = eλ1(z−1).

Similarly, X2 has generating function G2(z) = eλ2(z−1).

Now, we have for the generating function of X = X1 +X2 that

G(z) = E
[
zX
]
= E

[
zX1zX2

]
= E

[
zX1

]
E
[
zX2

]
= G1(z)G2(z),

since X1 and X2 are independent random variables (and hence so are zX1 and zX2). Substituting
for G1 and G2, we find that G(z) = e(λ1+λ2)(z−1), which we recognise as the generating function
of a Poisson random variable with parameter λ1 + λ2. This completes the proof.

2. (a) The moment generating function of T is given by

MT (θ) = E[eθT ] =
∫ ∞
0

µe−µxeθxdx =

{
µ
µ−θ , if θ < µ,

+∞, otherwise.

Hence,

E[T ] =M ′T (0) =
µ

(µ− θ)2
∣∣∣
θ=0

=
1

µ
.

Next, recall that the cdf of an Exp(λ) random variable is 1− e−λx for x ≥ 0 and 0 for x < 0.
Defining Y = µT , we see that

P(Y > y) = P(µT > y) = P
(
T >

y

µ

)
= exp

(
−µy

µ

)
= e−y,

i.e., Y has the cdf of an Exp(1) random variable.

(b) By the conditional probability formula, we have for all t, u ≥ 0 that

P (T > t+ u|T > u) =
P ({T > t+ u} ∩ {T > u})

T > u
=
P (T > t+ u)

T > u
,

since the event T > t + u is a subset of the event T > u, and hence their intersection is
the event T > t + u. Now, recall that since T is exponentially distributed with parameter µ,
P (T > t) = e−µt for all t ≥ 0. Substituting this above,

P (T > t+ u|T > u) =
exp(−µ(t+ u))

exp(−µu)
= e−µt = P (T > t).
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3. We have by Chernoff’s bound that, for all θ ≥ 0,

P(X1 + . . .+Xn > nq) ≤ e−θnqE[exp(θ(X1 + . . .+Xn)]

= e−θnq
n∏
i=1

E[eθXi ] since the Xi are mutually independent

= e−θnq
(
1− p+ peθ

)n
.

Taking logarithms (which are a montone increasing function and preserve inequalities), we get

logP(X1 + . . .+Xn > nq) ≤ −θnq + n log
(
1− p+ peθ

)
, ∀ θ ≥ 0. (1)

We seek the minimum of the RHS over θ ≥ 0. Setting the derivative with respect to θ to 0, we obtain
the equation

−nq + npeθ

1− p+ peθ
= 0,

from which it follows that
q

1− q
=

peθ

1− p
, i.e., eθ =

q(1− p)
p(1− q)

.

Since q > p by assumption, q(1 − p) > p(1 − q), and it follows that the solution for θ is positive.
Substituting this value of θ in (1), we get

logP(X1 + . . .+Xn > nq) ≤ −nq log q(1− p)
p(1− q)

+ n log
(
(1− p)

(
1 +

q

1− q

))
= −nBbigl(q log q

p
− q log 1− q

1− p
+ log

1− p
1− q

)
= −nK(q; p).

4. We have by Chernoff’s bound that, for all θ ≤ 0,

P(X1 + . . .+Xn < nµ) ≤ e−θnµE[exp(θ(X1 + . . .+Xn)]

= e−θnµ
n∏
i=1

E[eθXi ] since the Xi are mutually independent

= e−θnµ
(
exp(λ(eθ − 1)

)n
,

using the expression for the generating function of a Poisson random variable derived in Problem 1.
Now, taking logarithms, we obtain

1

n
logP(X1 + . . .+Xn < nµ) ≤ −θµ+ λ(eθ − 1) ∀ θ ≤ 0.

To minimise the expression on the RHS, we set its derivative with respect to θ to 0. This yields the
equation µ = λeθ, and so θ = log(µ/λ). As µ was assumed to be smaller than λ, θ < 0 as required.
Substituting for θ above, we get

1

n
logP(X1 + . . .+Xn < nµ) ≤ −µ log µ

λ
+ µ− λ = −I(µ;λ),

as required.
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5. Applying Chernoff’s bound, we get that, for any θ ≥ 0,

P(X1 + . . .+Xn > nx) ≤ e−θnxE[exp(θ(X1 + . . .+Xn)]

= e−θnx
n∏
i=1

E[eθXi ] since the Xi are mutually independent

= e−θnx
( λ

λ− θ

)n
, θ ≤ λ,

using the expression for the mgf of an exponential random variable derived in Problem 2. Taking
logarithms, we get

1

n
logP(X1 + . . .+Xn > nx) ≤ −θx+ log

λ

λ− θ
, θ ∈ [0, λ).

We minimise the expression on the RHS by setting its derivative with respect to θ to 0. This yields
x = 1/(λ− θ), i.e., θ = λ− 1/x, which is positive if x > 1/λ, as we assumed. Substituting this in
the bound, we get

1

n
logP(X1 + . . .+Xn > nx) ≤ −λx+ 1 + log(λx) = −J(x;λ).

6. (a) The mgf of Z is given by

MZ(θ) =

∫ ∞
−∞

1√
2π

exp
(
−x

2

2
+ θx

)
dx

=

∫ ∞
−∞

1√
2π

exp
(
−(x− θ)2

2
+
θ2

2

)
dx

= eθ
2/2

∫ ∞
−∞

1√
2π

exp
(
−y

2

2

)
dy = eθ

2/2.

To obtain the third equality, we took the constant term exp(θ2/2) out of the integral, and made
the change of variables y = xiθ. To obtain the last equality, we recognised (1/

√
2π exp(−y2/2)

as the density of a standard normal random variable, which integrates to 1 as it is a probability
density function.

(b) Notice that if Xi ∼ N(µ, σ2) and we define Yi = (Xi − µ)/σ, then Yi ∼ N(0, 1). Moreover,
the Yi are also iid, and their mgf is given in part (a). Hence, we can use the Chernoff bound to
write, for any θ ≥ 0, that

P
( n∑
i=1

Xi > nγ
)
≤ P

( n∑
i=1

Yi >
n(γ − µ)

σ

)
≤ exp

(
−θn(γ − µ)

σ

)
E
[
exp θ

n∑
i=1

Yi

]
.

Taking logarithms, using the independence of the Yi and the expression for their mgf computed
in part (a), we get

1

n
logP

( n∑
i=1

Xi > nγ
)
≤ −θγ − µ

σ
+
θ2

2
, ∀ θ ≥ 0.
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The mnimum of the expression on the RHS over θ ≥ 0 is attained at θ = (γ − µ)/σ, leading
us to conclude that

1

n
logP

( n∑
i=1

Xi > nγ
)
≤ −(γ − µ)2

2σ2
,

as claimed in the question.

7. Define Y = 〈θ,X〉. Using standard properties of inner products, ηY = 〈ηθ,X〉. Now,

X ∈ H(θ, y) ⇒ 〈θ,X〉 ≥ y ⇒ 〈ηθ,X〉 ≥ ηy, ∀ η ≥ 0.

Consequently,

P(X ∈ H(θ, y)) ≤ P(〈ηθ,X〉 ≥ ηy) ≤ e−ηyE[exp(〈ηθ,X〉)],

by Markov’s inequality.

8. We shall use Hoeffding’s inequality, which states that, if Yi are iid, take values in [0, 1], and have
mean ν, then

P
( n∑
i=1

(Yi − ν) > nt
)
≤ exp(−2nt2).

Define Yi = (Xi − a)/(b − a) and ν = (µ − a)(b − a), where µ = E[X1]. Then it is clear that Yi
are iid, take values in [0, 1] and have mean ν. We can also rewrite the event

∑n
i=1(Xi − µ) > nt as

the event { n∑
i=1

(Xi − a)− (µ− a)
b− a

> n
t

b− a

}
=
{ n∑
i=1

(Yi − ν) > n
t

b− a

}
.

The result now follows from Hoeffding’s inequality.
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