
Calculus (MATH11007): Solutions 11 2013

Discrete Dynamical Systems I

1. (a) If u(n) = E, then E = 1
2
E + 3

2
and so E = 3.

Writing u(n) = 3 + δ
n
, we find that 3 + δ

n+1 = 1
2
(3 + δ

n
) + 3

2
. Thus

δ
n+1 =

1

2
δ
n
,

and so δ
n
→ 0 as n → ∞. Thus the equilibrium point u(n) = 3 is stable.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x

y

y=x

y=x/2+3/2

Figure 1: Web plot for u(n + 1) = 1
2
u(n) + 3

2
, with (i) u(0) = 1; and (ii) u(0) = 5.

(b) If u(n) = E, then E = 2E + 2 and so E = −2.

Writing u(n) = −2 + δ
n
, we find that −2 + δ

n+1 = 2(−2 + δ
n
) + 2. Thus

δ
n+1 = −2δ

n
,

and so |δ
n
| → ∞ as n → ∞. Thus the equilibrium point u(n) = −2 is unstable.
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Figure 2: Web plot for u(n + 1) = 2u(n) + 2, with (i) u(0) = −1; and (ii) u(0) = −3.
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(c) If u(n) = E, then E = −E + 2 and so E = 1.

Writing u(n) = 1 + δ
n
, we find that 1 + δ

n+1 = −(1 + δ
n
) + 2. Thus

δ
n+1 = −δ

n
,

and so δ
n+2 = δ

n
. Thus the difference between u(n) and the equilibrium point does

not change.
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Figure 3: Web plot for u(n + 1) = −u(n) + 2, with u(0) = 1.5.

2. The method is to find a complimentary function and a particular integral.
The complimentary function: solution to the homogeneous problem u(n+1) = 2u(n). Try
u(n) = λn and so λn+1 = 2λn. Thus λ = 2 and

u(n) = A2n, with A an arbitrary constant.

The particular integral: try u(n) = c and so c = 2c + 3. Thus c = −3.

The general solution is u(n) = A2n − 3.

To satisfy u(0) = 3, we require 3 = A − 3 and so the solution is

u(n) = 6 2n − 3 = 3(2n+1 − 1).

3. The method is to find a complimentary function and a particular integral.
The complimentary function: solution to the homogeneous problem u(n + 1) = −2u(n).
Try u(n) = λn and so λn+1 = −2λn. Thus λ = −2

u(n) = A(−2)n, with A an arbitrary constant.

The particular integral: try u(n) = c and so c = −2c + 3. Thus c = 1.

The general solution is u(n) = A(−2)n + 1.

To satisfy u(0) = 3, we require 3 = A + 1 and so the solution is

u(n) = 2(−2)n + 1.

4. (a) Let u(n) be the amount of drug in the patient’s blood on day n and let d be the daily
dose. Then

u(n + 1) =
3

5
u(n) + d.

The required equilibrium value u(n) = E = 40mg and so since E = 3
5
E+d, we deduce

that d = 2E/5 = 16mg.
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(b) The general solution is u(n) = A
(

3
5

)

n

+40, where A is a constant. Thus the equilibrium
value is stable.
If u(0) = 80mg, then because the equilibrium value is approached monotonically from
above, the dangerous amount (100mg) is never exceeded.

(c) If u(0) = 200, then u(1) = 136 and u(2) = 97.6. So the dangerous limit is exceeded
for under 2 days.

5. (a) If u(n) = E then E = −E and so E = 0. There are no non-zero equilibrium points.

(b) u(n + 2) = −u(n + 1) = u(n) and so all values are fixed points of order 2.

(c) One possibility is that u(n + 1) = ωu(n) and so if there is a fixed point of order 3,
ω3 = 1 (with ω 6= ±1 as the map does not have fixed points of order 1 or 2). Thus
the map is

u(n + 1) = exp

(

2πi

3

)

u(n).

A generalisation to maps with fixed points of order M , but no fixed points of order
m < M , is given by

u(n + 1) = exp

(

2πi

M

)

u(n).
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