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4 Continuous dynamical systems:

coupled first order differential equations

We focus on systems with two dependent variables so that

dx1

dt
= f(x1, x2, t) and

dx2

dt
= g(x1, x2, t).

Most of the analysis will be for autonomous systems so that

dx1

dt
= f(x1, x2) and

dx2

dt
= g(x1, x2). (1)

A useful compact notation is to write x = (x1(t), x2(t)) and f = (f, g) so that
dx

dt
= f .

4.1 Equilibrium points

These are fixed points of the system where

dx1

dt
= 0 and

dx2

dt
= 0. (2)

They are found by simultaneously solving f(x1, x2) = 0 and g(x1, x2) = 0. For nonlinear func-
tions, f and g, there may be more than one fixed point.

4.2 Linear systems

In general a linear system with constant coefficients can be written as

dx

dt
= Mx, (3)

where M is a matrix of constant coefficients.

4.2.1 Superposition of solutions

If x1 and x2 are both solutions to the linear system (3), then

x = αx1 + βx2,

is also a solution.

Proof:
dx

dt
= α

dx1

dt
+ β

dx2

dt
= αMx1 + βMx2 = Mx.

This means that to find the general solution of (3), we need to find sufficient linearly inde-
pendent solutions and then form arbitrary additive combinations of them. For a second-order
system, we need two linearly independent solutions.

4.2.2 Constructing the solution

We seek a solution of the form x(t) = aeλt. This is a solution to (3) if

λaeλt = Maeλt. (4)

But since eλt > 0, for a non-trivial solution, we require

det (M − λI) = 0. (5)
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Then for each solution λi, we can find a vector a(i) such that

(M − λiI)a(i) = 0. (6)

This is an eigenvalue problem: λi are the eigenvalues and a(i) are the eigenvectors. The solution
for λ = λi is then

x(t) = a(i)eλit, (7)

These are sometimes termed the fundamental solutions.

Example 1:
d

dt

(

x1

x2

)

=

(

1 1
4 1

)(

x1

x2

)

.

We seek a solution (x1, x2) = (A, B)eλt and so the eigenvalue problem is

[(

1 1
4 1

)

− λ

(

1 0
0 1

)](

A
B

)

= 0. (8)

A non-trivial solution (A 6= 0 and B 6= 0) requires
∣

∣

∣

∣

1 − λ 1
4 1 − λ

∣

∣

∣

∣

= 0 which implies (1 − λ)2 − 4 = 0. (9)

Thus λ = 1 ± 2. So there are two real and distinct values.

When λ = 3,

(

−2 1
4 −2

)(

A
B

)

= 0 and so

(

A
B

)

= α

(

1
2

)

.

When λ = −1,

(

2 1
4 1

)(

A
B

)

= 0 and so

(

A
B

)

= β

(

1
−2

)

.

So the general solution is

x(t) = α

(

1
2

)

e3t + β

(

1
−2

)

e−t. (10)

The constants α and β can be determined from initial conditions.
The phase plane is a useful geometric way of viewing the solutions from many initial condi-

tions. The phase plane is the plane (x(t), y(t)) and each curve in it denotes a solution associated
with a particular initial condition. The curves are termed ‘trajectories’ and each has an arrow
to show the direction of evolution as t increases.
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Figure 1: The phase plane for example 1.

The phase plane for example 1 is plotted in figure 1. We note that the origin is a fixed point
(an equilibrium point) of this system, but there are no trajectories that remain close to the origin
as t → ∞. Thus this fixed point is unstable.
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4.2.3 Possible forms of solution:
dx

dt
= Mx

For a 2-D system the eigenvalue equation |M − λI| = 0 is a quadratic equation. For a matrix

M =

(

a b
c d

)

, this equation is given by

λ2 − (a + d)λ + ad − bc = 0. (11)

In general this quadratic equation will have two distinct roots, λ1 and λ2, unless 4(ad − bc) =
(a + d)2. If the solutions are complex valued, then λ1 and λ2 are complex conjugates because M
is real-valued. The general solution is then

x(t) = c1a1e
λ1t + c2a2e

λ2t. (12)

It Re{λ1} < 0 and Re{λ2} < 0, then |x| → 0 as t → ∞. This implies that the fixed point
x = (0, 0) is stable.
It Re{λ1} > 0 or Re{λ2} > 0, then |x| → ∞ as t → ∞. This implies that the fixed point
x = (0, 0) is unstable.

There is a classification of the fixed points depending on the values of λ1 and λ2:

1. λ1 and λ2 real valued:

• λ1 < 0 and λ2 < 0: stable node.

• λ1 > 0 and λ2 > 0: unstable node.

• λ1λ2 < 0: saddle.

2. λ1 and λ2 complex conjugates, so that λ1 = µ + iω and λ2 = µ − iω:

• µ > 0: unstable spiral.

• µ < 0: stable spiral.

• µ = 0: centre.

Example 2:
d

dt

(

x1

x2

)

=

(

−3
√

2√
2 −2

)(

x1

x2

)

.

We seek a solution (x1, x2) = (A, B)eλt and so the eigenvalue problem is

[(

−3
√

2√
2 −2

)

− λ

(

1 0
0 1

)](

A
B

)

= 0. (13)

A non-trivial solution (A 6= 0 and B 6= 0) requires

∣

∣

∣

∣

−3 − λ
√

2√
2 −2 − λ

∣

∣

∣

∣

= 0 which implies (λ + 4)(λ + 1) = 0. (14)

Thus λ = −4 and λ = −1. So the origin (the fixed point) is a stable node.

When λ = −4,

(

1
√

2√
2 2

)(

A
B

)

= 0 and so

(

A
B

)

= α

(

−
√

2
1

)

.

When λ = −1,

(

−2
√

2√
2 −1

)(

A
B

)

= 0 and so

(

A
B

)

= β

(

1√
2

)

.
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Figure 2: The phase plane for example 2.

So the general solution is

x(t) = α

(

−
√

2
1

)

e−4t + β

(

1√
2

)

e−t. (15)

The phase plane for example 2 is plotted in figure 2. We note that the origin is a stable fixed
point of this system, because all the trajectories approach it as t → ∞.

Example 3:
d

dt

(

x1

x2

)

=

(

0 α2

−1 0

)(

x1

x2

)

.

We seek a solution (x1, x2) = (A, B)eλt and so the eigenvalue problem is

[(

0 α2

−1 0

)

− λ

(

1 0
0 1

)](

A
B

)

= 0. (16)

A non-trivial solution (A 6= 0 and B 6= 0) requires

∣

∣

∣

∣

−λ α2

−1 −λ

∣

∣

∣

∣

= 0 which implies λ2 + α2 = 0. (17)

Thus λ = ±iα - so the origin (the fixed point) is a centre and we will show that the trajectories
about it are closed curves.

When λ = iα,

(

−iα α2

−1 −iα

)(

A
B

)

= 0 and so

(

A
B

)

= c1

(

−iα
1

)

.

When λ = −iα,

(

iα α2

−1 iα

)(

A
B

)

= 0 and so

(

A
B

)

= c2

(

iα
1

)

.

So the general solution is

x(t) = c1

(

−iα
1

)

eiαt + c2

(

iα
1

)

e−iαt. (18)

By introducing c3 = c1 + c2 and c4 = i(c2 − c1), this can be re-written

x(t) = c3

(

α sin αt
cos αt

)

+ c4

(

α cos αt
− sin αt

)

. (19)

The trajectories in the phase plane are easy to deduce analytically and are given by

x2
1 + α2x2

2 = constant. (20)
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Figure 3: The phase plane for example 3 with α = 2

They are ellipses and are plotted in figure 3.

Example 4:
d

dt

(

x1

x2

)

=

(

−1
2

1
−1 −1

2

)(

x1

x2

)

.

We seek a solution (x1, x2) = (A, B)eλt and a non-trivial solution (A 6= 0 and B 6= 0) requires

∣

∣

∣

∣

−1
2
− λ 1

−1 −1
2
− λ

∣

∣

∣

∣

= 0 which implies (λ +
1

2
)2 + 1 = 0. (21)

Thus λ = −1
2
± i - so the origin (the fixed point) is a stable spiral.

When λ = −1
2

+ i,

(

−i 1
−1 −i

)(

A
B

)

= 0 and so

(

A
B

)

= c1

(

−i
1

)

.

When λ = −1
2
− i,

(

i 1
−1 i

)(

A
B

)

= 0 and so

(

A
B

)

= c2

(

i
1

)

.

So the general solution is

x(t) = c1

(

−i
1

)

e(− 1

2
+i)t + c2

(

i
1

)

e(− 1

2
−i)t. (22)

By re-defining the constants, this can be re-written

x(t) = e−t/2

[

c3

(

sin t
cos t

)

+ c4

(

− cos t
sin t

)

.

]

. (23)

The phase plane for example 4 is plotted in figure 4. We note that the origin is a stable fixed
point of this system, because all the trajectories approach it as t → ∞.

4.3 Nonlinear coupled first-order systems

For the non-linear system
d

dt

(

x1

x2

)

=

(

f(x1, x2)
g(x1, x2)

)

, we can find fixed points by simultaneously

solving f = 0 and g = 0. But how do we determine the nature and stability of the fixed points?
The important idea is the examine the behaviour sufficiently close to a fixed point and treat the
system as linear system in this region. The stages in analysing the system are: (i) find the fixed
points; (ii) linearise the equations close to the fixed points; (iii) classify the linearised system.
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Figure 4: The phaseplane for example 4.

4.3.1 Example: Predator-Prey systems

x(t) denotes the population of the prey, while y(t) denotes the population of the predator. Their
interaction can be modelled by

dx

dt
= x − 1

2
xy, (24)

dy

dt
= −3

4
y +

1

4
xy, (25)

and we are interested only in the region x > 0 and y > 0.
First we find the equilibrium points, x(1 − 1

2
y) = 0 and y(−3

4
+ 1

4
x) = 0. These are at

(x, y) = (0, 0) and (x, y) = (3, 2). We examine each in turn.
Close to (x, y) = (0, 0), we linearise the equations on the assumption that |x| ≪ 1 and |y| ≪ 1

so that
dx

dt
= x − . . . and

dy

dt
= −3

4
y + . . . . (26)

This may be integrated immediately to give

x(t) = c1e
t and y(t) = c2e

−3t/4. (27)

Thus the eigenvalues of the linear system at λ = 1 and λ = −3
4
. The point (0, 0) is a saddle

point and is therefore unstable.

y

x

Trajectories in the phase plane are given by x3y4 = constant,
sufficiently close to the origin and shown in the sketch.

Close to (x, y) = (3, 2), we write x(t) = 3 + X(t) and y(t) =
2 + Y (t) and examine the governing equations when |X(t)| ≪ 1
and |Y (t)| ≪ 1. This gives

dX

dt
= 3 + X − 1

2
(3 + X)(2 + Y ) = −3

2
Y + . . . (28)

dY

dt
= −3

4
(2 + Y ) +

1

4
(3 + X)(2 + Y ) =

1

2
X + . . . . (29)

In matrix form, this linearised system may be written

d

dt

(

X
Y

)

=

(

0 −3/2
1/2 0

)(

X
Y

)

. (30)
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The eigenvalues are therefore given by

∣

∣

∣

∣

−λ −3/2
1/2 −λ

∣

∣

∣

∣

= 0, which implies λ = ±i
√

3/2. The fixed

point is therefore a centre.

When λ = i
√

3/2,

(

−i
√

3/2 −3/2

1/2 −i
√

3/2

)

a = 0 and so a =

(

1

−i/
√

3

)

.

When λ = −i
√

3/2,

(

i
√

3/2 −3/2

1/2 i
√

3/2

)

a = 0 and so a =

(

1

i/
√

3

)

.

So the general solution close to the fixed point is given by
(

X
Y

)

= c1

(

1

−i/
√

3

)

ei
√

3t/2 + c2

(

1

i/
√

3

)

e−i
√

3t/2, (31)

= c3

(

cos(
√

3t/2)

sin(
√

3t/2)/
√

3

)

+ c4

(

sin(
√

3t/2)

cos(
√

3t/2)/
√

3

)

. (32)

y

x

Then using double-angle formulae, these may be written as

X = R cos

(√
3t

2
+ φ

)

and Y =
R√
3

sin

(√
3t

2
+ φ

)

.

(33)
where R and φ are constants. This implies that close to the fixed
points the populations of predators and prey oscillate π/2 out of
phase with each other and that in the phase plane, the trajectories
are ellipses X2 + 3Y 2 = constant, as sketched.

Now that we have analysed the motion in the vicinities of the
two fixed points, we can sketch the entire phase plane. This is shown in figure 5.

x

y

0 1 2 3 4 5 6 7
0

1

2

3

4

5

Figure 5: Trajectories in the phase plane for a predator-prey model

In this case the exact trajectories may be computed directly, because

dy

dx
=

y

2x

(−3 + x)

(2 − y)
,

which may be integrated to give

log |y4x3| − 2y − x = constant. (34)
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4.3.2 Example: Competing species

A model of the population of two species with populations, x(t) and y(t), which are competing
for resources is given by

dx

dt
= x(1 − x − y), (35)

dy

dt
= y

(

3

4
− y − x

2

)

. (36)

The fixed points are determined by simultaneously solving x(1−x−y) = 0 and y(3
4
−y− x

2
) = 0,

which yields 4 fixed points, (x, y) = (0, 0), (0, 3
4
), (1, 0) and (1

2
, 1

2
). To characterise the phase

plane, we need to systematically investigate the nature of the system in the vicinity of each of
them.
Close to the fixed point at (0, 0), the linearised system becomes

dx

dt
= x + . . . and

dy

dt
=

3

4
y + . . . , (37)

which may be integrated to give x(t) = c1e
t and y(t) = c2e

3t/4. Thus the origin is an unstable
node.
Close to the fixed point at (0, 3

4
), we write y = 3

4
+ Y (t) and the linearised system becomes

dx

dt
= x(1 − x − 3

4
− Y ) =

1

4
x + . . . (38)

dY

dt
=

(

3

4
+ Y

)(

3

4
− 3

4
− Y − x

2

)

= −3Y

4
− 3x

8
. (39)

Seeking a solution of the form (x, Y ) = aeλt, requires that

∣

∣

∣

∣

1/4 − λ 0
−3/8 −3/4 − λ

∣

∣

∣

∣

= 0, which implies λ =
1

4
,−3

4
.

This fixed point is therefore a saddle. The eigenvectors are given by:

when λ = 1/4,

(

0 0
−3/8 −1

)

a = 0 and so a =

(

1
−3

8

)

.

when λ = −3/4,

(

−1/2 0
−3/8 0

)

a = 0 and so a =

(

0
1

)

.

The general solution close to (0, 3
4
) is therefore

(

x
y − 3

4

)

= c3

(

1
−3

8

)

et/4 + c4

(

0
1

)

e−3t/4. (40)

Close to the fixed point at (1, 0), we write x = 1 + X(t) and the linearised system becomes

dX

dt
= (1 + X)(−X − Y ) = −X − y + . . . (41)

dy

dt
= y

(

3

4
− y − 1

2
− X

2

)

=
y

4
. (42)

Seeking a solution of the form (X, y) = aeλt, requires that

∣

∣

∣

∣

−1 − λ −1
0 1/4 − λ

∣

∣

∣

∣

= 0, which implies λ =
1

4
,−1.
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This fixed point is therefore a saddle. The eigenvectors are given by:

when λ = 1/4,

(

−5/4 −1
0 0

)

a = 0 and so a =

(

1
−5/4

)

.

when λ = −1,

(

0 −1
0 3/4

)

a = 0 and so a =

(

1
0

)

.

The general solution cloe to (1, 0) is therefore

(

x − 1
y

)

= c5

(

1
−5

4

)

et/4 + c6

(

1
0

)

e−t. (43)

Close to the fixed point at (1
2
, 1

2
), we write x = 1

2
+ X(t) and y(t) = 1

2
+ Y (t) and the linearised

system becomes

dX

dt
=

(

1

2
+ X

)(

1 − 1

2
− X − 1

2
− Y

)

= −X

2
− Y

2
+ . . . (44)

dY

dt
=

(

1

2
+ Y

)(

3

4
− 1

2
− Y − 1

4
− X

2

)

= −X

4
− Y

2
+ . . . . (45)

Seeking a solution of the form (X, Y ) = aeλt, requires that

∣

∣

∣

∣

−1/2 − λ −1/2
−1/4 −1/2 − λ

∣

∣

∣

∣

= 0, which implies λ = −1

2
± 1√

8
.

This fixed point is therefore a stable node. The eigenvectors are given by:

when λ = −1
2

+ 1√
8
,

(

−1/
√

8 −1/2

−1/4 −1/
√

8

)

a = 0 and so a =

(√
2

−1

)

.

when λ = −1
2
− 1√

8
,

(

1/
√

8 −1/2

−1/4 1/
√

8

)

a = 0 and so a =

(√
2

1

)

.

The general solution close to (1
2
, 1

2
) is therefore

(

x − 1
2

y − 1
2

)

= c7

(√
2

−1

)

e(−1/2+1/
√

8)t + c6

(√
2

1

)

e(−1/2−1/
√

8)t. (46)

These deductions characterise the behaviour of trajectories close to each of the fixed plane.
Thus we may sketch the phase plane (see figure 6). All trajectories lead to (x, y) = (1

2
, 1

2
) and

thus this is the long time solution to the system, with the two populations co-existing.
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Figure 6: The phase plane for the model of competing populations. The solid lines show some
trajectories; the arrows show the vector field (ẋ, ẏ).
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