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Differential equations

Terminology A differential equation is of the form

F

(

x, y,
dy

dx
, . . . ,

dny

dxn

)

= 0, (1)

where F is a function of the independent variable x, the dependent variable y(x) and derivatives
of the dependent variable and n is a positive integer. Expression (1) is a nth order differential
equation. The aim is calculate the unknown function y(x).
A linear differential equation is one in which the dependent variable and its derivatives only
appear as additive combinations of their first powers. It may be written as

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ . . . + a1(x)

dy

dx
+ a0y = b(x). (2)

If the equation is not linear then we call it nonlinear.
An initial value problem for an nth order differential equation means find the solution of (1)
on an interval I subject to conditions

y(x0) = y0,
dy

dx
(x0) = y1 . . .

dn−1y

dxn−1
(x0) = yn−1,

where xo ∈ I and y0, y1,...,yn−1 are given constants.
A boundary value problem applies conditions at different values of the independent variable.

1 First order differential equations

1.1 Direct integration

If
dy

dx
= g(x) subject to y(b) = y0 then

y(x) =

∫ x

b

g(s) ds + y0. (3)

This expression gives the solution irrespective of whether the solution can be evaluated using
analytical techniques.

1.2 Separation of variables

Suppose the differential equation is of the form
dy

dx
= g(y)f(x) then

∫

1

g(y)

dy

dx
dx =

∫

f(x) dx, (4)

Then by change of variables we can write

∫

1

g(y)
dy =

∫

f(x) dx. (5)
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1.3 Integrating factor

A general linear first-order differential equation takes the form

dy

dx
+ g(x)y = h(x). (6)

The integrating factor is p(x) = exp
(∫ x

g(x) dx
)

and we multiply (6) by p(x) to obtain

d

dx
(yp(x)) = h(x)p(x), (7)

which can then be integrated directly to obtain

y(x) =
1

p(x)

∫ x

h(s)p(s) ds +
c

p(x)
, (8)

where c is a constant of integration.
Note that it is not necessary to provide a lower limit in the integral that defines the integrating
factor. This would merely multiply each term of the differential equation by a constant.

1.4 Homogeneous differential equations

Suppose a first-order differential equation takes the form

dy

dx
= f

(y

x

)

. (9)

The problem is then said to be homogeneous. This may be integrated by substituting y(x) =

v(x)x and so
dy

dx
= x

dv

dx
+ v. Then (9) becomes

v + x
dv

dx
= f(v), (10)

which can be integrated by separating variables

∫

1

f(v) − v
dv =

∫

1

x
dx. (11)

This technique often lead to implicit solutions for the dependent variable y(x).

1.5 Uniqueness, existence and domain of validity

Given an initial value problem

dx

dt
= f(x, t) x(t0) = x0, (12)

• Is there always a solution? ‘Existence’

• Is the solution unique? ‘Uniqueness’

• For what range of t is the solution defined? ‘Domain of validity’
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1.5.1 Example: Existence

Consider the differential equation
dy

dx
=

1 + x2

x
, which may be integrated to give y = log |x| +

1
2
x2 + c.

(i) If y(1) = 0 then c = 1/2.
(ii) If y(0) = 0 then no value of the constant c can be found to satisfy the condition so the
solution does not exist. We might have anticipated difficulties because dy/dx is not defined at
x = 0.

1.5.2 Example: Uniqueness

Consider the differential equation
dx

dt
= 3x2/3 subject to x(0) = 0.

A trivial solution is that x(t) = 0. Alternatively by separation of variables we find that x(t) =
(t + c)3 and imposing the condition gives x(t) = t3.
Infact the equation and conditions are also satisfied by the general function

x(t) =











(t − a)3, t > a,

0, a > t > b,

(t − b)3, b > t

,

where a > 0 and b < 0. Thus the solution is not unique.

1.5.3 Uniqueness and existence theorem: Non-examinable

Definition: For f(x, t), the partial derivative is
∂f

∂x
= lim

h→0

f(x + h, t) − f(x, t)

h
.

If the functions f(x, t) and ∂f/∂x are continuous in the domain D = {α < t < β, γ < x < δ}
such that (x0, t0) ∈ D, then there exists a unique solution to the initial value problem

dx

dt
= f(x, t) with x(t0) = x0 for t0 − ∆ < t < t0 + ∆,

where α < t0 ± ∆ < β.
Under the weaker condition that only f(x, t) is continuous then the theorem asserts existence

but not uniqueness.
Note that the theorem only guarantees existence/uniqueness in a region close to (x0, t0). Also

note that if the conditions do not hold, then the theorem does not assert non-existence.

1.5.4 Example: Domain of validity

The differential equation
dy

dx
= 2xy2 gives the general solution y = −

1

x2 + c
.

Subject to condition y(0) = −1, y(x) =
−1

x2 + 1
. The solution is valid for all values of x.

Subject to condition y(0) = 1, y(x) =
1

1 − x2
. The solution is valid for |x| < 1.
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Figure 1: Example 1.5.4: (a) y(x) = −1/(x2 + 1) and (b) y(x) = 1/(1 − x2).

1.6 Numerical approximation of solutions: Euler’s method

Often the solution to an initial value problem is not available by analytical techniques, even
though we know the solution exists. In such situations we have to evaluate the solution using
numerical methods.

The simplest method is Euler’s method. Consider the initial value problem
dy

dx
= f(x, y) y(x0) =

y0. The initial tangent to the solution is

y = y0 + f(x0, y0)(x − x0).

We follow this tangent upto a point (x1, y1), and then examine another tangent

y2 = y1 + f(x1, y1)(x2 − x1).

Really this is the local tangent approximation to the initial value problem
dy

dx
= f(x, y) y(x1) =

y1. This problem (& so the solution) are different from the original initial value problem. How-
ever as long as x1 − x0 is relatively small, it may be expected that the solutions are relatively
close. This suggests the following iterative update rule, which is known as Euler’s method

yn+1 = yn + f(xn, yn)(xn+1 − xn).

Euler’s method can work well in some situations - but fails in others where a more elaborate
numerical algorithm is required.
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Figure 2: Sketch showing the construction of Euler’s method.
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