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1 Thompson sampling

Thompson sampling is a Bayesian approach to the multi-armed bandit prob-
lem, in contrast to the UCB algorithm, which takes a frequentist approach.
Historically, it was the first algorithm proposed for this problem, and possi-
bly the first formulation of the problem; see Thompson, “On the likelihood
that one unknown probability exceeds another in view of the evidence of
two samples,” Biometrika, 1933. However, it is only recently that a mathe-
matical analysis of its regret was obtained, and that will be our main topic
in this chapter.

In keeping with Thompson’s original paper, we will restrict ourselves to
Bernoulli bandits, though the algorithm can be easily extended to other
distributions. The main idea behind the algorithm is very simple. Consider
the case of two Bernoulli arms, with unknown mean rewards µ1 and µ2. The
Bayesian approach to unknown parameters is to start with some prior belief
about them, encoded as a probability distribution, and to update this belief
in the light of evidence / data. Thus, we propose prior distributions π1 and
π2 for µ1 and µ2, and compute posterior distributions based on observed
rewards, using Bayes’ formula. We then use these posterior distributions
to decide which arm to play. How exactly should we do this? Thompson’s
suggestion was to take independent samples from the posterior distributions
for each arm, and then play that arm whose sample value was largest. As
more samples are collected, the posterior distribution concentrates more
strongly around the true mean, so the best arm is more likely to be played.
Nevertheless, the posterior is sufficiently spread out (if the prior is chosen
properly) to ensure that each arm gets played infinitely often. The problem
is to analyse how good a trade-off between exploration and exploitation is
achieved by this method.
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We will begin with some preliminaries about Bayesian inference. It turns
out that Beta distributions are particularly convenient for working with data
generated from a Bernoulli distribution, so we begin with an introduction
to this family of distributions.

2 Preliminaries: Gamma and Beta distributions

A random variable X is said to have a Gamma distribution with shape
parameter α > 0 and scale parameter λ > 0, denoted X ∼ Gamma(α, λ), if
it is non-negative and has density

fX(x) =
1

Γ(α)
λαxα−1e−λx, x ≥ 0.

Here, Γ(α) =
∫∞
0 xα−1e−xdx is the constant needed to ensure that the den-

sity integrates to 1. Notice that if α ≤ 0 or λ ≤ 0, then the integral of
the function displayed above blows up, and it cannot be normalised to be
a probability density function. Also note that if α = 1, then X has the
density of an Exp(λ) distribution. It can be shown that, if α ∈ N, then
the Gamma distribution with shape parameter α and scale parameter λ is
the same as that of the sum of α iid Exp(λ) random variables. If the scale
parameter λ is equal to 1, we may suppress it from the notation and sim-
ply write Gamma(α) to denote a Gamma distribution with (explicit) shape
parameter α and (implicit) scale parameter 1.

A Beta distribution is supported on the interval [0, 1], and is parametrised
by two positive real numbers. We say that a random variable X has a
Beta(α, β) distribution, written X ∼ Beta(α, β), if it takes values in [0, 1],
and has the density

fX(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ [0, 1].

The Beta distribution is closely connected with the Gamma distribution, as
described in the following lemma.

Lemma 1 Let X and Y be independent Gamma random variables, with
shape parameters α and β respectively, and common scale parameter, which
we take to be 1. (The value of the scale parameter doesn’t matter, so long
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as it is the same for X and Y ). Then,

V =
X

X + Y
∼ Beta(α, β).

Remark. The random variable V is obtained as a function, or transforma-
tion, of the random variables X and Y . We need a formula for the density of
random variables obtained by such transformations. If you are not familiar
with this material, then see the appendix at the end of this chapter for a
review.

Proof. The function (X,Y ) 7→ V = X
X+Y maps R2 to R, and so we cannot

directly use the formula for densities of random variables. We need to define
an auxiliary random variable, so that we can construct a suitable function.
One obvious choice is to set W = X. This leads to consider (V,W ) =
g(X,Y ) where the function g : R2 → R2 is defined as

g(x, y) =
( x

x+ y
, x
)
.

It is easy to see that g is injective (one-to-one), but not surjective on R2.
(Why?) Nevertheless, as it is injective, it is invertible on the set Im(g), the
image of R2 under g. To compute its inverse, not that given (v, w) = g(x, y),
we have x = w and (x+ y)v = x, i.e., (w + y)v = w, so that y = (w/v)− 1.
In other words,

g−1(v, w) =
(
w,

1− v
v

w
)
.

Next we calculate the Jacobian matrix,

Jg(x, y) =

(
∂v
∂x

∂v
∂y

∂w
∂x

∂w
∂y

)
=

(
y

(x+y)2
−x

(x+y)2

1 0

)
,

so that

|detJg(x, y)| = x

(x+ y)2
=
v2

w
.

Since X and Y are independent, their joint distribution can be written as

fX,Y (x, y) =
1

Γ(α)Γ(β
xα−1e−xyβ−1e−y.
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Thus, using the formula for transformations of random variables, we obtain
that the joint density of V and W is given by

fV,W (v, w) =
w

v2
1

Γ(α)Γ(β)
wα−1e−w

(w(1− v)

v

)β−1
e−w(1−v)/v

=
1

Γ(α)Γ(β)

(w
v

)α+β−1
vα−2(1− v)β−1e−w/v.

We can now obtain the marginal density of V , our random variable of inter-
est, by integrating out the joint density over the auxiliary random variable
W . In other words,

fV (v) =

∫ ∞
w=0

fV,W (v, w)dw =
vα−2(1− v)β−1

Γ(α)Γ(β)

∫ ∞
w=0

(w
v

)α+β−1
e−w/vdw

=
Γ(α+ β)

Γ(α)Γ(β)
vα−1(1− v)β−1

∫ ∞
z=0

1

Γ(α+ β)
zα+β−1e−zdz,

where we have made the change of variables z = w/v to get the last equality.
Now, the last integral above is equal to 1, because it is the integral of the
density of a Gamma(α+β) random variable (or by the definition of Γ(α+β)).
Notice also that V = X/(X +Y ) ∈ [0, 1] by definition, as X and Y are non-
negative random variables. Hence, the density of V is supported on the
interval [0, 1], and is zero outside this interval. We recognise the expression
for the density as that of a Beta(α, β) random variable. This concludes the
proof of the lemma. �

Remarks. We now describe some properties of the Beta distribution. Ob-
serve that it is supported on [0, 1] and that, if α = 1 and β = 1, then the
density is a constant. Thus, Beta(1, 1) is the uniform distribution on [0, 1].
If α < 1, then the density tends to infinity as x tends to zero; likewise, if
β < 1, then the density tends to infinity as x tends to 1. If α ≥ 1 and β ≥ 1,
then it is easy to verify by differentiating the density (or its logarithm) that
its maximum value is attained at x = α−1

α+β−2 ; if at least one of α and β is
strictly larger than 1, then this is the unique maximiser, i.e., the mode of
the Beta distribution. If α and β are both very large, then it can be shown
that the Beta distribution concentrates around its mode.

We are now going to use the Beta distribution, which is supported on [0, 1],
as the prior distribution for the parameter of a Bernoulli random variable.
The reason for our interest in the Beta distribution will become apparent
when we compute the posterior distribution. Let X1, X2, . . . be an iid se-
quence of Bernoulli random variables with unknown mean µ. Fix α, β > 0,
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and let π0 ∼ Beta(α, β) be our prior distribution for the parameter µ. What
can we say about the posterior distribution of µ given the first n elements
of this sequence? Denote by S(n) =

∑n
k=1Xk the total number of 1s (or

successes) seen in the first n Bernoulli samples, and by πn the posterior dis-
tribution based on n samples. We now compute πn. The likehood function
of a sequence with S(n) successes in n trials, as a function of the success
probability θ, is given by

L(X1, X2, . . . , Xn; θ) = θS(n)(1− θ)n−S(n).

Notice that the likelihood function only depends on the number of successes
and failures, and not on the order in which they occur. This is always the
case with iid random variables, where the likelihood function only depends
on the empirical distribution, i.e., the frequency of each possible outcome,
and not on the order in which they occured.

Now, it is easily seen to follow from Bayes’ formula that the posterior dis-
tribution is proportional to the product of the prior and the likelihood; it
is equal to this product, normalised to be a probability distribution. Thus,
substituting for the Beta density of the prior, we get

πn(θ|X1, . . . , Xn) ∝ θα−1(1− θ)β−1θS(n)(1− θ)n−S(n),

where we have ignored constants that don’t depend on S(n). The constant
of proportionality needs to be such as to make πn a probability distribution
on [0, 1], i.e., to ensure that

∫ 1
0 πn(θ)dθ = 1. We recognise that πn is pro-

portional to the density of a Beta(α+S(n), β + n−S(n)) random variable.
Hence, it is in fact equal to that density. In other words, the posterior πn
has a Beta(α+ S(n), β + n− S(n)) distribution.

Notice that the posterior distribution belongs to the same family as the
prior distribution, if we shoose a Beta prior. Such a family is known as a
conjugate family of priors. While the posterior distribution is well defined
for arbitrary prior distributions, computing the posterior can, in general, be
very computationally demanding or intractable. Conjugate priors are much
more tractable. Moreover, they admit analytical solutions, which can be
very helpful in gaining insight as well as in doing calculations by hand.

The following fact about Beta distributions will be useful for computations.

Lemma 2 Let X have a Beta(α, β) distribution, with α, β ∈ N + 1 (the
natural numbers starting at 1). Fix p ∈ (0, 1) and let Y have a Bin(α+ β−
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1, p) distribution. Then,

P(X > p) = P(Y ≤ α− 1).

Proof. The proof makes use of the following well-known fact about Poisson
processeses. Let {Nt, t ≥ 0} be a Poisson process of arbitrary intensity
λ > 0. Let n be a positive integer and let t be a positive real number.
Then, conditional on the event Nt = n, the unordered increment times on
[0, t] (the random times at which the Poisson process sees an increment) are
mutually independent, and uniformly distributed on [0, t].

Recall that if X has a Beta(α, β) distribution, then we can write X = V
V+W ,

where V and W are independent Gamma random variables, with shape
parameters α and β respectively, and common scale parameter, say 1. If α
and β are integer-valued, then, since a Gamma(α, 1) random variable is the
sum of α iid Exp(1) random variables, we can interpret V as the time of the
αth increment of a unit rate Poisson process, and V +W as the time of the
(α+ β)th increment. Consequently, conditional on V +W = τ , the Poisson
process Nt has exactly α + β − 1 increments in the interval [0, τ). By the
fact noted above, the unordered times of these increments are iid, uniformly
distributed on [0, τ). The event {X > p} is the same as the event {V > pτ},
conditional on V +W = τ ; as V is the time of the αth increment, this says
that at most α − 1 increments occur in [0, pτ ]. As the increments are iid,
uniform in [0, τ), and there are α+β−1 in total, the number that fall within
[0, pτ ] has aBin(α + β − 1, p) distribution, which is the distribution of the
random variable Y . Thus, the events {X > p}, {V > pτ |V + W = τ} and
Y ≤ α − 1 all have the same probability. This completes the proof of the
lemma. �

3 Thompson sampling: Algorithm and Analysis

We are now ready to formally describe the Thompson sampling algorithm.
We will restrict ourselves to the case of a two-armed bandit, with iid Bernoulli
rewards on each arm, mutually independent across the arms. We denote by
µi the mean reward on arm i ∈ {1, 2}, which is the same as the success prob-
ability (probability of non-zero reward) for that arm. We assume without
loss of generality that µ1 > µ2, though the player doesn’t know that. We
denote the difference by ∆ = µ1 − µ2, and call it the arm gap.
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Thompson Sampling Algorithm: Two Bernoulli arms

1. Start with independent Beta(1, 1) priors for each of the parameters µ1
and µ2.

2. In each time step t, independently sample µ1 and µ2 from the current
posterior distributions for these parameters. Call the samples θ1(t)
and θ2(t).

3. Play the arm with the higher sample value, i.e., play arm 1 if θ1(t) >
θ2(t) and arm 2 otherwise.

4. Update the posterior for the parameter of the arm played, based on
the reward obtained from playing it.

5. Move to the next time step.

The extension of the algorithm to the case of more than two Bernoulli arms
is self-evident. If there are K arms, with Bernoulli paramaters µ1, . . . , µK ,
then we start with independent Beta(1,1) priors for each of these parameters.
In each time step, we sample θ1, . . . , θK from the current posteriors for
µ1, . . . , µK . We play the arm whose index corresponds to the largest of
the θi; there is zero probability of a tie. Based on the reward obtained,
we update the posterior distribution for the arm which was played. The
posteriors for all other arms are unchanged

Thompson sampling can be similarly extended to reward distributions other
than Bernoulli. However, the ease of implementing it depends on how easy it
is to sample from the posterior distribution. Conjugate priors are available
for some commonly used distributions. For other distributions, any of a wide
range of techniques from computational Bayesian statistics can be used, with
varying amounts of accuracy and computational cost. Bounds on regret are
not known in complete generality.

We now return to the case of two Bernoulli arms, and state our main result
about the regret incurred by the Thompson sampling algorithm. Let R(T )
denote the regret up to time T , and recall that ∆ = µ1 − µ2 is the gap in
mean rewards between the two arms.

Theorem 1 The regret of Thompson sampling applied to a multi-armed
bandit with two Bernoulli arms is bounded as follows:

R(T ) ≤ 40 log T

∆
+ const.,
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where the constant term depends on the arm gap ∆ but not on T .

Remark. The theorem obtains the correct scaling of (log T )/∆ in bounding
the regret; the constant 40 is not optimal, but achieving the best constant
would require a much more complicated analysis. We will not provide a
complete proof of this theorem, which is long and intricate. Instead, we will
prove a number of lemmas that are key ingredients of the proof, and which
shed some insight into the main ideas behind the proof.

We need to define some notation before stating these lemmas. We denote by
Ni(t) the number of times that arm i has been played in the first t rounds
or time steps, and by Si(t) the number of successes observed in these plays;
we might also denote the number of successes by Si,Ni(t) which makes the
number of attempts more explicit in the notation.

Notice that if arm i is played in time step t, and its posterior distribution
at the beginning of this time step is Beta(αi(t), βi(t))), then the posterior
distribution at the end of the time step is Beta(αi(t)+Xi(t), βi(t)+1−Xi(t)),
where Xi(t) ∈ {0, 1} is the reward obtained on playing arm i in time step t.
The posterior distribution of the arm that was not played doesn’t change.

As arm 1 was assumed to be better, a regret of ∆ is incurred each time arm
2 is played. Hence,

R(T ) = ∆E[N2(T )],

and the challenge is to bound the latter expectation. The idea behind our
analysis is the following. As the number of times each arm is played in-
creases, its posterior distribution concentrates increasingly sharply around
the true parameter value, µ1 or µ2. We use Hoeffding’s inequality to show
that after sufficiently many plays of arm 2, firstly, the observed frequency
of successes is very unlikely to exceed µ2 + ∆/4, and secondly, that the
posterior sample θ2(t) is very unlikely to exceed µ2 + ∆/2.

Fix a time horizon T , and define

L =
⌈24 log T

∆2

⌉
, τ = inf{0 < t ≤ T : N2(t) ≥ L}.

As usual, we take τ to be infinite if no such time t exists. The theorem
asserts that the regret up to time T is not much larger than ∆L, i.e., that
arm 2 is not played too often after time τ .

As regret is incurred only when arm 2 is played, in order to bound the regret
it suffices to bound the expected number of times that arm 2 is played up
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to time T . If τ =∞, then arm 2 has been played fewer than L times up to
time T , i.e., N2(T ) ≤ L, so the regret is bounded by ∆L = (24 log T )/∆,
and we are done. Hence, in the following, we will restrict ourselves to the
situation that τ ≤ T .

Lemma 3 Suppose τ ≤ t ≤ T . Then,

P
(
θ2(t) ≥ µ2 +

∆

2

)
≤ 2

T 3
.

Proof. By definition of τ , if t ≥ τ , then N2(t) ≥ L. We can write

P
(
θ2(t) ≥ µ2 +

∆

2

)
= P

(
θ2(t) ≥ µ2 +

∆

2
,
S2(t)

N2(t)
≤ µ2 +

∆

4

)
+ P

(
θ2(t) ≥ µ2 +

∆

2
,
S2(t)

N2(t)
> µ2 +

∆

4

)
≤ P

(
θ2(t) ≥ µ2 +

∆

2

∣∣∣ S2(t)
N2(t)

≤ µ2 +
∆

4

)
+ P

( S2(t)
N2(t)

> µ2 +
∆

4

)
. (1)

We will bound each of the last two terms. Firstly, conditional on the number
of times arm 2 is played, namely N2(t), the total reward from these plays
S2(t) is the sum of N2(t) independent Bern(µ2) random variables. Hence,
using Hoeffding’s inequality, we have

P
( S2(t)
N2(t)

> µ2 +
∆

4

∣∣∣ N2(t)
)
≤ exp

(
−2N2(t)

∆2

16

)
.

As we have assumed that N2(t) ≥ L ≥ (24 log T )/∆2, we conclude that

P
( S2(t)
N2(t)

> µ2 +
∆

4

)
≤ exp(−3 log T ) = T−3. (2)

Next, we note that conditional on S2(t) and N2(t), the distribution of θ2(t)
is Beta(S2(t) + 1, N2(t) − S2(t) + 1). Consequently, by Lemma 2, we have
that

P
(
θ2(t) ≥ µ2 +

∆

2

)
= P

(
Bin
(
N2(t) + 1, µ2 +

∆

2

)
≤ S2(t)

)
.
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Applying Hoeffding’s inequality to the term on the right, we see that, for
N2(t) ≥ L, we have

P
(
θ2(t) ≥ µ2 +

∆

2

∣∣∣ S2(t)
N2(t)

≤ µ2 +
∆

4

)
≤ exp

(
−2(N2(t) + 1)

∆2

16

)
≤ exp(−L∆2/8) ≤ T−3. (3)

Substituting (2) and (3) in (1), we conclude that if t ≥ τ , i.e., N2(t) ≥ L,
then

P
(
θ2(t) ≥ µ2 +

∆

2

)
≤ 2T−3,

as claimed in the statement of the lemma. �

In order to prove the theorem, we need to bound the number of times that
arm 2 is played after time τ . Intuitively, there are two reasons that arm 2
could be played: (i) θ2(t), the sample value from the posterior for arm 2 at
time step t, is significantly larger than the true parameter value, µ2, for this
arm, or (ii) θ1(t) is significantly smaller than µ1.

We obtained an upper bound on the probability of the first of these events in
Lemma 3, for t sufficiently large, i.e., after arm 2 had been played sufficiently
many times. On the event that arm 2 is not played sufficiently many times,
the regret is small in any case.

We need to similiarly bound the probability of the second of the events
above, and can do so in a similar manner after arm 1 has been played
sufficiently many times. But what if it is never played sufficiently many
times? This event is not benign! So we cannot simply ignore it, but will
have to rule it out explicitly. It is the analysis of this early phase for arm
1 that is very delicate, and is the main challenge in providing a full proof
of the theorem. We won’t go into the details but simply remark that, after
arm 1 has been played sufficiently many times, bounding the probability of
the event that θ1(t) < µ1 − (∆)/2 proceeds along exactly the same lines as
we took to bound the probability that θ2(t) > µ2 + (∆/2).

A Transformation of random variables

Example: Consider the probability space Ω = {1, . . . , 6}, F = all subsets
of Ω, with probabilities P (ω) = 1/6 for all ω ∈ Ω.
(a) On this space, define the random variable X(ω) = ω. Then the pmf of
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X is {1/6, . . . , 1/6} on the set {1, . . . , 6}. Suppose Y = X2. Then what is
the pmf of Y ?
(b) On the same space, suppose that X is defined instead as X(ω) = ω− 2,
and that again Y = X2. What are the pmfs of X and Y ?

The idea can be extended to continuous random variables, but there is one
subtlety involved.

Example: Suppose X is Uniform([0, 1]) and Y = 2X. What are the cdf
and pdf of Y ? We first compute the cdf. It is obvious that FY (y) = 0 for
y < 0. Also,

P (Y ≤ y) = P (2X ≤ y) = P (X ≤ y/2) = y/2 for y ∈ [0, 2).

Finally, FY (y) = 1 for y ≥ 2. Differentiating the above cdf, we get fY (y) =
1/2 for y ∈ (0, 1) and fY (y) = 0 otherwise.

Could we have guessed this? Intuitively, for an infinitesimal dy,

P (Y ∈ (y, y + dy)) = P (2X ∈ (y, y + dy)) = P
(
X ∈

(y
2
,
y

2
+ dy2

)
,

so that

fY (y)dy = fX

(y
2

)1

2
dy,

which gives the same answer. This intuition can be extended.

Let X be a random variable, g be a differentiable and strictly monotone
function, and let Y = g(X). Then, by the same reasoning as above,

fY (y)dy = fX(x)dx,

where y = g(x). How are dy and dx related? We want y + dy = g(x+ dx),
so we must have dy = g′(x)dx. We are almost there, except that the sign of
g′(x) doesn’t matter. (It may be the interval (x− dx, x) that gets mapped
to (y, y + dy).) So, we have

fY (y) = fX(g−1(y))
1

|g′(g−1(y)|
, (4)

where the inverse g−1 of the function g is well-defined by the assumption
that g is strictly monotone. (The domain of g−1 is the range of g.)

What if g isn’t monotone? Then the equation y = g(x) may have many
solutions for x, and we have to add up the probability contributions from
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all of them. If there are only countably many solutions, then (4) changes to

fY (y) =
∑

x:g(x)=y

fX(x)
1

|g′(x)|
. (5)

The same idea extends to joint distributions. Suppose X1, . . . , Xn are ran-
dom variables on the same sample space and (Y1, . . . , Yn) = g(X1, . . . , Xn)
for some differentiable function g : Rn → Rn. Then, using boldface to denote
vectors,

fY(y) =
∑

x:g(x)=y

fX(x)
1

|det(Jg(x))|
. (6)

Here, det(Jg(x)) denotes the determinant of the Jacobian matrix

Jg(x) =


∂g1
∂x1

(x) · · · ∂gn
∂x1

(x)
...

. . .
...

∂g1
∂xn

(x) · · · ∂gn
∂xn

(x)


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