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Second-order differential equations

1. For each of the following pairs of functions, show that the two functions are linearly inde-
pendent:

(a) {cos(x), sin(x)}

(b) {eλ1x, eλ2x}, λ1 6= λ2

(c) {eλx, xeλx}

2. The angle, θ, that an undamped pendulum moving in a plane makes with the vertical is
well described by

d2θ

dt2
= −

g

l
θ,

for sufficiently small θ. The constants g and l are the acceleration due to gravity and the
length of the pendulum, respectively. Find the general solution and hence the solutions
satisfying the following boundary conditions:

(a) θ(0) = a > 0, θ′(0) = 0;

(b) θ(0) = 0, θ′(0) = b > 0;

(c) θ(0) = a > 0, θ′(0) = b > 0. In this latter case write the solution in the form
θ(t) = C sin(αt + β) and hence find the maximum value of θ.

3. The variable u(t) is said to undergo damped harmonic motion if it satisfies

m
d2u

dt2
+ γ

du

dt
+ ku = 0,

where the constants m, γ, k are all positive. Find the general solution in the cases:
(a) γ2 > 4km, (b) γ2 = 4km and (c) γ2 < 4km. For each solution, determines what
happens to u(t) as t → ∞.

4. Use the method of variation of parameters to find the general solution to

d2y

dx2
+ y = f(x),

when (a) f(x) = x2 and (b) f(x) = cot x.

5. (a) Show that if x = es then x
dy

dx
=

dy

ds
.

(b) Hence find the general solution of

x2 d2y

dx2
+ x

dy

dx
− 4y = 0.
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