

Calculus (MATH11007): Sheet 12
Discrete Dynamical Systems II

2013

1. A discrete dynamical system is given by

$$u(n+2) = -u(n+1) - u(n). \quad (1)$$

- (a) Find the first six terms when (i) $u(0) = 1$ and $u(1) = 2$; and (ii) $u(0) = 0$ and $u(1) = -2$.
- (b) Find the general solution (1) and thus explain why the series is periodic with period 3.
- (c) Now suppose $u(n+2) = u(n+1) - u(n)$. Does this dynamical system admit periodic solutions? And if so, what is their period?

2. Find the general solution to the dynamical system

$$u(n+1) = \frac{1}{2}u(n) + n.$$

What is the solution when $u(0) = 0$?

3. Consider the following dynamical system

$$u(n+1) = u(n)(2 - u(n)).$$

- (a) Sketch a web diagram for initial points (i) $u(0) < 0$, (ii) $0 < u(0) < 1$, (iii) $1 < u(0) < 2$.
- (b) Find the equilibrium points, $u(n) = E$, and for each, starting from a point $u(0) = E + \delta$ where δ is small, calculate what happens to the solution. *[Hint: You should allow δ to be both positive and negative].*

4. Consider the logistic map of the form

$$u(n+1) = \frac{7}{2}u(n)(1 - u(n)). \quad (2)$$

- (a) Find the fixed points of order one.
- (b) Find all the fixed points of order two.
- (c) Examine the stability of each of the fixed points of order two.

5. Consider the two closely separated initial conditions: (i) $u(0) = 0.4$ and (ii) $u(0) = 0.4 + 1/128$. Use **Matlab** to plot the evolution for 40 time steps of these two initial points for the following values of a for the logistic map (2):

- (a) $a = 2.9$, (b) $a = 3.5$, (c) $a = 3.65$, (d) $a = 3.75$.

You should produce 4 plots, one for each value of a , with the evolutions starting from both initial conditions show on the same plot.