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2 Second order linear differential equations

In this chapter we focus on linear differential equations of the following form

L[y] ≡ a(x)
dy

dx2
+ b(x)

dy

dx
+ c(x)y = f(x). (1)

We define the homogeneous problem to be L[y] = 0 and the inhomogeneous problem to be
L[y] = f(x). An important special case is second order linear differential equations with constant
coefficients (a, b, c constants) - in this case there is a general method for solution that can be
generalised to higher orders.

2.1 Homogeneous equations with constant coefficients

L[y] ≡ a
dy

dx2
+ b

dy

dx
+ cy = 0. (2)

2.1.1 Linearity and superposition

Suppose y1(x) and y2(x) are solutions to the homogeneous equation then αy1 + βy2 (α, β con-
stants) is also a solution. This is readily shown:

L[αy1 + βy2] = L[αy1] + L[βy2] = αL[y1] + βL[y2] = 0. (3)

2.1.2 Constructing solutions

We look for solutions of the form y(x) = emx, where m is to be determined. Then dy/dx = memx

and d2y/dx2 = m2emx. Thus (2) is satisfied if
(

am2 + bm + c
)

emx = 0. (4)

Therefore m satisfies a quadratic equation with solutions

m =
−b ±

√
b2 − 4ac

2a
. (5)

In general this will have two solutions, {m1, m2} and so there are two solutions y1 = em1x and
y2 = em2x. Then the general solution is given by

y = Aem1x + Bem2x, with A, B constants. (6)

2.1.3 Examples

(i)
d2y

dx2
− 4y = 0. Look for solutions of the form y(x) = emx and so m2 − 4 = 0. Thus m = ±2

and the general solution is
y(x) = Ae2x + Be−2x.

(ii)
d2y

dx2
+ y = 0. Look for solutions of the form y(x) = emx and so m2 + 1 = 0. Thus m = ±i

and the general solution is

y(x) = Aeix + Be−ix = C cos x + D sin x.

(ii)
d2y

dx2
− 2

dy

dx
+ 5y = 0. Look for solutions of the form y(x) = emx and so m2 − 2m + 5 = 0.

Thus m = 1 ± 2i and the general solution is

y(x) = Ae(1+2i)x + B(1−2i)x = ex (C cos 2x + D sin 2x) .
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2.1.4 Repeated root

How do we find the general solution when there is only one root to (4)? This occurs if b2 = 4ac
and then m = −b/(2a). In this situation we write y(x) = v(x)e−bx/(2a) and substitute into (2).

L[v(x)e−bx/(2a)] = e−bx/(2a) d
2v

dx2
= 0. (7)

Thus v(x) = Ax + B for constant A and B and so the general solution is

y(x) = e−bx/(2a) (Ax + B) . (8)

Example:
d2y

dx2
+ 4

dy

dx
+ 4y = 0 leads to characteristic equation m2 = 4m + 4 = (m + 2)2 = 0.

Thus the general solution is
y(x) = e−2x (Ax + B) . (9)

2.1.5 Initial value problems and boundary value problems

To determine the solution to a particular problem, we need conditions to determine the unknown
constants in the general solution. For second order linear differential equations, we generally need
two conditions to determine the two constants.
(i) Initial value problems: There are two conditions that the solution must satisfy at x = a. For
example we might demand that y(a) = y0 and dy/dx(a) = d0, where y0 and d0 are known values.

Example:
d2y

dx2
+ ω2y = 0 subject to y(0) = 1 and y′(0) = 0. This has general solution y(x) =

A cos ωx + B sin ωx. Then applying the conditions y(0) = 1 implies A = 1 and y′(0) = 0 implies
B = 0 and so

y(x) = cos ωx.

(ii) Boundary value problems: These are conditions that the solution must satisfy at different
locations, say x = a and x = b. For example, we might demand y(a) = 0 and y(b) = 0. Boundary
value problems do not always have a solution.
Example: Waves on a string. The displacement of a string, y(x), oscillating at frequency ω/(2π)
satisfies

µ2 d2y

dx2
+ ω2y = 0, (10)

where µ2 = T/m and T is the tension of the string and m the mass per unit length. The string
is fixed at x = 0 and x = L and thus the boundary conditions are y(0) = y(L) = 0. The general
solution is

y = A cos
ωx

µ
+ B sin

ωx

µ
. (11)

Boundary condition y(0) = 0 implies A = 0 - but boundary condition y(L) = 0 can only be
satisfied by a non-zero B if ωL = nπµ, where n is an integer. There are only solutions for given
values of ω, ωn = nπµ/L, and these are the harmonics of the string vibration.

2.1.6 Linear independence and the Wronskian

Two function are linearly dependent in an interval I if

αf(t) + βg(t) = 0, (12)
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for all t ∈ I with α and β constants and not both zero. They are linearly independent if they are
not linearly dependent. From (12) we also have

αf ′(t) + βg′(t) = 0. (13)

Then solving between (12) and (13) for α and β we find that

α (f(t)g′(t) − f ′(t)g(t)) = 0 and β (f(t)g′(t) − f ′(t)g(t)) = 0, (14)

If not both of α and β vanish, then the Wronskian, W ,

W (f, g) ≡ fg′ − f ′g = 0. (15)

If f(t) and g(t) are linearly dependent then W (f, g) = 0 for all t ∈ I. But it W (f, g) 6= 0 at
some point t = t0 (t0 ∈ I), then f(t) and g(t) are linearly independent.
Abel’s Theorem: Let y1(x) and y2(x) be two solutions of the second order differential equation
L[y] = y′′ + p(x)y′ + q(x)y = 0, where p and q are continuous in the interval I. Then the
Wronskian,

W (y1, y2) = c exp

(

−
∫ x

p(s) ds

)

, (16)

where c is a constant. Thus either W = 0 for all x ∈ I or W 6= 0 for all x ∈ I.
Proof: y2L[y1] − y1L[y2] = y2y

′′
1 − y1y

′′
2 + p(y′

1y2 − y′
2y1). But W ′ = y1y

′′
2 − y′′

1y2 and so

W ′ = −pW and then W = c exp

(

−
∫ x

p(s) ds

)

. (17)

The consequence is that y1(x) and y2(x) are linearly independent functions if the Wronskian does
not vanish at some x ∈ I.

2.2 Inhomogeneous differential equations with constant coefficients

2.2.1 Form of the general solution

We consider a general inhomogeneous, second order, linear differential equation

L[y] ≡ d2y

dx2
+ p(x)

dy

∂x
+ q(x)y = f(x), (18)

where in what follows the coefficients p(x) and q(x) are not necessarily constants. The homo-
geneous problem, L[y] = 0 has general solution y(x) = αy1(x) + βy2(x) for constants α and
β. Suppose that Y1(x) and Y2(x) are both solutions of the inhomogeneous problem (18) then
L[Y1(x)] = f(x) and L[Y2(x)] = f(x) and so L[Y1 − Y2] = 0. Thus Y1(x) and Y2(x) can only
differ by a solution to the homogeneous problem. This means that the general solution to (18)
may be expressed as

y = αy1(x) + βy2(x) + yp(x), (19)

where yp(x) is any particular solution to the inhomogeneous solution. Finding the general solu-
tion then amounts to finding a particular solution, yp(x) (also known as the particular integral)
and finding solutions to the homogeneous problem (the latter are termed the complementary

function).
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2.2.2 Finding a particular solution

Often guess work is easiest:
Example: y′′ + y = ex.
Try y(x) = Aex and on substitution into the differential equation we find that 2Aex = ex and so
the particular integral is yp(x) = 1

2
ex.

Example: y′′ − 3y′ + 2y = sin x.
Try y = A sin x + B cos x, y′ = A cos x − B sin x, y′′ = −A sin x − B cos x. On substitution into
the differential equation, we find (A + 3B) sin x + (B − 3A) cosx = sin x and so A = 1

10
and

B = 3
10

.
This method of ‘guessing’ the particular integral works well if the function f(x) is (i) expo-

nential; (ii) cos or sin; (iii) polynomial; and (iv) sums and products of (i)-(iii). If f(x) is not of
this form, then use ‘variation of parameters’ (see §2.2.4).

2.2.3 Finding the general solution

The steps in forming the general solution to an inhomogeneous linear differential equation are:

1. Solve the homogeneous problem (L[y] = 0) to find the complementary function (e.g. y(x) =
αy1(x) + βy2(x)).

2. Find a particular solution to L[y] = f(x), y = yp(x).

3. Form the general solution y(x) = αy1(x) + βy2(x) + yp(x).

4. Apply boundary conditions (if needed).

2.2.4 Variation of parameters

We want to find a particular solution to the linear differential equation

L[y] ≡ a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y = f(x). (20)

Note that this method works for non-constant coefficients a(x), b(x) and c(x).
We suppose that we can find two linearly independent solutions to the homogeneous problem

L[y] = 0, denoted by y1(x) and y2(x). We then seek a solution of the inhomogeneous problem
(20) of the form yp(x) = v1(x)y1(x) + v2(x)y2(x).
From this assumed form of solution, we find

y′
p(x) = v′

1y1 + v1y
′
1 + v′

2y2 + v2y
′
2 = v1y

′
1 + v2y

′
2, (21)

if we choose v′
1y1 + v′

2y2 = 0. Then

y′′
p(x) = v′

1y
′
1 + v1y

′′
1 + v′

2y
′
2 + v2y

′′
2 . (22)

On substitution into the governing equation, we find

L[yp] = v′
1y

′
1 + v′

2y
′
2 = f/a. (23)

Thus we deduce that

v′
1 =

−fy2/a

W (y1, y2)
and v′

2 =
fy1/a

W (y1, y2)
, (24)

where W (y1, y2) ≡ y1y
′
2 − y2y

′
1 is the Wronskian. This gives two first order differential equations

for the functions v1(x) and v2(x) and from them the particular solution may be found.
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Non-trivial example: y′′ + y =
1

sin x
.

Two linearly independent solutions of the homogeneous problem are y1 = cos x and y2 = sin x.
The Wronskian W = cos2 x + sin2 x = 1.
Then v′

1 = −1, which gives v1 = −x. The integration constant can be set equal to zero, because
if it were included then it would merely add a multiple of the complementary function to the
particular integral.
Also v′

2 = cotx and so v = ln | sinx|.
Hence the general solution is

y = −x cos x + ln | sinx| sin x + A cos x + B sin x.

2.2.5 Application to mechanical systems

g

mz(t)

ze

Suppose a mass m is suspended at the end of a spring of natural
length L & spring constant k and is subject to a force F (t). The
ensuing motion also experiences a drag force proportional to the
velocity, u(t) and given by γu(t). The mass is at instantaneous
position z(t). Applying Newton’s second law, we find that

m
d2z

dt2
= mg − γ

dz

dt
− k(z − L) + F (t). (25)

In equilibrium (no motion and forcing), we have z = ze, given by k(ze −L) = mg. We then write
z(t) = ze + Z(t) and so the governing equation for Z(t) is

d2Z

dt2
+

γ

m

dZ

dt
+

k

m
Z =

F (t)

m
. (26)

This is a second order linear differential equations with constant coefficients.
We first consider free vibrations when there is no forcing F (t) = 0. We look for a solution of

the form Z(t) = ert and so the characteristic equation is

r2 +
γ

m
r +

k

m
=

(

r +
γ

2m

)2

− γ2 − 4mk

4m2
= 0. (27)

There are complex roots to (27) if γ2 < 4mk and real roots if γ2 > 4mk. This determines
whether the solution is oscillatory or not.

We now consider forced vibrations, with F (t) = F0 cos Ωt. For simplicity, we treat the un-
damped response (γ = 0), starting from rest (Z(0) = 0, dZ/dt(0) = 0). The complementary
function of (26) is Z = A cos ωt + B sin ωt, where ω2 = k/m. The particular integral is

Z(t) =
F0

m (ω2 − Ω2)
cos Ωt.

Thus the solution satisfying the initial conditions is

Z(t) =
F0

m (ω2 − Ω2)
(cos Ωt − cos ωt) . (28)

and using double-angle formulae, this may be written as

Z(t) =
−2F0

m (ω2 − Ω2)
sin

(

(Ω + ω) t

2

)

sin

(

(Ω − ω) t

2

)

. (29)

c©University of Bristol 2012. This material is the copyright of the University unless explicitly stated otherwise. It is provided
exclusively for educational purposes at the University and is to be downloaded or copied for your private study only.



Differential Equations: Page 10

0 20 40 60 80 100 120 140 160 180
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

Z
(t

)

Figure 1: The response, Z(t), to forcing F (t) = F0 cos Ωt with F0 = 1, m = 1, ω = 1 and
Ω = 1.1. The dotted lines depict the variation of the amplitude.

This situation may be interpreted as a signal with frequency (Ω + ω)/2 and amplitude of
2F0/[m(ω2 − Ω2)] which varies sin ((Ω − ω) t/2). When the forcing frequency Ω is close to the
natural frequency, ω, the amplitude is large and the response is known as the phenomenon of
‘beats’.

What happens if the forcing frequency is equal to the natural frequency (Ω = ω)? In this
case the solution derived above is invalid, because the particular integral is already accounted for
in the complementary function. Instead we seek a particular solution of the form Zp = Ct sin ωt
and on substitution we find C = F0/[2mω]. Applying the initial conditions, we deduce that

Z(t) =
F0t

2mω
sin ωt. (30)

Thus the amplitude of the response grows as F0t/[2mω]. This phenomenon is known as resonance.
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Figure 2: The resonant response, Z(t), to forcing F (t) = F0 cos ωt with F0 = 1, m = 1 and
ω = 1. The dotted lines depict the growth of the amplitude.
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