Stochastic Optimisation

Solutions to Problem Sheet 1

1.

2.

The generating function of X7 is given by

Gi(z) = E[zXl} = iP(Xl =n)z".

n=0

But X is Poisson with parameter A1, so P(X; = n) = Ae~*1 /n!. Substituting this above, we get

oo A n
Gi(z) = Z (r2) e M = Mg = M),

|
0 n:

Similarly, X, has generating function Gy (z) = e*2(*=1),

Now, we have for the generating function of X = X; + X that
G(z) = E[zx} = E[ZXIZXQ} = E[ZX1:|E|:ZX2] = G1(2)Ga(2),

since X and X are independent random variables (and hence so are 2! and zX2). Substituting
for G1 and G, we find that G(z) = e +*2)(z=1)_which we recognise as the generating function
of a Poisson random variable with parameter A\; + Ao. This completes the proof.

(a) The moment generating function of 7" is given by

o0 Lo if 0 < p,
My () = E[e?T] = / pe Href dy = {“9 ! ,u
0 +00, otherwise.

Hence,
H ‘ _ 1
(n—0)2 lo=0 p’
Next, recall that the cdf of an Exp(\) random variable is 1 — e~ for > 0 and 0 for z < 0.
Defining Y = uT', we see that

E[T] = Mj(0) =

P(Y >y) =Pul >y) = ]P’(T > %) = exp(—,u%) =e Y,

i.e., Y has the cdf of an Exp(1) random variable.
(b) By the conditional probability formula, we have for all £, > 0 that

P(T > t+u|lT > u) = {7 > ;“ju{ >up) (T>>JU)’

since the event 7" > t + u is a subset of the event 7' > wu, and hence their intersection is
the event 7' > ¢ + u. Now, recall that since 7" is exponentially distributed with parameter y,
P(T > t) = e # for all t > 0. Substituting this above,

exp(—p(t +u) e M = P(T > t).

P(T>t+ulT >u)= exp(— i)



3. We have by Chernoff’s bound that, for all § > 0,
P(X1+ ...+ X, > ng) < e MEexp(0(X1 + ... + X,)]
= e 0na ﬁ E[e?Xi] since the X; are mutually independent
i=1
= e_gnq(l —p —i—pee)n.
Taking logarithms (which are a montone increasing function and preserve inequalities), we get
logP(X1+ ...+ X, >ng) < —Ong +nlog(l—p+pe), Vo>0. (1)

We seek the minimum of the RHS over § > 0. Setting the derivative with respect to 6 to 0, we obtain
the equation

npe’
T e
from which it follows that
a _p’ g _all-p)
l—q 1-p 77 p(l—q)

Since ¢ > p by assumption, ¢(1 — p) > p(1 — ¢), and it follows that the solution for 6 is positive.
Substituting this value of  in (1), we get

1 —
logP(X; +...+ X, >ngqg) < —nqlogu —i—nlog((l —p)(l + L))
p(l—q) 1—q

1-— 1-—
= —nBbigl(qlog 4_ qlog q
p

P
! ) = —nK(gp).
T, tlee nK(g;p)

4. We have by Chernoft’s bound that, for all § < 0,
P(X1+ ...+ X, < nu) <e "PElexp(0(X1 + ...+ X,)]
= nn ﬁ E[e?X¢] since the X; are mutually independent
i=1
= ¢ 0 (exp()\(ee -1)",

using the expression for the generating function of a Poisson random variable derived in Problem 1.
Now, taking logarithms, we obtain

1
—1ogP(X1 + ...+ X <np) < —0p+ e —1) V0 <0.
n
To minimise the expression on the RHS, we set its derivative with respect to 6 to 0. This yields the

equation ;1 = \e?, and so § = log(ju/\). As p was assumed to be smaller than \, # < 0 as required.
Substituting for 6 above, we get

1
ﬁlogP(X1+...+Xn<nu) < —ulogg—l—u—)\:—f(u;)\),

as required.



5. Applying Chernoff’s bound, we get that, for any § > 0,
P(X1+ ...+ X, >nz) < e " Elexp(0(X; + ... + X))

n
= e 0z H E[e?X¢] since the X; are mutually independent
by n
—bOnx
= — 0<A
‘ ()\ - 9)  UES
using the expression for the mgf of an exponential random variable derived in Problem 2. Taking

logarithms, we get

1
—logP(X; + ...+ X, >nx) < 9x+log)\/\9 6 €[0,N).
n

We minimise the expression on the RHS by setting its derivative with respect to 6 to 0. This yields
x=1/(A—0),ie.,0 =\ —1/x, which is positive if x > 1/, as we assumed. Substituting this in
the bound, we get

1
—logP(X1+ ...+ X, >nz) < Az +1+log(Ax) = —J(z; N).
n

6. (a) The mgf of Z is given by

o Vor 2
<1 (x—0)% 62
- = +—)d
[ et g

00 2
_ 2 1 Y7\ gy — /2
e /OO rexp( 5 )dy e’ /-,

To obtain the third equality, we took the constant term exp(62/2) out of the integral, and made
the change of variables yy = zif. To obtain the last equality, we recognised (1/v/27 exp(—y?/2)
as the density of a standard normal random variable, which integrates to 1 as it is a probability
density function.

(b) Notice that if X; ~ N (u, %) and we define Y; = (X; — p) /0, then Y; ~ N (0, 1). Moreover,
the Y; are also iid, and their mgf is given in part (a). Hence, we can use the Chernoff bound to
write, for any 6 > 0, that

P( X, > ) <P(Y v > M)
§exp< 0 nly = ,u) [eXpGZY}

Taking logarithms, using the independence of the Y; and the expression for their mgf computed
in part (a), we get

Llogp(3 i m) <07 E L 0 vz
i=1



The mnimum of the expression on the RHS over # > 0 is attained at § = (v — u)/o, leading
us to conclude that

1 - (v — w)?
2 JoP (X > my) < H
1=

as claimed in the question.

7. Define Y = (6, X). Using standard properties of inner products, nY = (n6, X). Now,
XeHO,y) = (0,X) >y = 10,X)>ny, YVn=0.
Consequently,
P(X € H(8,y)) < P((n6,X) = ny) < e "E[exp((n6, X))],

by Markov’s inequality.

8. We shall use Hoeffding’s inequality, which states that, if Y; are iid, take values in [0, 1], and have
mean v, then

n
IP’(Z(YZ —-v) > nt) < exp(—2nt?).
i=1
Define Y; = (X; —a)/(b—a)and v = (1 — a)(b — a), where = E[X1]. Then it is clear that Y;
are iid, take values in [0, 1] and have mean v. We can also rewrite the event Y ;" | (X; — p1) > nt as

the event
n

{zn: (Xi_‘;;)__a(ﬂ_a) >nbfa} = {Z(YZ_V) >nbfa}.

i=1 =1

The result now follows from Hoeffding’s inequality.



