

Calculus (MATH11007): Sheet 10

Second-order differential equations

2012

1. For each of the following pairs of functions, show that the two functions are linearly independent:
 - $\{\cos(x), \sin(x)\}$
 - $\{e^{\lambda_1 x}, e^{\lambda_2 x}\}$, $\lambda_1 \neq \lambda_2$
 - $\{e^{\lambda x}, x e^{\lambda x}\}$

2. The angle, θ , that an undamped pendulum moving in a plane makes with the vertical is well described by

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\theta,$$

for sufficiently small θ . The constants g and l are the acceleration due to gravity and the length of the pendulum, respectively. Find the general solution and hence the solutions satisfying the following boundary conditions:

- $\theta(0) = a > 0$, $\theta'(0) = 0$;
- $\theta(0) = 0$, $\theta'(0) = b > 0$;
- $\theta(0) = a > 0$, $\theta'(0) = b > 0$. In this latter case write the solution in the form $\theta(t) = C \sin(\alpha t + \beta)$ and hence find the maximum value of θ .

3. The variable $u(t)$ is said to undergo damped harmonic motion if it satisfies

$$m \frac{d^2u}{dt^2} + \gamma \frac{du}{dt} + ku = 0,$$

where the constants m, γ, k are all positive. Find the general solution in the cases:

(a) $\gamma^2 > 4km$, (b) $\gamma^2 = 4km$ and (c) $\gamma^2 < 4km$. For each solution, determine what happens to $u(t)$ as $t \rightarrow \infty$.

4. Use the method of variation of parameters to find the general solution to

$$\frac{d^2y}{dx^2} + y = f(x),$$

when (a) $f(x) = x^2$ and (b) $f(x) = \cot x$.

5. (a) Show that if $x = e^s$ then $x \frac{dy}{dx} = \frac{dy}{ds}$.
- (b) Hence find the general solution of

$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 4y = 0.$$