Calculus (MATH11007): Solutions 10 2012

Second-order differential equations

1. (a) We seek a and b (non zero) such that acosx + bsinx = 0 for all .

Choose x = 0 and this implies @ = 0. Then choose x = 7/2 and this implies b = 0.
Hence the only solution is a = b = 0 and thus {sinx, cosz} are independent.

(b) We seek a and b (non zero) such that ae’® + be*2* = 0 for all x.

Choose x = 0 and this implies @ + b = 0. Then choose x = 1 and this implies
a(eM — e*2) = 0, which leads to a = b = 0 if \; # X. Hence {eM? e*} are
independent.

(c) We seek a and b (non zero) such that ae’® + bre*?® = 0 for all z.

Choose x = 0 and this implies @ = 0. Then choose z = 1 and this implies be* = 0,
which leads to b = 0. Hence {eM? e} are independent.

2. We seek a solution of the form 6(t) = e, which gives
r? +w? = (r —iw)(r +iw) =0,
where w? = ¢g/I. Thus r = +iw and the general solution is 0(t) = A coswt + B sin wt.
(a) When 6(0) = a and #'(0) = 0, the solution is 6(t) = a cos wt.
(b) When 6(0) = 0 and ¢'(0) = b, the solution is §(t) = b sin wt.

w

(¢) When 6(0) = a and ¢'(0) = b, the solution is

b
0(t) = acoswt+ —sinwt
w

b2\ /2 aw
= (a®+— sin (wt + tan™! (—)) .
w? b
Thus max(0(t)) = (a® + b? /w?)1/2.
3. Seeking a solution of the form u(t) = €™ we find that
mr? +yr 4+ k= 0.

This has solutions r = (—v £ /72 — 4km)/(2m). The nature of the solution depends on
whether A? = 42 — 4km is positive or negative.

(a) If A2 >0, then the two roots are both real and given by

v+ A —y —A
= and ro = .
2m 2m

1

The general solution is u(t) = Ae™* + Be™!. Both r; < 0 and r» < 0 and so u(t) — 0
as t — o0.

(b) If A2 =0, then the root r = —v/(2m) is repeated and the general solution is given
by u(t) = (A+ Bt)e™. We find that u(t) — 0 as t — oc.
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(c) If A2 = —§2 < 0 then the two roots are complex conjugates given by

=yt

—y —1id
2m ’

71 and rey =

2m

ot ot
The general solution is u(t) = e~ 7%/(@m) <A sin = + B cos 2—) Thus u(t) — 0 as
m m

t — oo.

4. The general solution to the homogeneous problem is y(x) = Asinz+ B cos x. Thus using the
method of variation of parameters to final a particular integral we write y(z) = ¢(x) sinz +
d(x) cosz.

Evaluating the derivative v = ¢’ sinx + ccosx + d cosx — dsinz. We choose to enforce
dsinx +d cosx = 0.

Evaluating the second derivative y” = ¢ cosz—csinx—d' sinz—d cos z. Thus y"+y = f(x)
yields ¢’ cosx — d'sinz = f(z)

The differential equations for ¢(x) and d(z) are then

d=f(x)cosx and d =-—f(x)sinz

(a) When f(z) = 22, we find d(z) = 2?cosz — 2wsinx — 2cosz and c(x) = z?sinx —
2sinx + 2x cosx. (Here the integration constants can be neglected because their con-
tributions are already in the complementary function.) Putting the solutions together
we find that

y(r) =2 — 2+ Asinz + Bcosx.

(b) When f(x) = cotz, we find d(x) = —sinz and ¢(x) = cosz — In(cosecx — cot z).
(Again, the integration constants can be neglected because their contributions are
already in the complementary function.) Putting the solutions together we find that

sin x

y(:c):sinzcln( ) + Asinz + Bcosz.

1 —-cosz
5. (a) If z = €® then dz/ds = e® = x. So zdy/dx = xdy/ds(ds/dx) = dy/ds.

d? d [/ d d [ d d? d
(b) Note that d—sg =% (zd—i) =T (zd—i) = :L"Qd—I‘Z + a:d—i Then the differential
equation transforms to
d%y
— —4y =0.
ds? y=0
This may be solved by looking for solutions of the form y = €™, for which we deduce

r? —4 =0 and so r = £2. Then the solution is given by

B
y(a?) — Ae2ln(x) +Be—2ln(x) _ AZIZ’2 + E
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