Stochastic Optimisation

Solutions to Problem Sheet 2

1. (a) Question 6(b) from Problem Sheet 1 gives us a tail bound on the probability of sums of iid normal random variables. Here, we have a difference of sums of normal random variables. But we can easily put this in the form we want. Notice that

$$
\hat{\mu}_{1, n} \geq \hat{\mu}_{2, n} \Longleftrightarrow \sum_{t=1}^{n} X_{1}(t) \geq \sum_{t=1}^{n} X_{2}(t) \Longleftrightarrow \sum_{t=1}^{n}\left(X_{1}(t)-X_{2}(t)\right) \geq 0
$$

where the $X_{i}(t)$ are defined as in the hint. Now, $X_{1}(t)$ and $X_{2}(t)$ are independent normal random variables, with mean and variance 1 , and mean and variance 2 , respectively. Hence, $X_{1}(t)-X_{2}(t) \sim N(-1,3)$, and these differences are mutually independent for distinct values of t. Hence, by Q6(b) from Problem Sheet 1,

$$
\mathbb{P}\left(\sum_{t=1}^{n}\left(X_{1}(t)-X_{2}(t)\right) \geq 0\right) \geq \exp \left(-n \frac{1^{2}}{2 \times 3}\right)=e^{-n / 6} .
$$

(b) On the event that $\hat{\mu}_{1, n}<\hat{\mu}_{2, n}$, arm 1 is not played after the exploratory phase, so it is played only n times up to time T. On each play, it incurs a regret of $\mu_{2}-\mu_{1}=1$. Hence, the regret up to time T is n. On the event that $\hat{\mu}_{1, n}>\hat{\mu}_{2, n}$, arm 1 is played in every time step after the exploratory phase, so the regret up to time T is $(T-2 n+n)\left(\mu_{2}-\mu_{1}\right)=T-n$. Combining these possibilities, and using the answer to part (a), we get

$$
\begin{aligned}
\mathcal{R}(T) & =n \mathbb{P}\left(\hat{\mu}_{1, n}<\hat{\mu}_{2, n}\right)+(T-n) \mathbb{P}\left(\hat{\mu}_{1, n}>\hat{\mu}_{2, n}\right) \\
& \leq n\left(1-e^{-n / 6}\right)+(T-n) e^{-n / 6}=T e^{-n / 6}+n\left(1-2 e^{-n / 6}\right) \\
& \approx T e^{-n / 6}+n=: f(n) .
\end{aligned}
$$

Treating n as if it were continuous and differentiating $f(n)$ above with respect to n, we get

$$
\frac{d f}{d n} \approx \frac{-T}{6} e^{-n / 6}+1, \quad \frac{d^{2} f}{d n^{2}} \approx \frac{T}{6^{2}} e^{-n / 6} .
$$

The first derivative vanishes at $n=6 \log (T / 6)$ and the second derivative is positive, so f achieves a local (and in fact, global) minimum at this value of n. Substituting in this value of n, we conclude that

$$
\begin{aligned}
\mathcal{R}(T) & \leq T \exp (-\log (T / 6))+6 \log \frac{T}{6} \\
& =6+6 \log T-6 \log 6=6 \log T+\text { const. }
\end{aligned}
$$

2. Denote by $\operatorname{Geom}(p)$ a geometric distribution with parameter p, and mean $1 / p$. From the description of the heuristic, arm 1 is played a random number of times before switching to arm 2 , which is played a random number of times before switching back to arm 1, and so on.
Define T_{i}^{1} to be the number of times arm 1 is played consecutively during the $i^{\text {th }}$ run of plays of this arm; define T_{i}^{2} similarly. Thus, arm 1 is played T_{1}^{1} times in a row, then arm 2 is played T_{1}^{2} times,
$\operatorname{arm} 1$ is played T_{2}^{1} times, and so on. Observe that the random variables $T_{i}^{1}, i \in \mathbb{N}$ and $T_{i}^{2}, i \in \mathbb{N}$ are all mutually independent, that T_{i}^{1} have a $\operatorname{Geom}\left(1-\mu_{1}\right)$ distribution and T_{i}^{2} have a $\operatorname{Geom}\left(1-\mu_{2}\right)$ distribution. Hence, by the law of large numbers,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} T_{i}^{k}=\frac{1}{1-\mu_{k}}, \quad k=1,2 .
$$

Now, up to any time T, the number of complete runs for which each arm has been played differ by at most one. Hence, if we denote by $N_{1}(T)$ and $N_{2}(T)$ the number of times that arms 1 and 2 have been played up to time T, we see from the law of large numbers result that

$$
\lim _{T \rightarrow \infty} \frac{N_{1}(T)}{N_{2}(T)}=\frac{1-\mu_{2}}{1-\mu_{1}} .
$$

Combining this with the fact that $N_{1}(T)+N_{2}(T)=T$, we conclude that

$$
\lim _{T \rightarrow \infty} \frac{N_{2}(T)}{T}=\frac{1-\mu_{1}}{1-\mu_{1}+1-\mu_{2}}=\frac{1-\mu_{1}}{2-\mu_{1}-\mu_{2}} .
$$

Taking expectations, we get

$$
\lim _{T \rightarrow \infty} \frac{\mathbb{E}\left[N_{2}(T)\right]}{T}=\frac{1-\mu_{1}}{2-\mu_{1}-\mu_{2}} .
$$

(The interchange of limit and expectation is justified since $N_{2}(T) / T$ is a bounded random variable. I do not necessarily expect students to justify this step - I only asked for an intuitive explanation.)
As arm 1 is better, a regret of $\mu_{1}-\mu_{2}$ is incurred each time arm 2 is played. Hence, the regret up to time T is given by $\mathcal{R}(T)=\left(\mu_{1}-\mu_{2}\right) \mathbb{E}\left[N_{2}(T)\right]$. It follows that

$$
\lim _{T \rightarrow \infty} \frac{\mathcal{R}(T)}{T}=\frac{\left(1-\mu_{1}\right)\left(\mu_{1}-\mu_{2}\right)}{2-\mu_{1}-\mu_{2}},
$$

i.e., the regret scales linearly in T.
3. (a) Suppose neither of the claimed statements is true. If (1) is false, then we must have

$$
\frac{\alpha \log s}{2 N_{2}(s)} \leq \frac{\Delta^{2}}{4},
$$

and so

$$
\mu_{2}+\sqrt{\frac{\alpha \log s}{2 N_{2}(s)}} \leq \mu_{2}+\frac{\Delta}{2} .
$$

Hence, if (2) is also false, then we must have

$$
\hat{\mu}_{2, N_{2}(s)}<\mu_{2}+\sqrt{\frac{\alpha \log s}{2 N_{2}(s)}} \leq \mu_{2}+\frac{\Delta}{2} .
$$

But $\mu_{1}=\mu_{2}+\Delta$, so the above implies that $\hat{\mu}_{2, N_{2}(s)}<\mu_{1}$, and so arm 2 cannot be played in round $s+1$.
(b) Given a sequence $I(s), s \in \mathbb{N}$, we can define $\tau(u)=\inf \left\{s: N_{2}(s)=u\right\}$. We define $\tau(u)=+\infty$ if the set over which the infimum is taken is empty, i.e., if $N_{2}(s)<u$ for all $s \in \mathbb{N}$. The inequality asserted in the question holds trivially in this case, so we assume from now on that $\tau<\infty$.

Now, we can see that

$$
\begin{equation*}
N_{2}(t) \leq N_{2}(\tau)+\sum_{s=\tau+1}^{t} \mathbf{1}(I(s)=2) \tag{1}
\end{equation*}
$$

where the latter sum is defined to be zero if the set of valid indices is empty, i.e., if $\tau+1>t$. The inequality holds with equality if $\tau \leq t$, and is obvious if $\tau>t$ since $N_{2}(\cdot)$ is a nondecreasing function. For the sum on the RHS above, notice that for each $s \geq \tau+1$, it holds that $N_{2}(s-1) \geq u$, by the definition of τ and the fact that $N_{2}(\cdot)$ is non-decreasing. In other words, for $s \geq \tau+1$, the indicator $\mathbf{1}\left(N_{2}(s-1) \geq u\right)$ takes the value 1 , so that

$$
\begin{equation*}
\mathbf{1}(I(s)=2)=1)=\mathbf{1}\left(N_{2}(s-1) \geq u \text { and } I(s)=2\right), \quad \forall s \geq \tau+1 \tag{2}
\end{equation*}
$$

Substituting (2) in (1), and noting that $N_{2}(\tau)=u$, we get

$$
N_{2}(t) \leq u+\sum_{s=\tau+1}^{t} \mathbf{1}\left(N_{2}(s-1) \geq u \text { and } I(s)=2\right)
$$

The inequality asserted in the question follows by noticing that $\tau \geq u$, since $N_{2}(\cdot)$ can increase by at most 1 in each time step.
(c) Taking expectations on both sides of the inequality in part (b). We get

$$
\begin{align*}
\mathbb{E}\left[N_{2}(t)\right] & \leq u+\mathbb{E}\left[\sum_{s=u+1}^{t} \mathbf{1}\left(N_{2}(s-1) \geq u \text { and } I(s)=2\right)\right] \\
& =u+\sum_{s=u+1}^{t} \mathbb{E}\left[\mathbf{1}\left(N_{2}(s-1) \geq u \text { and } I(s)=2\right)\right] \\
& =u+\sum_{s=u+1}^{t} \mathbb{P}\left(N_{2}(s-1) \geq u \text { and } I(s)=2\right) \tag{3}
\end{align*}
$$

where the first equality follows from the linearity of expectation.
Let u be defined as in the question. Then, on the event that $N_{2}(s-1) \geq u$, we must have

$$
N_{2}(s-1) \geq \frac{2 \alpha \log t}{\Delta^{2}} \geq \frac{2 \alpha \log (s-1)}{\Delta^{2}}
$$

for all $s \leq t$. It follows from part (a) that, in order for arm 2 to be played at time s (i.e., for $I(s)=2$), we must have

$$
\hat{\mu}_{2, N_{2}(s-1)} \geq \mu_{2}+\sqrt{\frac{\alpha \log (s-1)}{2 N_{2}(s-1)}}
$$

Hence, we obtain for all $s \in\{u+1, \ldots, t\}$ that

$$
\begin{equation*}
\mathbb{P}\left(N_{2}(s-1) \geq u \text { and } I(s)=2\right) \leq \mathbb{P}\left(\hat{\mu}_{2, N_{2}(s-1)} \geq \mu_{2}+\sqrt{\frac{\alpha \log (s-1)}{2 N_{2}(s-1)}}\right) \tag{4}
\end{equation*}
$$

We now bound the RHS above using Hoeffding's inequality. Since the rewards from plays of arm 2 are Bernoulli random variables, they take values in $[0,1]$ (in fact, in $\{0,1\}$), and we denoted their mean by μ_{2}. Hence, we have by Hoeffding's inequality that

$$
\begin{aligned}
\mathbb{P}\left(\hat{\mu}_{2, N_{2}(s-1)} \geq \mu_{2}+\sqrt{\frac{\alpha \log (s-1)}{2 N_{2}(s-1)}}\right) & \leq \exp \left(-2 N_{2}(s-1) \frac{\alpha \log (s-1)}{2 N_{2}(s-1)}\right) \\
& =\exp (-\alpha \log (s-1))
\end{aligned}
$$

Combining this with (3) and (4), we get

$$
\mathbb{E}\left[N_{2}(t)\right] \leq u+\sum_{s=u+1}^{t} \exp (-\alpha \log (s-1))=u+\sum_{s=u}^{t-1} s^{-\alpha} .
$$

Approximating the latter sum by

$$
\int_{u}^{t} x^{-\alpha} d x \leq \int_{u}^{\infty} x^{-\alpha} d x \leq \frac{u^{-\alpha+1}}{\alpha-1} \leq \frac{1}{\alpha-1},
$$

we conclude that $\mathbb{E}\left[N_{2}(t)\right] \leq u+\frac{1}{\alpha-1}$, as required. Notice that the last inequality in the displayed equation above holds because $u \geq 1$.
(d) We now use the fact that a regret of Δ is incurred each time that arm 2 is played, while no regret is incurred when arm 1 is played. Hence, the regret up to time T is $\mathcal{R}(T)=\Delta \mathbb{E}\left[N_{2}(T)\right]$. Using the answer to part (d), we get the bound

$$
\mathcal{R}(T) \leq u \Delta+\frac{\Delta}{\alpha-1} .
$$

Now, by the definition of u,

$$
u \leq \frac{2 \alpha \log T}{\Delta^{2}}+1
$$

Combining the two displayed equations above,

$$
\mathcal{R}(T) \leq \frac{2 \alpha \log T}{\Delta}+\Delta+\frac{\Delta}{\alpha-1}=\frac{2 \alpha \log T}{\Delta}+\frac{\alpha \Delta}{\alpha-1}
$$

which is what we were required to show.
4. (a) It follows from Q6(b) in Homework 1 that

$$
\mathbb{P}\left(\hat{\mu}_{i, n}>\mu_{i}+\sqrt{\frac{\alpha \log t}{2 n}}\right) \leq \exp \left(-\frac{n \frac{\alpha \log t}{2 n}}{2}\right)=\exp \left(-\frac{\alpha \log t}{4}\right),
$$

since the variance of the Gaussian random variables is $\sigma^{2}=1$. Thus,

$$
\mathbb{P}\left(\hat{\mu}_{i, n}>\mu_{i}+\sqrt{\frac{\alpha \log t}{2 n}}\right) \leq t^{-\alpha / 4}
$$

(b) To see that the inequality can be reversed, note that if X_{i} are iid with a $N\left(\mu, \sigma^{2}\right)$ distribution, then $-X_{i}$ are iid with a $N\left(-\mu, \sigma^{2}\right)$ distribution. Thus,

$$
\mathbb{P}\left(\hat{\mu}_{i, n}<\mu_{i}-\sqrt{\frac{\alpha \log t}{2 n}}\right)=\mathbb{P}\left(-\hat{\mu}_{i, n}>-\mu_{i}+\sqrt{\frac{\alpha \log t}{2 n}}\right)
$$

satisfies the same bound.
(c) Assume without loss of generality (wlog) that $\mu_{1}>\mu_{2}$, and let $\Delta=\mu_{1}-\mu_{2}$. In the analysis of the UCB algorithm, we showed that one of the following three things must hold in order for the sub-optimal arm 2 to be played in time step $t+1$:

$$
\begin{align*}
\hat{\mu}_{1, N_{1}(t)} & \leq \mu_{1}-\sqrt{\frac{\alpha \log t}{2 N_{1}(t)}} \tag{5}\\
\hat{\mu}_{2, N_{2}(t)} & >\mu_{2}+\sqrt{\frac{\alpha \log t}{2 N_{2}(t)}} \tag{6}\\
N_{2}(t) & <\frac{2 \alpha \log t}{\Delta^{2}} \tag{7}
\end{align*}
$$

where $N_{1}(t)$ and $N_{2}(t)$ denote the number of times that arms 1 and 2 have been played in the first t time steps.
Next, defining $u=\left\lceil(2 \alpha \log T) / \Delta^{2}\right\rceil$, we bounded the number of plays of arm 2 in the first T rounds as follows:

$$
\begin{equation*}
\left.N_{2}(T) \leq u+\sum_{t=u}^{T-1} \mathbf{1}\left(N_{2}(t) \geq u\right) \text { and arm } 2 \text { is played in round } t+1\right) \tag{8}
\end{equation*}
$$

By definition of u, for the last indicator to be 1 , one of the events in (5) or (6) needs to occur. Hence, taking expectations in (8),

$$
\mathbb{E}\left[N_{2}(T)\right] \leq u+\sum_{t=u}^{T-1} \mathbb{P}\left(\hat{\mu}_{1, N_{1}(t)} \leq \mu_{1}-\sqrt{\frac{\alpha \log t}{2 N_{1}(t)}}\right)+\mathbb{P}\left(\hat{\mu}_{2, N_{2}(t)}>\mu_{2}+\sqrt{\frac{\alpha \log t}{2 N_{2}(t)}}\right) .
$$

Substituting the bounds on these probabilities from the first part of the question, we get

$$
\mathbb{E}\left[N_{2}(T)\right] \leq u+\sum_{t=u}^{T-1} 2 t^{-\alpha / 4}
$$

Approximating the last sum by an integral,

$$
\mathbb{E}\left[N_{2}(T)\right] \leq u+\int_{u-1}^{\infty} 2 t^{-\alpha / 4} d t
$$

If $\alpha>4$, then the integral above converges, and we get

$$
\mathbb{E}\left[N_{2}(T)\right] \leq u+\frac{2(u-1)^{-\alpha / 4}}{\frac{\alpha}{4}-1} \leq u+\frac{8}{\alpha-4},
$$

using the fact that $u \geq 2$. Substituting for u,

$$
\mathbb{E}\left[N_{2}(T)\right] \leq \frac{2 \alpha \log T}{\Delta^{2}}+1+\frac{8}{\alpha-4}=\frac{2 \alpha \log T}{\Delta^{2}}+\frac{\alpha+4}{\alpha-4}
$$

Finally, a regret of $\Delta=\mu_{1}-\mu_{2}$ is incurred every time arm 2 is played. Hence, the regret up to time T is bounded as follows:

$$
\mathcal{R}(T)=\Delta \mathbb{E}\left[N_{2}(T)\right] \leq c_{1}+c_{2} \log T,
$$

where

$$
c_{1}=\frac{\alpha+4}{\alpha-4} \Delta, \quad c_{2}=\frac{2 \alpha}{\Delta} .
$$

5. Following the hint (which has a typo), we want to show that $f(q)$ defined as $K(q ; p)-2(q-p)^{2}$ is a convex function of q. Writing it out in full,

$$
f\left(q=q \log \frac{q}{p}+(1-q) \log \frac{1-q}{1-p}-2(q-p)^{2} .\right.
$$

We now differentiate it twice. We get

$$
f^{\prime}(q)=1+\log \frac{q}{p}-1-\log \frac{1-q}{1-p}-4(q-p), \quad f^{\prime \prime}(q)=\frac{1}{q}+\frac{1}{1-q}-4=\frac{1}{q(1-q)}-4 .
$$

Now, for $q \in(0,1)$, the quantity $q(1-q)$ achieves its maximum value of $\frac{1}{4}$ at $q=\frac{1}{2}$. Hence, $\frac{1}{q(1-q)} \geq 4$ for all $q \in(0,1)$, which implies that $f^{\prime \prime}(q) \geq 0$ for all $q \in(0,1)$. This shows that the function f is convex on $(0,1)$.
Moreover, it is easy to see that $f^{\prime}(p)=0$, which means that f attains its global minimum over $(0,1)$ at $q=p$. We also have $f(p)=0$, which implies that $f(q) \geq f(p)=0$ for all $q \in(0,1)$, i.e.,

$$
K(q ; p) \geq 2(q-p)^{2}=2 d_{T V}(p, q)^{2}
$$

for all $q \in(0,1)$. For completeness, we also need to check that the inequality holds for $q=0$ and $q=1$. There are two ways to do this. The simpler is to notice that $K(q ; p)-2(q-p)^{2}$ is continuous on $[0,1]$; hence, the convexity proved on $(0,1)$ extends to $[0,1]$ and we are done.
Alternatively, you could check by hand that the claimed inequality $K(q, p)-2(q-p)^{2} \geq 0$ holds at $q=0$ and $q=1$ as well. If $p=0$ and $q=0$, or $p=1$ and $q=1$, then this expression is zero. We will check it for $q=0, p \neq 0$; the case $q=1, p \neq 1$ is similar. If $q=0$, then $K(q, p)=-\log (1-p)$, so we need to show that $-\log (1-p)-2 p^{2} \geq 0$ for all $p \in(0,1]$. Calling it $g(p)$, we notice that

$$
g^{\prime}(p)=\frac{1}{1-p}-4 p=\frac{1-4 p(1-p)}{1-p} \geq 0 \forall p \in(0,1) .
$$

Hence, g is a non-decreasing function on $(0,1)$. As $g(0)=0$ and g is continuous at 0 , it follows that $g(p) \geq 0$ for all $p \in(0,1)$. This also holds for $p=1$, since $g(1)=+\infty$. This completes the proof.

