
Calculus (MATH11007): Solutions 10 2012

Second-order differential equations

1. (a) We seek a and b (non zero) such that a cos x + b sin x = 0 for all x.

Choose x = 0 and this implies a = 0. Then choose x = π/2 and this implies b = 0.
Hence the only solution is a = b = 0 and thus {sin x, cos x} are independent.

(b) We seek a and b (non zero) such that aeλ1x + beλ2x = 0 for all x.

Choose x = 0 and this implies a + b = 0. Then choose x = 1 and this implies
a(eλ1 − eλ2) = 0, which leads to a = b = 0 if λ1 6= λ2. Hence {eλ1x, eλ2x} are
independent.

(c) We seek a and b (non zero) such that aeλ1x + bxeλ2x = 0 for all x.

Choose x = 0 and this implies a = 0. Then choose x = 1 and this implies beλ1 = 0,
which leads to b = 0. Hence {eλ1x, xeλ1x} are independent.

2. We seek a solution of the form θ(t) = ert, which gives

r2 + ω2 = (r − iω)(r + iω) = 0,

where ω2 = g/l. Thus r = ±iω and the general solution is θ(t) = A cos ωt + B sin ωt.

(a) When θ(0) = a and θ′(0) = 0, the solution is θ(t) = a cos ωt.

(b) When θ(0) = 0 and θ′(0) = b, the solution is θ(t) =
b

ω
sin ωt.

(c) When θ(0) = a and θ′(0) = b, the solution is

θ(t) = a cos ωt +
b

ω
sin ωt

=

(

a2 +
b2

ω2

)1/2

sin
(

ωt + tan−1
(aω

b

))

.

Thus max(θ(t)) = (a2 + b2/ω2)1/2.

3. Seeking a solution of the form u(t) = ert we find that

mr2 + γr + k = 0.

This has solutions r = (−γ ±
√

γ2 − 4km)/(2m). The nature of the solution depends on
whether ∆2 = γ2 − 4km is positive or negative.

(a) If ∆2 > 0 , then the two roots are both real and given by

r1 =
−γ + ∆

2m
and r2 =

−γ − ∆

2m
.

The general solution is u(t) = Aer1t + Ber2t. Both r1 < 0 and r2 < 0 and so u(t) → 0
as t → ∞.

(b) If ∆2 = 0 , then the root r = −γ/(2m) is repeated and the general solution is given
by u(t) = (A + Bt)ert. We find that u(t) → 0 as t → ∞.
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(c) If ∆2 = −δ2 < 0 then the two roots are complex conjugates given by

r1 =
−γ + iδ

2m
and r2 =

−γ − iδ

2m
.

The general solution is u(t) = e−γt/(2m)

(

A sin
δt

2m
+ B cos

δt

2m

)

. Thus u(t) → 0 as

t → ∞.

4. The general solution to the homogeneous problem is y(x) = A sin x+B cos x. Thus using the
method of variation of parameters to final a particular integral we write y(x) = c(x) sin x+
d(x) cos x.

Evaluating the derivative y′ = c′ sin x + c cos x + d′ cos x − d sin x. We choose to enforce
c′ sin x + d′ cos x = 0.

Evaluating the second derivative y′′ = c′ cos x−c sin x−d′ sin x−d cos x. Thus y′′+y = f(x)
yields c′ cos x − d′ sin x = f(x)

The differential equations for c(x) and d(x) are then

c′ = f(x) cos x and d′ = −f(x) sin x

(a) When f(x) = x2, we find d(x) = x2 cos x − 2x sin x − 2 cos x and c(x) = x2 sin x −
2 sin x + 2x cos x. (Here the integration constants can be neglected because their con-
tributions are already in the complementary function.) Putting the solutions together
we find that

y(x) = x2 − 2 + A sin x + B cos x.

(b) When f(x) = cotx, we find d(x) = − sin x and c(x) = cos x − ln(cosecx − cot x).
(Again, the integration constants can be neglected because their contributions are
already in the complementary function.) Putting the solutions together we find that

y(x) = sin x ln

(

sin x

1 − cos x

)

+ A sin x + B cos x.

5. (a) If x = es then dx/ds = es = x. So xdy/dx = xdy/ds(ds/dx) = dy/ds.

(b) Note that
d2y

ds2
=

d

ds

(

x
dy

dx

)

= x
d

dx

(

x
dy

dx

)

= x2 d2y

dx2
+ x

dy

dx
. Then the differential

equation transforms to
d2y

ds2
− 4y = 0.

This may be solved by looking for solutions of the form y = ers, for which we deduce
r2 − 4 = 0 and so r = ±2. Then the solution is given by

y(x) = Ae2 ln(x) + Be−2 ln(x) = Ax2 +
B

x2
.
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