

Calculus (MATH11007): Solutions 10

Second-order differential equations

2012

1. (a) We seek a and b (non zero) such that $a \cos x + b \sin x = 0$ for all x .

Choose $x = 0$ and this implies $a = 0$. Then choose $x = \pi/2$ and this implies $b = 0$.

Hence the only solution is $a = b = 0$ and thus $\{\sin x, \cos x\}$ are independent.

(b) We seek a and b (non zero) such that $ae^{\lambda_1 x} + be^{\lambda_2 x} = 0$ for all x .

Choose $x = 0$ and this implies $a + b = 0$. Then choose $x = 1$ and this implies $a(e^{\lambda_1} - e^{\lambda_2}) = 0$, which leads to $a = b = 0$ if $\lambda_1 \neq \lambda_2$. Hence $\{e^{\lambda_1 x}, e^{\lambda_2 x}\}$ are independent.

(c) We seek a and b (non zero) such that $ae^{\lambda_1 x} + bxe^{\lambda_2 x} = 0$ for all x .

Choose $x = 0$ and this implies $a = 0$. Then choose $x = 1$ and this implies $be^{\lambda_1} = 0$, which leads to $b = 0$. Hence $\{e^{\lambda_1 x}, xe^{\lambda_1 x}\}$ are independent.

2. We seek a solution of the form $\theta(t) = e^{rt}$, which gives

$$r^2 + \omega^2 = (r - i\omega)(r + i\omega) = 0,$$

where $\omega^2 = g/l$. Thus $r = \pm i\omega$ and the general solution is $\theta(t) = A \cos \omega t + B \sin \omega t$.

(a) When $\theta(0) = a$ and $\theta'(0) = 0$, the solution is $\theta(t) = a \cos \omega t$.

(b) When $\theta(0) = 0$ and $\theta'(0) = b$, the solution is $\theta(t) = \frac{b}{\omega} \sin \omega t$.

(c) When $\theta(0) = a$ and $\theta'(0) = b$, the solution is

$$\begin{aligned} \theta(t) &= a \cos \omega t + \frac{b}{\omega} \sin \omega t \\ &= \left(a^2 + \frac{b^2}{\omega^2} \right)^{1/2} \sin \left(\omega t + \tan^{-1} \left(\frac{a\omega}{b} \right) \right). \end{aligned}$$

Thus $\max(\theta(t)) = (a^2 + b^2/\omega^2)^{1/2}$.

3. Seeking a solution of the form $u(t) = e^{rt}$ we find that

$$mr^2 + \gamma r + k = 0.$$

This has solutions $r = (-\gamma \pm \sqrt{\gamma^2 - 4km})/(2m)$. The nature of the solution depends on whether $\Delta^2 = \gamma^2 - 4km$ is positive or negative.

(a) If $\Delta^2 > 0$, then the two roots are both real and given by

$$r_1 = \frac{-\gamma + \Delta}{2m} \quad \text{and} \quad r_2 = \frac{-\gamma - \Delta}{2m}.$$

The general solution is $u(t) = Ae^{r_1 t} + Be^{r_2 t}$. Both $r_1 < 0$ and $r_2 < 0$ and so $u(t) \rightarrow 0$ as $t \rightarrow \infty$.

(b) If $\Delta^2 = 0$, then the root $r = -\gamma/(2m)$ is repeated and the general solution is given by $u(t) = (A + Bt)e^{rt}$. We find that $u(t) \rightarrow 0$ as $t \rightarrow \infty$.

(c) If $\Delta^2 = -\delta^2 < 0$ then the two roots are complex conjugates given by

$$r_1 = \frac{-\gamma + i\delta}{2m} \quad \text{and} \quad r_2 = \frac{-\gamma - i\delta}{2m}.$$

The general solution is $u(t) = e^{-\gamma t/(2m)} \left(A \sin \frac{\delta t}{2m} + B \cos \frac{\delta t}{2m} \right)$. Thus $u(t) \rightarrow 0$ as $t \rightarrow \infty$.

4. The general solution to the homogeneous problem is $y(x) = A \sin x + B \cos x$. Thus using the method of variation of parameters to find a particular integral we write $y(x) = c(x) \sin x + d(x) \cos x$.

Evaluating the derivative $y' = c' \sin x + c \cos x + d' \cos x - d \sin x$. We choose to enforce $c' \sin x + d' \cos x = 0$.

Evaluating the second derivative $y'' = c' \cos x - c \sin x - d' \sin x - d \cos x$. Thus $y'' + y = f(x)$ yields $c' \cos x - d' \sin x = f(x)$

The differential equations for $c(x)$ and $d(x)$ are then

$$c' = f(x) \cos x \quad \text{and} \quad d' = -f(x) \sin x$$

(a) When $f(x) = x^2$, we find $d(x) = x^2 \cos x - 2x \sin x - 2 \cos x$ and $c(x) = x^2 \sin x - 2 \sin x + 2x \cos x$. (Here the integration constants can be neglected because their contributions are already in the complementary function.) Putting the solutions together we find that

$$y(x) = x^2 - 2 + A \sin x + B \cos x.$$

(b) When $f(x) = \cot x$, we find $d(x) = -\sin x$ and $c(x) = \cos x - \ln(\cosec x - \cot x)$. (Again, the integration constants can be neglected because their contributions are already in the complementary function.) Putting the solutions together we find that

$$y(x) = \sin x \ln \left(\frac{\sin x}{1 - \cos x} \right) + A \sin x + B \cos x.$$

5. (a) If $x = e^s$ then $dx/ds = e^s = x$. So $xdy/dx = xdy/ds(ds/dx) = dy/ds$.

(b) Note that $\frac{d^2y}{ds^2} = \frac{d}{ds} \left(x \frac{dy}{dx} \right) = x \frac{d}{dx} \left(x \frac{dy}{dx} \right) = x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx}$. Then the differential equation transforms to

$$\frac{d^2y}{ds^2} - 4y = 0.$$

This may be solved by looking for solutions of the form $y = e^{rs}$, for which we deduce $r^2 - 4 = 0$ and so $r = \pm 2$. Then the solution is given by

$$y(x) = Ae^{2\ln(x)} + Be^{-2\ln(x)} = Ax^2 + \frac{B}{x^2}.$$