
Calculus (MATH11007): Solutions 13 2013

Coupled first order systems

1. (a) Solve 3x + 2y = 0 and x = 0 to find the equilibrium point is (x, y) = (0, 0).

(b) Solve 3x+2y+1 = 0 and x+2y+4 = 0 to find the equilibrium point is (x, y) = (3
2
,−11

4
).

(c) Solve 3x + 6y = 0 and 2x + 4y = 0 to find the equilibrium points lie along the
line x = −2y and are given parametrically by (x, y) = (t,−1

2
t) for all values of the

parameter t.

(d) Solve x(1−y) = 0 and x−3y+2xy = 0 to find the equilibrium points are (x, y) = (0, 0)
and (x, y) = (1, 1).

(e) Solve v = 0 and x − x5 = 0 to find the equilibrium points are (x, v) = (0, 0) and
(x, v) = (±1, 0).

(f) Solve v = 0 and x + x5 = 0 to find the equilibrium point is (x, v) = (0, 0).

2. (a) The coupled equations may be written

d

dt

(

x
y

)

=

(

−2 6
6 7

) (

x
y

)

.

Seek a solution of the form x ≡

(

x
y

)

= aeλt. This requires

[(

−2 6
6 7

)

− λ

(

1 0
0 1

)]

a = 0.

A non-trivial solution is admissible if

∣

∣

∣

∣

−2 − λ 6
6 7 − λ

∣

∣

∣

∣

= 0. Thus (λ+2)(λ−7)−36 = 0,

which factorises to (λ − 10)(λ + 5) = 0. Hence there are two distinct values for λ,
namely λ = −5 and λ − 10.

When λ = 10,

(

−12 6
6 −3

)

a = 0 and so a =

(

1
2

)

.

When λ = −5,

(

3 6
6 12

)

a = 0 and so a =

(

−2
1

)

.

The general solution is then
(

x
y

)

= c1

(

1
2

)

e10t + c2

(

−2
1

)

e−5t, (1)

where c1 and c2 are constants.

(b) The phase plane is given in figure 1

(c) At t = 0, (x, y) = (1, 0) and so from (1),
(

1
0

)

= c1

(

1
2

)

+ c2

(

−2
1

)

.

Thus c1 = 1/5 and c2 = −2/5 and the solution is
(

x
y

)

=
1

5

(

1
2

)

e10t
−

2

5

(

−2
1

)

e−5t,
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Figure 1: The phase plane for question 2(b).

3. (a) The coupled equations may be written

d

dt

(

x
y

)

=

(

6 2
2 9

) (

x
y

)

.

Seek a solution of the form x ≡

(

x
y

)

= aeλt. This requires

[(

6 2
2 9

)

− λ

(

1 0
0 1

)]

a = 0.

A non-trivial solution is admissible if

∣

∣

∣

∣

6 − λ 2
2 9 − λ

∣

∣

∣

∣

= 0. Thus (λ−6)(λ−9)−4 = 0,

which factorises to (λ − 10)(λ − 5) = 0. Hence there are two distinct values for λ,
namely λ = 5 and λ = 10.

When λ = 10,

(

−4 2
2 −1

)

a = 0 and so a =

(

1
2

)

.

When λ = 5,

(

1 2
2 4

)

a = 0 and so a =

(

−2
1

)

.

The general solution is then
(

x
y

)

= c1

(

1
2

)

e10t + c2

(

−2
1

)

e5t, (2)

where c1 and c2 are constants.

(b) The phase plane is given in figure 2

(c) At t = 0, (x, y) = (1, 0) and so from (2),
(

1
0

)

= c1

(

1
2

)

+ c2

(

−2
1

)

.

Thus c1 = 1/5 and c2 = −2/5 and the solution is
(

x
y

)

=
1

5

(

1
2

)

e10t
−

2

5

(

−2
1

)

e−5t,
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Figure 2: The phase plane for question 3(b).

4. (a) The coupled equations may be written

d

dt

(

x
y

)

=

(

1 −1
1 3

) (

x
y

)

.

Seek a solution of the form x ≡

(

x
y

)

= veλt. This requires

[(

1 −1
1 3

)

− λ

(

1 0
0 1

)]

v = 0.

A non-trivial solution is admissible if

∣

∣

∣

∣

1 − λ −1
1 3 − λ

∣

∣

∣

∣

= 0. Thus (λ−1)(λ−3)+1 = 0,

which factorises to (λ − 2)2 = 0. Hence there is one two distinct value for λ, namely
λ = 2.

When λ = 2,

(

−1 −1
1 1

)

v = 0 and so v =

(

1
−1

)

.

(b) Now seek an additional solution of the form x = wte2t + ze2t. The derivative is then

given by
dx

dt
≡ w (1 + 2t) e2t + 2ze2t and the governing equation is then of the form

w (1 + 2t) e2t + 2ze2t =

(

1 −1
1 3

)

(

wte2t + ze2t
)

.

Equating the terms in e2t and te2t, we deduce
(

−1 −1
1 1

)

w = 0 and

(

−1 −1
1 1

)

z = w.

So we find that w =

(

1
−1

)

and z =

(

−1 − b
b

)

, for any b.

So the general solution can be written

x = c1

(

1
−1

)

e2t + c2

((

1
−1

)

te2t +

(

−1 − b
b

)

e2t

)

,
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where c1 and c2 are constants. Then by writing c3 = c1 − bc2, we find

x = c3

(

1
−1

)

e2t + c2

((

1
−1

)

te2t +

(

−1
0

)

e2t

)

.
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