
Calculus (MATH11007): Sheet 7 2012

First-order differential equations

1. Solve the following. If no initial condition is given, find the general solution; if an initial
condition is given, find the largest region of validity of the solution.

(a)
dy

dx
+ y = ex , y(0) = 1.

(b)
dy

dx
=

x

y
.

(c)
dy

dx
+

2y

x
= x2.

(d)
dy

dx
= 2xy2 , y(0) = 1.

(e)
dx

dt
+

tx

t2 + 1
= t , x(0) = 1.

(f)
ds

dt
= s2 sin t , s(0) = 2.

(g)
dp

ds
=

sp

s2 + 1
.

(h) u′ + u cos t = cos t.

(i)
dy

dx
+ 2xy = 2x3.

(j) (2t + x)
dx

dt
+ t = 0.

2. Find all the solutions of the following differential equations.

(a) (1 − x2)
dy

dx
=

√

4 − y2 .

(b) y′ + ay = b .

(c) (y′)
2 − 3y′ = −2 , y(1) = 2

In (b), consider all possible values of the constants a and b.

3. The Bernoulli differential equation may be written as

dy

dx
= f(x)y + g(x)yν ,

where f and g are given functions and ν 6= 1 is a given real number. Show that the
substitution y(x) = [u(x)]α, where α is to be determined, transforms the equation into a
linear equation equation which may then be solved analytically. Use this idea to solve the
following:

(a)
dy

dx
+ xy = xy3 , y(0) =

1√
2

. (b)
dσ

dt
− σ =

t

σ
, σ(0) = 1 .

4. Find all the solutions of the equation

(1 − x2) (y′)
2

= 1 − y2 .
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5. The settling velocity of a small sphere in water, u(t), satisfies

du

dt
=

∆ρg

ρs

− 18µu

ρsd2
,

where ρs denotes the density of the sphere, ∆ρ denotes the density difference between the
sphere and water, g denotes gravitational acceleration, d denotes the diameter of the sphere
and µ denotes the viscosity of water.

(a) Find the velocity, u(t), given that the sphere starts from rest (u(0) = 0).

(b) Calculate the terminal settling velocity Vs = lim
t→∞

u(t).

(c) Find the time, ts, when the velocity equals (1 − e−1)Vs.

(d) Evaluate ts for a 100µm particle of sand (ρs = 2600Kgm−3) settling through water of
density ρ = 1000Kgm−3 and viscosity µ = 10−3Kgm−1s−1.

6. The growth rate of the mass of material, x(t), in a chemical reaction satisfies the following
the differential equation

dx

dt
= K(a − x)(b − x) , x(0) = 0 ,

where K, a and b are positive constants such that a 6= b. Solve the equation and deduce
that

lim
t→∞

x(t) =

{

a, if a ≤ b,

b, if b < a.
.
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