
Stochastic Optimisation

Solutions to Problem Sheet 2

1. (a) Question 6(b) from Problem Sheet 1 gives us a tail bound on the probability of sums of iid
normal random variables. Here, we have a difference of sums of normal random variables.
But we can easily put this in the form we want. Notice that

µ̂1,n ≥ µ̂2,n ⇐⇒
n∑
t=1

X1(t) ≥
n∑
t=1

X2(t) ⇐⇒
n∑
t=1

(X1(t)−X2(t)) ≥ 0,

where the Xi(t) are defined as in the hint. Now, X1(t) and X2(t) are independent normal
random variables, with mean and variance 1, and mean and variance 2, respectively. Hence,
X1(t)−X2(t) ∼ N(−1, 3), and these differences are mutually independent for distinct values
of t. Hence, by Q6(b) from Problem Sheet 1,

P
( n∑
t=1

(X1(t)−X2(t)) ≥ 0
)
≥ exp

(
−n 12

2× 3

)
= e−n/6.

(b) On the event that µ̂1,n < µ̂2,n, arm 1 is not played after the exploratory phase, so it is played
only n times up to time T . On each play, it incurs a regret of µ2 − µ1 = 1. Hence, the regret
up to time T is n. On the event that µ̂1,n > µ̂2,n, arm 1 is played in every time step after the
exploratory phase, so the regret up to time T is (T − 2n+ n)(µ2 − µ1) = T − n. Combining
these possibilities, and using the answer to part (a), we get

R(T ) = nP(µ̂1,n < µ̂2,n) + (T − n)P(µ̂1,n > µ̂2,n)

≤ n(1− e−n/6) + (T − n)e−n/6 = Te−n/6 + n(1− 2e−n/6)

≈ Te−n/6 + n =: f(n).

Treating n as if it were continuous and differentiating f(n) above with respect to n, we get

df

dn
≈ −T

6
e−n/6 + 1,

d2f

dn2
≈ T

62
e−n/6.

The first derivative vanishes at n = 6 log(T/6) and the second derivative is positive, so f
achieves a local (and in fact, global) minimum at this value of n. Substituting in this value of
n, we conclude that

R(T ) ≤ T exp(− log(T/6)) + 6 log
T

6
= 6 + 6 log T − 6 log 6 = 6 log T + const.

2. Denote by Geom(p) a geometric distribution with parameter p, and mean 1/p. From the description
of the heuristic, arm 1 is played a random number of times before switching to arm 2, which is
played a random number of times before switching back to arm 1, and so on.

Define T 1
i to be the number of times arm 1 is played consecutively during the ith run of plays of this

arm; define T 2
i similarly. Thus, arm 1 is played T 1

1 times in a row, then arm 2 is played T 2
1 times,
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arm 1 is played T 1
2 times, and so on. Observe that the random variables T 1

i , i ∈ N and T 2
i , i ∈ N are

all mutually independent, that T 1
i have a Geom(1 − µ1) distribution and T 2

i have a Geom(1 − µ2)
distribution. Hence, by the law of large numbers,

lim
n→∞

1

n

n∑
i=1

T ki =
1

1− µk
, k = 1, 2.

Now, up to any time T , the number of complete runs for which each arm has been played differ by
at most one. Hence, if we denote by N1(T ) and N2(T ) the number of times that arms 1 and 2 have
been played up to time T , we see from the law of large numbers result that

lim
T→∞

N1(T )

N2(T )
=

1− µ2
1− µ1

.

Combining this with the fact that N1(T ) +N2(T ) = T , we conclude that

lim
T→∞

N2(T )

T
=

1− µ1
1− µ1 + 1− µ2

=
1− µ1

2− µ1 − µ2
.

Taking expectations, we get

lim
T→∞

E[N2(T )]

T
=

1− µ1
2− µ1 − µ2

.

(The interchange of limit and expectation is justified since N2(T )/T is a bounded random variable.
I do not necessarily expect students to justify this step - I only asked for an intuitive explanation.)

As arm 1 is better, a regret of µ1 − µ2 is incurred each time arm 2 is played. Hence, the regret up to
time T is given byR(T ) = (µ1 − µ2)E[N2(T )]. It follows that

lim
T→∞

R(T )

T
=

(1− µ1)(µ1 − µ2)
2− µ1 − µ2

,

i.e., the regret scales linearly in T .

3. (a) Suppose neither of the claimed statements is true. If (1) is false, then we must have

α log s

2N2(s)
≤ ∆2

4
,

and so

µ2 +

√
α log s

2N2(s)
≤ µ2 +

∆

2
.

Hence, if (2) is also false, then we must have

µ̂2,N2(s) < µ2 +

√
α log s

2N2(s)
≤ µ2 +

∆

2
.

But µ1 = µ2 + ∆, so the above implies that µ̂2,N2(s) < µ1, and so arm 2 cannot be played in
round s+ 1.

(b) Given a sequence I(s), s ∈ N, we can define τ(u) = inf{s : N2(s) = u}. We define
τ(u) = +∞ if the set over which the infimum is taken is empty, i.e., if N2(s) < u for all
s ∈ N. The inequality asserted in the question holds trivially in this case, so we assume from
now on that τ <∞.
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Now, we can see that

N2(t) ≤ N2(τ) +

t∑
s=τ+1

1(I(s) = 2), (1)

where the latter sum is defined to be zero if the set of valid indices is empty, i.e., if τ + 1 > t.
The inequality holds with equality if τ ≤ t, and is obvious if τ > t since N2(·) is a non-
decreasing function. For the sum on the RHS above, notice that for each s ≥ τ + 1, it holds
that N2(s − 1) ≥ u, by the definition of τ and the fact that N2(·) is non-decreasing. In other
words, for s ≥ τ + 1, the indicator 1(N2(s− 1) ≥ u) takes the value 1, so that

1(I(s) = 2) = 1) = 1(N2(s− 1) ≥ u and I(s) = 2), ∀ s ≥ τ + 1. (2)

Substituting (2) in (1), and noting that N2(τ) = u, we get

N2(t) ≤ u+
t∑

s=τ+1

1(N2(s− 1) ≥ u and I(s) = 2).

The inequality asserted in the question follows by noticing that τ ≥ u, sinceN2(·) can increase
by at most 1 in each time step.

(c) Taking expectations on both sides of the inequality in part (b). We get

E[N2(t)] ≤ u+ E
[ t∑
s=u+1

1(N2(s− 1) ≥ u and I(s) = 2)
]

= u+

t∑
s=u+1

E[1(N2(s− 1) ≥ u and I(s) = 2)]

= u+
t∑

s=u+1

P(N2(s− 1) ≥ u and I(s) = 2), (3)

where the first equality follows from the linearity of expectation.
Let u be defined as in the question. Then, on the event that N2(s− 1) ≥ u, we must have

N2(s− 1) ≥ 2α log t

∆2
≥ 2α log(s− 1)

∆2

for all s ≤ t. It follows from part (a) that, in order for arm 2 to be played at time s (i.e., for
I(s) = 2), we must have

µ̂2,N2(s−1) ≥ µ2 +

√
α log(s− 1)

2N2(s− 1)
.

Hence, we obtain for all s ∈ {u+ 1, . . . , t} that

P(N2(s− 1) ≥ u and I(s) = 2) ≤ P
(
µ̂2,N2(s−1) ≥ µ2 +

√
α log(s− 1)

2N2(s− 1)

)
. (4)

We now bound the RHS above using Hoeffding’s inequality. Since the rewards from plays
of arm 2 are Bernoulli random variables, they take values in [0, 1] (in fact, in {0, 1}), and we
denoted their mean by µ2. Hence, we have by Hoeffding’s inequality that

P
(
µ̂2,N2(s−1) ≥ µ2 +

√
α log(s− 1)

2N2(s− 1)

)
≤ exp

(
−2N2(s− 1)

α log(s− 1)

2N2(s− 1)

)
= exp(−α log(s− 1)).
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Combining this with (3) and (4), we get

E[N2(t)] ≤ u+
t∑

s=u+1

exp(−α log(s− 1)) = u+
t−1∑
s=u

s−α.

Approximating the latter sum by∫ t

u
x−αdx ≤

∫ ∞
u

x−αdx ≤ u−α+1

α− 1
≤ 1

α− 1
,

we conclude that E[N2(t)] ≤ u + 1
α−1 , as required. Notice that the last inequality in the

displayed equation above holds because u ≥ 1.
(d) We now use the fact that a regret of ∆ is incurred each time that arm 2 is played, while no regret

is incurred when arm 1 is played. Hence, the regret up to time T isR(T ) = ∆E[N2(T )]. Using
the answer to part (d), we get the bound

R(T ) ≤ u∆ +
∆

α− 1
.

Now, by the definition of u,

u ≤ 2α log T

∆2
+ 1.

Combining the two displayed equations above,

R(T ) ≤ 2α log T

∆
+ ∆ +

∆

α− 1
=

2α log T

∆
+

α∆

α− 1
,

which is what we were required to show.

4. (a) It follows from Q6(b) in Homework 1 that

P
(
µ̂i,n > µi +

√
α log t

2n

)
≤ exp

(
−
nα log t

2n

2

)
= exp

(
−α log t

4

)
,

since the variance of the Gaussian random variables is σ2 = 1. Thus,

P
(
µ̂i,n > µi +

√
α log t

2n

)
≤ t−α/4.

(b) To see that the inequality can be reversed, note that if Xi are iid with a N(µ, σ2) distribution,
then −Xi are iid with a N(−µ, σ2) distribution. Thus,

P
(
µ̂i,n < µi −

√
α log t

2n

)
= P

(
−µ̂i,n > −µi +

√
α log t

2n

)
satisfies the same bound.

(c) Assume without loss of generality (wlog) that µ1 > µ2, and let ∆ = µ1 − µ2. In the analysis
of the UCB algorithm, we showed that one of the following three things must hold in order for
the sub-optimal arm 2 to be played in time step t+ 1:

µ̂1,N1(t) ≤ µ1 −

√
α log t

2N1(t)
, (5)

µ̂2,N2(t) > µ2 +

√
α log t

2N2(t)
, (6)

N2(t) <
2α log t

∆2
, (7)
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where N1(t) and N2(t) denote the number of times that arms 1 and 2 have been played in the
first t time steps.
Next, defining u = d(2α log T )/∆2e, we bounded the number of plays of arm 2 in the first T
rounds as follows:

N2(T ) ≤ u+
T−1∑
t=u

1(N2(t) ≥ u) and arm 2 is played in round t+ 1). (8)

By definition of u, for the last indicator to be 1, one of the events in (5) or (6) needs to occur.
Hence, taking expectations in (8),

E[N2(T )] ≤ u+
T−1∑
t=u

P
(
µ̂1,N1(t) ≤ µ1 −

√
α log t

2N1(t)

)
+ P

(
µ̂2,N2(t) > µ2 +

√
α log t

2N2(t)

)
.

Substituting the bounds on these probabilities from the first part of the question, we get

E[N2(T )] ≤ u+

T−1∑
t=u

2t−α/4.

Approximating the last sum by an integral,

E[N2(T )] ≤ u+

∫ ∞
u−1

2t−α/4dt.

If α > 4, then the integral above converges, and we get

E[N2(T )] ≤ u+
2(u− 1)−α/4

α
4 − 1

≤ u+
8

α− 4
,

using the fact that u ≥ 2. Substituting for u,

E[N2(T )] ≤ 2α log T

∆2
+ 1 +

8

α− 4
=

2α log T

∆2
+
α+ 4

α− 4
.

Finally, a regret of ∆ = µ1 − µ2 is incurred every time arm 2 is played. Hence, the regret up
to time T is bounded as follows:

R(T ) = ∆E[N2(T )] ≤ c1 + c2 log T,

where
c1 =

α+ 4

α− 4
∆, c2 =

2α

∆
.

5. Following the hint (which has a typo), we want to show that f(q) defined as K(q; p)− 2(q − p)2 is
a convex function of q. Writing it out in full,

f(q = q log
q

p
+ (1− q) log

1− q
1− p

− 2(q − p)2.

We now differentiate it twice. We get

f ′(q) = 1 + log
q

p
− 1− log

1− q
1− p

− 4(q − p), f ′′(q) =
1

q
+

1

1− q
− 4 =

1

q(1− q)
− 4.
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Now, for q ∈ (0, 1), the quantity q(1 − q) achieves its maximum value of 1
4 at q = 1

2 . Hence,
1

q(1−q) ≥ 4 for all q ∈ (0, 1), which implies that f ′′(q) ≥ 0 for all q ∈ (0, 1). This shows that the
function f is convex on (0, 1).

Moreover, it is easy to see that f ′(p) = 0, which means that f attains its global minimum over (0, 1)
at q = p. We also have f(p) = 0, which implies that f(q) ≥ f(p) = 0 for all q ∈ (0, 1), i.e.,

K(q; p) ≥ 2(q − p)2 = 2dTV (p, q)2,

for all q ∈ (0, 1). For completeness, we also need to check that the inequality holds for q = 0 and
q = 1. There are two ways to do this. The simpler is to notice thatK(q; p)−2(q−p)2 is continuous
on [0, 1]; hence, the convexity proved on (0, 1) extends to [0, 1] and we are done.

Alternatively, you could check by hand that the claimed inequality K(q, p) − 2(q − p)2 ≥ 0 holds
at q = 0 and q = 1 as well. If p = 0 and q = 0, or p = 1 and q = 1, then this expression
is zero. We will check it for q = 0, p 6= 0; the case q = 1, p 6= 1 is similar. If q = 0, then
K(q, p) = − log(1− p), so we need to show that − log(1− p)− 2p2 ≥ 0 for all p ∈ (0, 1]. Calling
it g(p), we notice that

g′(p) =
1

1− p
− 4p =

1− 4p(1− p)
1− p

≥ 0 ∀ p ∈ (0, 1).

Hence, g is a non-decreasing function on (0, 1). As g(0) = 0 and g is continuous at 0, it follows that
g(p) ≥ 0 for all p ∈ (0, 1). This also holds for p = 1, since g(1) = +∞. This completes the proof.
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