

Calculus (MATH11007): Sheet 7
First-order differential equations

2012

1. Solve the following. If no initial condition is given, find the general solution; if an initial condition is given, find the largest region of validity of the solution.

(a) $\frac{dy}{dx} + y = e^x, \quad y(0) = 1.$

(f) $\frac{ds}{dt} = s^2 \sin t, \quad s(0) = 2.$

(b) $\frac{dy}{dx} = \frac{x}{y}.$

(g) $\frac{dp}{ds} = \frac{sp}{s^2 + 1}.$

(c) $\frac{dy}{dx} + \frac{2y}{x} = x^2.$

(h) $u' + u \cos t = \cos t.$

(d) $\frac{dy}{dx} = 2xy^2, \quad y(0) = 1.$

(i) $\frac{dy}{dx} + 2xy = 2x^3.$

(e) $\frac{dx}{dt} + \frac{tx}{t^2 + 1} = t, \quad x(0) = 1.$

(j) $(2t + x)\frac{dx}{dt} + t = 0.$

2. Find all the solutions of the following differential equations.

(a) $(1 - x^2)\frac{dy}{dx} = \sqrt{4 - y^2}.$

(c) $(y')^2 - 3y' = -2, \quad y(1) = 2$

(b) $y' + ay = b.$

In (b), consider all possible values of the constants a and b .

3. The Bernoulli differential equation may be written as

$$\frac{dy}{dx} = f(x)y + g(x)y^\nu,$$

where f and g are given functions and $\nu \neq 1$ is a given real number. Show that the substitution $y(x) = [u(x)]^\alpha$, where α is to be determined, transforms the equation into a linear equation which may then be solved analytically. Use this idea to solve the following:

(a) $\frac{dy}{dx} + xy = xy^3, \quad y(0) = \frac{1}{\sqrt{2}}.$

(b) $\frac{d\sigma}{dt} - \sigma = \frac{t}{\sigma}, \quad \sigma(0) = 1.$

4. Find all the solutions of the equation

$$(1 - x^2)(y')^2 = 1 - y^2.$$

5. The settling velocity of a small sphere in water, $u(t)$, satisfies

$$\frac{du}{dt} = \frac{\Delta\rho g}{\rho_s} - \frac{18\mu u}{\rho_s d^2},$$

where ρ_s denotes the density of the sphere, $\Delta\rho$ denotes the density difference between the sphere and water, g denotes gravitational acceleration, d denotes the diameter of the sphere and μ denotes the viscosity of water.

- (a) Find the velocity, $u(t)$, given that the sphere starts from rest ($u(0) = 0$).
- (b) Calculate the terminal settling velocity $V_s = \lim_{t \rightarrow \infty} u(t)$.
- (c) Find the time, t_s , when the velocity equals $(1 - e^{-1})V_s$.
- (d) Evaluate t_s for a $100\mu\text{m}$ particle of sand ($\rho_s = 2600\text{Kgm}^{-3}$) settling through water of density $\rho = 1000\text{Kgm}^{-3}$ and viscosity $\mu = 10^{-3}\text{Kgm}^{-1}\text{s}^{-1}$.

6. The growth rate of the mass of material, $x(t)$, in a chemical reaction satisfies the following differential equation

$$\frac{dx}{dt} = K(a - x)(b - x), \quad x(0) = 0,$$

where K , a and b are positive constants such that $a \neq b$. Solve the equation and deduce that

$$\lim_{t \rightarrow \infty} x(t) = \begin{cases} a, & \text{if } a \leq b, \\ b, & \text{if } b < a. \end{cases}.$$