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Second-order differential equations

1. (a) Find the general solution of

y′′ + 5y′ + 6y = 0 .

(b) Find the solution of the above differential equation subject to y(0) = 1, y′(0) = 0.
Sketch the solution.

2. Find the solution of

d2x

dt2
− 4

dx

dt
+ x = 0; x(0) = 0,

dx

dt
(0) = 1.

Sketch the solution.

3. Find the solution of

y′′ + 9y = 0

subject to (a) y(0) = 0, y′(0) = 1; and (b) y(0) = 1, y′(0) = 0.

4. Find the general solution of

y′′ + 4y′ + 3y = f(x)

where (a) f(x) = e2x; (b) f(x) = x2; (c) f(x) = sin(5x); (d) f(x) = e−x.

5. Find the most general function that satisfies

u′′
− 4u′ + 8u = 0

subject to

(a) u(0) = 0, u(π

2
) = 0;

(b) u(0) = 0, u(1) = 0.

6. Find the general solution of

z′′ − 6z′ + 9z = e3x.

7. For what values of L are there non-zero solutions to

y′′ + 9y = 0; y(0) = 0, y(L) = 0.

8. For what values of ω are there non-zero solutions to

y′′ + 2y′ + (1 + ω2)y = 0, y(0) = 0, y(π) = 0.

9. The function y(x) satisfies the following differential equation and boundary conditions

y′′
− (2 + ǫ)y′ + (1 + ǫ)y = 0; y(0) = 0 y′(0) = 1.

(a) Find the solution when ǫ = 0.

(b) Find the solution when ǫ > 0 and show that the solution to (a) is recovered as ǫ → 0.
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