

Calculus (MATH11007): Sheet 13
Coupled first order systems

2013

1. For each of the following coupled first order systems, find the set of equilibrium points.
 (The dependent variables, x , y and v , are all real-valued.)

(a) $\dot{x} = 3x + 2y,$
 $\dot{y} = x.$

(d) $\dot{x} = x - xy,$
 $\dot{y} = x - 3y + 2xy.$

(b) $\dot{x} = 3x + 2y + 1,$
 $\dot{y} = x + 2y + 4.$

(e) $\dot{x} = v,$
 $\dot{v} = x - x^5.$

(c) $\dot{x} = 3x + 6y,$
 $\dot{y} = 2x + 4y.$

(f) $\dot{x} = v,$
 $\dot{v} = x + x^5.$

2. (a) Find the general solution of the following coupled first order system

$$\begin{aligned}\dot{x} &= -2x + 6y, \\ \dot{y} &= 6x + 7y.\end{aligned}$$

(b) Sketch the trajectories in the phase plane.
 (c) Find the solution satisfying the initial condition $x(0) = 1$, $y(0) = 0$.

3. (a) Find the general solution of the following coupled first order system

$$\begin{aligned}\dot{x} &= 6x + 2y, \\ \dot{y} &= 2x + 9y.\end{aligned}$$

(b) Sketch the trajectories in the phase plane.
 (c) Find the solution satisfying the initial condition $x(0) = 1$, $y(0) = 0$.

4. Consider the following pair of coupled equations:

$$\begin{aligned}\dot{x} &= x - y, \\ \dot{y} &= x + 3y.\end{aligned}$$

(a) Show that there is only one independent solution of the form $\mathbf{v}e^{\lambda t}$ where \mathbf{v} is a constant vector. Find \mathbf{v} and λ .
 (b) Find a second solution by using a trial solution of the form

$$\mathbf{w}te^{\lambda t} + \mathbf{z}e^{\lambda t}$$

where \mathbf{w} and \mathbf{z} are constant vectors and λ has the value you found in part (a).