
Stochastic Optimisation

Solutions to Problem Sheet 3

1. One way to do this is by computing the complementary cdf,

1− FX(x) = P(X > x) = P((− logU)/λ > x) = P(logU < −λx)

= P(U < e−λx) =

{
1, x ≤ 0

e−λx, x > 0.

This matches the ccdf of an Exp(λ) random variable.

Another way is to use the change of variables formula. Define the function g : [0, 1] → R+ by
g(u) = (− log u)/λ. Then, x = g(u) if and only if u = e−λx, i.e., g−1(x) = e−λx, where g−1

maps R+ to [0, 1]. Moreover, |g′(u)| = 1/(λu), so that |g′(g−1(x)| = eλx/λ. The density of the
random variable U is fU (u) = 1 for u ∈ [0, 1], and zero outside this interval. We now have by the
change of variables formula that

fX(x) =
1

|g′(g−1(x)|
fU (g−1(x)) =

{
λe−λx, x > 0,

0, x ≤ 0.

This matches the density of an Exp(λ) random variable.

2. This can be shown quite easily using the change of variables formula. An even easier way is to use
the relation between Beta and Gamma random variables. If X has a Beta(α, β) distribution, then
we can write X = V

V+W , where V and W are independent and have Gamma(α,1) and Gamma(β,1)
distributions. Now,

Y = 1−X =
W

W + V
,

and so it must have a Beta(β, α) distribution.

3. This is a straightforward, but somewhat long, calculation using the formula for transformations
of random variables. Define g : R+ × [0, 2π) → R2 by g(x, θ) = (

√
x sin θ,

√
x cos θ). Then,

(V,W ) = g(X,Θ). Now, X has density fX(x) = 1
2 exp(−x

2 ) on R+, and Θ has density fΘ(θ) =
1

2π on [0, 2π), and these are independent random variables. Hence, their joint density is

fX,Θ(x, θ) =
1

4π
e−x/2, (x, θ) ∈ R+ × [0, 2π),

and zero outside this set.

Next, we compute the Jacobian matrix of g and its determinant. We have,

Jg(x, θ) =

(
sin θ
2
√
x

√
x cos θ

cos θ
2
√
x
−
√
x sin θ

)
, |detJg(x, θ)| =

∣∣∣ −(sin2 θ + cos2 θ)

2

∣∣∣= 1

2
.

Moreover, if g(x, θ) = (v, w), then (x, θ) are uniquely determined, and x = v2 + w2. Hence, we
get

fV,W (v, w) =
∑

(x,θ):(v,w)=g(x,θ)

1

|detJg(x, θ)|
FX.Θ(x, θ)

= 2
1

4π
e−(v2+w2)/2 =

1√
2π
e−v

2/2 1√
2π
e−w

2/2.
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Thus, the joint density of (V,W ) factorises into the product of standard Gaussian densities for V
and W , which implies that V and W are independent, standard Gaussian random variables.

4. As stated in the question, the posterior density for θ, given that we observe x, is proportional to the
product of the prior density, and the likelihood of observing x when the parameter value is θ, i.e.,

π1(θ|x) ∝ π0(θ)fθ(x).

Now π0 is the density of a N(µ0, σ
2
0) random variable, so

π0(θ) ∝ exp
(
−(θ − µ0)2

2σ2
0

)
,

whereas x has an N(θ, 1) density, i.e.,

fθ(x) ∝ exp
(
−(x− θ)2

2

)
.

Putting these together, we obtain that

π1(θ|x) ∝ exp
(
−(θ − µ0)2

2σ2
0

− (x− θ)2

2

)
∝ exp

(
− 1

2σ2
0

[
θ2 − 2µ0θ + µ2

0 + σ2
0

(
x2 − 2xθ + θ2

)])
∝ exp

(
− 1

2σ2
0

[
θ2 − 2µ0θ + σ2

0θ
2 − 2xσ2

0θ
])

∝ exp
(
−1 + σ2

0

2σ2
0

[
θ2 − 2(µ0 + xσ2

0)θ

1 + σ2
0

])
∝ exp

(
−1 + σ2

0

2σ2
0

[
θ − µ0 + xσ2

0

1 + σ2
0

]2)
.

The first line is obtained by plugging in the expressions for π0 and fθ. The second line is expanding
the squares. The third line drops some terms that don’t depend on θ, which can be absorbed into the
constant of proportionality. The fourth line groups together the θ2 terms and the θ terms separately,
and re-arranges them. The last line completes the square, and ignores the constant term that this
produces. The different shapes of brackets are just for improving readability.

The last expression above, is up to constant terms, the density function of a normal random variable
with mean µ1 and variance σ2

1 , where

µ1 =
µ0 + xσ2

0

1 + σ2
0

, σ2
1 =

σ2
0

1 + σ2
0

.

5. The Thompson sampling algorithm for arms with normally distributed rewards, with known vari-
ances and unknown means, is as follows. We will assume without loss of generality that the vari-
ances are unity, as in the question; if the variances are known, the rewards can always be rescaled to
have unit variance, and the algorithm modified suitably to take that into account.

(a) Start with independent priors π1,0 and π2,0 for the unknown mean rewards µ1 and µ2 from the
two arms. Take πj,0 to have a N(µ2

j,0, σ
2
j,0) density, j = 1, 2. The choice of the parameters

µj,0 and σ2
j,0 is arbitrary, except that σj,0 shouldn’t be zero. If there is no prior knowledge to

guide the choice, then one possibility is to take µj,0 = 0 and σ2
j,0 = 1 for j = 1 and 2.

Broadly speaking, µj,0 should be close to what you think the true mean is, and σj,0 should
be about as large as your uncertainty about µj,0. For example, if you think the true mean is
between 100 and 200, then µj,0 = 150, σj,0 = 50 is a reasonable choice.
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(b) In time step t + 1, sample θ1(t) from π1,t and θ2(t) independently from π2,t. Play the arm
corresponding to whichever of these samples is larger.

(c) Update the posterior for the arm which is played, based on the observed reward. Thus, if arm
j is played and reward x obtained, then πj,t+1 has a normal distribution, N(µj,t+1, σ

2
j,t+1),

where

µj,t+1 =
µj,t + xσ2

j,t

1 + σ2
j,t

, σ2
j,t+1 =

σ2
j,t

1 + σ2
j,t

.

The posterior for the arm that is not played remains unchanged.

(d) Increment t and go back to Step (b).

3


