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Second-order differential equations

D.

. For each of the following pairs of functions, show that the two functions are linearly inde-

pendent:

(a) {cos(z),sin(z)}
(b) {ehe, e}, A # A
(C) {6)\:(:7:(:6)\:0}

The angle, 6, that an undamped pendulum moving in a plane makes with the vertical is
well described by

d%e

o _ g,
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for sufficiently small 6. The constants g and [ are the acceleration due to gravity and the

length of the pendulum, respectively. Find the general solution and hence the solutions

satisfying the following boundary conditions:

(a)
(b)
(c)

)=a>0,0(0) =0;
0) =0, 0(0) = b > 0;

0) =a >0, ¢0) =b > 0. In this latter case write the solution in the form
t)y=0C sm(ozt + () and hence find the maximum value of 6.
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The variable u(t) is said to undergo damped harmonic motion if it satisfies

d2 du
ku =0,
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where the constants m,y, k are all positive. Find the general solution in the cases:
(a) v* > 4km, (b) v* = 4km and (c) ¥* < 4km. For each solution, determines what
happens to u(t) as t — co.

Use the method of variation of parameters to find the general solution to

2

ay
when (a) f(z) = z? and (b) f(x) = cot .
dy dy
Show that if x = e® th :
(a) Show that if x = e® en z—— = -
(b) Hence find the general solution of
d?y dy
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