Stochastic Optimisation

Solutions to Problem Sheet 1

1. The generating function of X_{1} is given by

$$
G_{1}(z)=E\left[z^{X_{1}}\right]=\sum_{n=0}^{\infty} P\left(X_{1}=n\right) z^{n} .
$$

But X_{1} is Poisson with parameter λ_{1}, so $P\left(X_{1}=n\right)=\lambda_{1}^{n} e^{-\lambda_{1}} / n!$. Substituting this above, we get

$$
G_{1}(z)=\sum_{n=0}^{\infty} \frac{\left(\lambda_{1} z\right)^{n}}{n!} e^{-\lambda_{1}}=e^{\lambda_{1} z} e^{-\lambda_{1}}=e^{\lambda_{1}(z-1)}
$$

Similarly, X_{2} has generating function $G_{2}(z)=e^{\lambda_{2}(z-1)}$.
Now, we have for the generating function of $X=X_{1}+X_{2}$ that

$$
G(z)=E\left[z^{X}\right]=E\left[z^{X_{1}} z^{X_{2}}\right]=E\left[z^{X_{1}}\right] E\left[z^{X_{2}}\right]=G_{1}(z) G_{2}(z),
$$

since X_{1} and X_{2} are independent random variables (and hence so are $z^{X_{1}}$ and $z^{X_{2}}$). Substituting for G_{1} and G_{2}, we find that $G(z)=e^{\left(\lambda_{1}+\lambda_{2}\right)(z-1)}$, which we recognise as the generating function of a Poisson random variable with parameter $\lambda_{1}+\lambda_{2}$. This completes the proof.
2. (a) The moment generating function of T is given by

$$
M_{T}(\theta)=\mathbb{E}\left[e^{\theta T}\right]=\int_{0}^{\infty} \mu e^{-\mu x} e^{\theta x} d x= \begin{cases}\frac{\mu}{\mu-\theta}, & \text { if } \theta<\mu \\ +\infty, & \text { otherwise }\end{cases}
$$

Hence,

$$
\mathbb{E}[T]=M_{T}^{\prime}(0)=\left.\frac{\mu}{(\mu-\theta)^{2}}\right|_{\theta=0}=\frac{1}{\mu} .
$$

Next, recall that the cdf of an $\operatorname{Exp}(\lambda)$ random variable is $1-e^{-\lambda x}$ for $x \geq 0$ and 0 for $x<0$. Defining $Y=\mu T$, we see that

$$
\mathbb{P}(Y>y)=\mathbb{P}(\mu T>y)=\mathbb{P}\left(T>\frac{y}{\mu}\right)=\exp \left(-\mu \frac{y}{\mu}\right)=e^{-y}
$$

i.e., Y has the $c d f$ of an $\operatorname{Exp}(1)$ random variable.
(b) By the conditional probability formula, we have for all $t, u \geq 0$ that

$$
P(T>t+u \mid T>u)=\frac{P(\{T>t+u\} \cap\{T>u\})}{T>u}=\frac{P(T>t+u)}{T>u},
$$

since the event $T>t+u$ is a subset of the event $T>u$, and hence their intersection is the event $T>t+u$. Now, recall that since T is exponentially distributed with parameter μ, $P(T>t)=e^{-\mu t}$ for all $t \geq 0$. Substituting this above,

$$
P(T>t+u \mid T>u)=\frac{\exp (-\mu(t+u))}{\exp (-\mu u)}=e^{-\mu t}=P(T>t) .
$$

3. We have by Chernoff's bound that, for all $\theta \geq 0$,

$$
\begin{aligned}
\mathbb{P}\left(X_{1}+\ldots+X_{n}>n q\right) & \leq e^{-\theta n q} \mathbb{E}\left[\exp \left(\theta\left(X_{1}+\ldots+X_{n}\right)\right]\right. \\
& =e^{-\theta n q} \prod_{i=1}^{n} \mathbb{E}\left[e^{\theta X_{i}}\right] \quad \text { since the } X_{i} \text { are mutually independent } \\
& =e^{-\theta n q}\left(1-p+p e^{\theta}\right)^{n} .
\end{aligned}
$$

Taking logarithms (which are a montone increasing function and preserve inequalities), we get

$$
\begin{equation*}
\log \mathbb{P}\left(X_{1}+\ldots+X_{n}>n q\right) \leq-\theta n q+n \log \left(1-p+p e^{\theta}\right), \quad \forall \theta \geq 0 . \tag{1}
\end{equation*}
$$

We seek the minimum of the RHS over $\theta \geq 0$. Setting the derivative with respect to θ to 0 , we obtain the equation

$$
-n q+\frac{n p e^{\theta}}{1-p+p e^{\theta}}=0
$$

from which it follows that

$$
\frac{q}{1-q}=\frac{p e^{\theta}}{1-p}, \text { i.e., } e^{\theta}=\frac{q(1-p)}{p(1-q)} .
$$

Since $q>p$ by assumption, $q(1-p)>p(1-q)$, and it follows that the solution for θ is positive. Substituting this value of θ in (1), we get

$$
\begin{aligned}
\log \mathbb{P}\left(X_{1}+\ldots+X_{n}>n q\right) & \leq-n q \log \frac{q(1-p)}{p(1-q)}+n \log \left((1-p)\left(1+\frac{q}{1-q}\right)\right) \\
& =-n \operatorname{Bbigl}\left(q \log \frac{q}{p}-q \log \frac{1-q}{1-p}+\log \frac{1-p}{1-q}\right)=-n K(q ; p) .
\end{aligned}
$$

4. We have by Chernoff's bound that, for all $\theta \leq 0$,

$$
\begin{aligned}
\mathbb{P}\left(X_{1}+\ldots+X_{n}<n \mu\right) & \leq e^{-\theta n \mu} \mathbb{E}\left[\exp \left(\theta\left(X_{1}+\ldots+X_{n}\right)\right]\right. \\
& =e^{-\theta n \mu} \prod_{i=1}^{n} \mathbb{E}\left[e^{\theta X_{i}}\right] \quad \text { since the } X_{i} \text { are mutually independent } \\
& =e^{-\theta n \mu}\left(\exp \left(\lambda\left(e^{\theta}-1\right)\right)^{n},\right.
\end{aligned}
$$

using the expression for the generating function of a Poisson random variable derived in Problem 1. Now, taking logarithms, we obtain

$$
\frac{1}{n} \log \mathbb{P}\left(X_{1}+\ldots+X_{n}<n \mu\right) \leq-\theta \mu+\lambda\left(e^{\theta}-1\right) \quad \forall \theta \leq 0 .
$$

To minimise the expression on the RHS, we set its derivative with respect to θ to 0 . This yields the equation $\mu=\lambda e^{\theta}$, and so $\theta=\log (\mu / \lambda)$. As μ was assumed to be smaller than $\lambda, \theta<0$ as required. Substituting for θ above, we get

$$
\frac{1}{n} \log \mathbb{P}\left(X_{1}+\ldots+X_{n}<n \mu\right) \leq-\mu \log \frac{\mu}{\lambda}+\mu-\lambda=-I(\mu ; \lambda)
$$

as required.
5. Applying Chernoff's bound, we get that, for any $\theta \geq 0$,

$$
\begin{aligned}
\mathbb{P}\left(X_{1}+\ldots+X_{n}>n x\right) & \leq e^{-\theta n x} \mathbb{E}\left[\exp \left(\theta\left(X_{1}+\ldots+X_{n}\right)\right]\right. \\
& =e^{-\theta n x} \prod_{i=1}^{n} \mathbb{E}\left[e^{\theta X_{i}}\right] \quad \text { since the } X_{i} \text { are mutually independent } \\
& =e^{-\theta n x}\left(\frac{\lambda}{\lambda-\theta}\right)^{n}, \quad \theta \leq \lambda,
\end{aligned}
$$

using the expression for the mgf of an exponential random variable derived in Problem 2. Taking logarithms, we get

$$
\frac{1}{n} \log \mathbb{P}\left(X_{1}+\ldots+X_{n}>n x\right) \leq-\theta x+\log \frac{\lambda}{\lambda-\theta}, \quad \theta \in[0, \lambda) .
$$

We minimise the expression on the RHS by setting its derivative with respect to θ to 0 . This yields $x=1 /(\lambda-\theta)$, i.e., $\theta=\lambda-1 / x$, which is positive if $x>1 / \lambda$, as we assumed. Substituting this in the bound, we get

$$
\frac{1}{n} \log \mathbb{P}\left(X_{1}+\ldots+X_{n}>n x\right) \leq-\lambda x+1+\log (\lambda x)=-J(x ; \lambda) .
$$

6. (a) The mgf of Z is given by

$$
\begin{aligned}
M_{Z}(\theta) & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}+\theta x\right) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(x-\theta)^{2}}{2}+\frac{\theta^{2}}{2}\right) d x \\
& =e^{\theta^{2} / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) d y=e^{\theta^{2} / 2} .
\end{aligned}
$$

To obtain the third equality, we took the constant term $\exp \left(\theta^{2} / 2\right)$ out of the integral, and made the change of variables $y=x i \theta$. To obtain the last equality, we recognised $\left(1 / \sqrt{2 \pi} \exp \left(-y^{2} / 2\right)\right.$ as the density of a standard normal random variable, which integrates to 1 as it is a probability density function.
(b) Notice that if $X_{i} \sim N\left(\mu, \sigma^{2}\right)$ and we define $Y_{i}=\left(X_{i}-\mu\right) / \sigma$, then $Y_{i} \sim N(0,1)$. Moreover, the Y_{i} are also iid, and their mgf is given in part (a). Hence, we can use the Chernoff bound to write, for any $\theta \geq 0$, that

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=1}^{n} X_{i}>n \gamma\right) & \leq \mathbb{P}\left(\sum_{i=1}^{n} Y_{i}>\frac{n(\gamma-\mu)}{\sigma}\right) \\
& \leq \exp \left(-\theta \frac{n(\gamma-\mu)}{\sigma}\right) \mathbb{E}\left[\exp \theta \sum_{i=1}^{n} Y_{i}\right] .
\end{aligned}
$$

Taking logarithms, using the independence of the Y_{i} and the expression for their mgf computed in part (a), we get

$$
\frac{1}{n} \log \mathbb{P}\left(\sum_{i=1}^{n} X_{i}>n \gamma\right) \leq-\theta \frac{\gamma-\mu}{\sigma}+\frac{\theta^{2}}{2}, \quad \forall \theta \geq 0
$$

The mnimum of the expression on the RHS over $\theta \geq 0$ is attained at $\theta=(\gamma-\mu) / \sigma$, leading us to conclude that

$$
\frac{1}{n} \log \mathbb{P}\left(\sum_{i=1}^{n} X_{i}>n \gamma\right) \leq-\frac{(\gamma-\mu)^{2}}{2 \sigma^{2}}
$$

as claimed in the question.
7. Define $Y=\langle\boldsymbol{\theta}, \mathbf{X}\rangle$. Using standard properties of inner products, $\eta Y=\langle\eta \boldsymbol{\theta}, \mathbf{X}\rangle$. Now,

$$
\mathbf{X} \in H(\boldsymbol{\theta}, y) \Rightarrow\langle\boldsymbol{\theta}, \mathbf{X}\rangle \geq y \Rightarrow\langle\eta \boldsymbol{\theta}, \mathbf{X}\rangle \geq \eta y, \quad \forall \eta \geq 0
$$

Consequently,

$$
\mathbb{P}(\mathbf{X} \in H(\boldsymbol{\theta}, y)) \leq \mathbb{P}(\langle\eta \boldsymbol{\theta}, \mathbf{X}\rangle \geq \eta y) \leq e^{-\eta y} \mathbb{E}[\exp (\langle\eta \boldsymbol{\theta}, \mathbf{X}\rangle)]
$$

by Markov's inequality.
8. We shall use Hoeffding's inequality, which states that, if Y_{i} are iid, take values in $[0,1]$, and have mean ν, then

$$
\mathbb{P}\left(\sum_{i=1}^{n}\left(Y_{i}-\nu\right)>n t\right) \leq \exp \left(-2 n t^{2}\right)
$$

Define $Y_{i}=\left(X_{i}-a\right) /(b-a)$ and $\nu=(\mu-a)(b-a)$, where $\mu=\mathbb{E}\left[X_{1}\right]$. Then it is clear that Y_{i} are iid, take values in $[0,1]$ and have mean ν. We can also rewrite the event $\sum_{i=1}^{n}\left(X_{i}-\mu\right)>n t$ as the event

$$
\left\{\sum_{i=1}^{n} \frac{\left(X_{i}-a\right)-(\mu-a)}{b-a}>n \frac{t}{b-a}\right\}=\left\{\sum_{i=1}^{n}\left(Y_{i}-\nu\right)>n \frac{t}{b-a}\right\}
$$

The result now follows from Hoeffding's inequality.

