Calculus (MATH11007): Solutions 14 2013
Coupled first order systems 11

At

1. (a) Substituting x = ae™, we find the equations are satisfied if

A(é (1))a:<_01 g)a

This has a non-trivial solution if :i\ _4)\) = 0. Thus A = £2i.
. (=21 4 —2i
When)\—21,<_1 _Qi)a—Oandsoa—(l).
When \ = —2i, 2 4. a=0andsoa= 21 .
—1 2i 1

So the general solution is given by

«— (%) = —2i 20 21\ o 2sin 2t n —2cos 2t
- \y —alq)° 2\ 1)° T3\ cos2t “\ sin2t /-

where c3 = ¢; + ¢ and ¢4 = i(c; — ¢2).
d*y dz
b) — =——
(b) dt? dt
of the form y(t) = e’ and so A% +4 = 0. Then the general solution is

= —4y. We seek a solution to this second order linear differential equation

y(t) = Acos2t + Bsin 2t,
where A and B are constants. Substituting to find x(t) gives

x(t) = 2Asin 2t — 2B cos 2t.

d dy
(c) d—z = % = —41. Then integrating we find that 4y + 2% = R?, where R is a constant.

dt
This implies that trajectories in the phase plane are ellipses.

Next we substitute for y to find & = 2(R? — x%)1/2. This first-order equation may be
solved by separating variables to find that

dz -t (B oy
(B2 a2z =~ " (g)=2+e
Then we deduce that
x = Rsin (2t + ¢5) = ¢g cos 2t + ¢7 sin 2t,

where ¢ and ¢; are constants. Further substitution into y = /4 gives

Ce . Cr
= ——sin 2t + — cos 2t.
y=79" 2

This recovers the solutions from (a) and (b).
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2. (a) We seek a solution of the form x = ae*, which requires

‘1—)\ 4

-1 1—>\‘:0’

So (1 — \)? +4 = 0 and this implies that A = 1 + 2i.
When A =1+ 2i, (__21 4 )a:O and so a = <_2l).

1 —-2i 1
When XA =1 — 2i, 2 4 a=0andsoa= 21 .
-1 2i 1

The general solution is then written as
(21 o e (21 o 4 2sin 2t —2cos 2t
X_(y)_cle ( 1 )e T e (1)e = {C?’<cos2t ta sin 2t ’
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Figure 1: Trajectory for 2(a). A ‘flattened’ spiral.

(b) We seek a solution of the form x = ae*, which requires

—1-A 4
—1 —1-A

o

So (=1 — A)? 4+ 4 = 0 and this implies that A = —1 + 2i.

When X\ = —1 + 2i, —2 4. a=0andsoa= _21.
-1 =2 1

When A\ = —1 — 2i, (21 Zl.)a:Oandsoa: (21).
-1 2i 1

The general solution is then written as
. xXr . —t _21 2it —t 21 —92it o —t 2 SlIl 2t _2 COS 2t
x= (y) - ac ( 1 )e tee (l)e = © [03 (coth T sin 2t ’
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Figure 2: Trajectory for 2(b). A ‘flattened’ spiral.

3. (a) The equilibrium points are given by simultaneously solving 4z(1—y) = 0 and 9y(—1+
2x) = 0, which yields (z,y) = (0,0) and (z,y) = (3,1).
We now linearise the equations about these equilibrium points.

(i) Close to (0,0), the equations become
rT=4x+... and y=-9y+....

Thus z(t) = Ae' and y(t) = Be ™, where A and B are constants. This means that
the origin is a ‘saddle’.

(ii) Close to (3, 1), we introduce z = 1 + X(¢) and y = 14 Y (¢), where |X| < 1 and
|Y| < 1. The linearised equations are then

. 1 1
X:4<§+X)—4(§+X)Q+Y):—ﬂﬁhn,

1
Y:—9(1+Y)+184<§+X) (1+Y)=18X+....

Seeking a solution of the from X = ae*, we find
-\ =2
‘18 —A'_O’

and so A = £6i. Thus the equilibrium point is a ‘centre’.
. [—61 =2 1
When \ = 6i, (18 _6i)a—0and so a = (_31).

. (61 —2 1
When \ = —6i, (18 6i)a-0andsoa-<31).

So the general solution is given by

«— [F) —, 1 St 1 o 6it _ cos 6t Y sin 2¢
“\y) P\ =31 2\ 3i — 3\ 3sin6t 4\ —3sin6t )’

where ¢1, co, c3 & ¢4 are constants.
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(b) Close to (0,0) the trajectories are given by

=8 -
and so [z(t)]°[y(¢)]* = constant.
Close to (3,1),

v\ 2
X2+ <§) =+
So the trajectories are ellipses.

dy  9y(—1+2z)

(c) - Ay This is a separable equation and leads to
T z(l—vy

4 (logly| —y) = 9 (2z — log |z|) + constant.
Close to (0,0), log |y| > |y| and log |z| > |z| and so
4log|y| + 9log || = constant,

recovering the equation for trajectories derived above.
Close to (3,1), 2 =24+ X,y=1+Y. When |X| < 1,

1 1 1 1
log || = log|§+X| = log\§(1+2X)\ = log§+log|1+2X\ = log§+2X—2X2+....
and when |Y| < 1,

1
log\y\zlog\l—l—ﬂ:Y—§Y2+....

Substituting these approximate expressions gives
L 1 2
4 Y—§Y —-1-Y ) =9 1+2X—10g§—2X+2X + constant.

This simplifies to
9X? 4+ Y? = constant,

which is identical to what was derived above.

4. (a) The equilibrium points of this system are determined by simultaneously solving z(1 —
z—y) =0and y(3 — 7y — %x)l = 0. This yields four equilibrium points, namely
(Ivy) = (07())7 (072)7 (170) and (57 5)'
To determine their nature we must examine the system in the vicinity of each of them.
(i) First close to (0,0), the system becomes

. o1
T=T+... and y:§y+...,

which leads to © = Ae! and y = Be'/?. Thus all trajectories evolve away from the
origin - it is an ‘unstable node’.

(i) Close to (0,2) we write y = 2+ Y and then the linearised equations are given by

. 1 1 1
t=2(l-2—2-Y)=—2+... and Y = _(2+Y)(§_Z(2+Y)_Zx> = —gx—?Y
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Figure 3: The phase plane for question 3.

Seeking a solution x = ae™ demands that

‘—1—A 0

—3/2 —1/2—-A):()

and so A = —1 and A = —1/2. This point is a ‘stable node’.

0 0 1
When \ = —1, (_3/2 1/2)3L—Oamd so a = (3)

B —-1/2 0 B (0
When A = —1/2, <_3/2 O)a—Oand soa= (1)

The general solution close to this equilibrium point is then

s o 1 —t 0 —t/2
<y_2)_cl(3)e +62(1)e .

(iii) Close to (1,0) we write x = 1+ X and then the linearised equations are given by

. 1 1 3 1
X =01+X)(—X-y)=—-X—y+... and y:y(§—1y—1(1+X)) :—ZY+...
Seeking a solution x = ae™ demands that
—1-A -1 _ 0
0 —1/4—=X\

and so A = —1 and A = —1/4. This point is a ‘stable node’.

0 -1 1
When \ = —1, (0 34)a—0andsoa—<0).

- -3/4 -1 B (4
When)\——l/4,< 0 O>a—Oandsoa—<_3).

The general solution close to this equilibrium point is then

SL’—l _ 1 —t 4 —t/4
() = (y) e e () e
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(iv) Close to (3, 3) we write z = 2 + X, y = 1 + Y and then the linearised equations

-2
are given by

' 1 1 1 1 1
X=z+X)(1-z-X—--Y)=—X--Y +... d
GrX0-3 p V)=
. 1 1 11 3.1 3 1
Y=z+Y)(z—--(4+Y)—-(3+X))=—X-2Y
(2jL )(2 4(2+) 4(2jL ) 8 8
Seeking a solution x = ae’ demands that
—L1_ 3 _1 ‘
2 2 | =o,
JERRL

which simplifies to A\* + 5)/8 — 1/8 = 0. Solving this quadratic gives A\ = A5 =
—% + \{—5_67. Since the values for A are of opposite sign, this point is a ‘saddle point’.

_ 5 VAT 1
When A = —3 + 35, a ((—3—\/?)/8)'

_ N 1
When)\——1—56—1—567,a— <(—3+\/ﬁ)/8>'

The general solution close to this equilibrium point is then

) ma oy )l )

29 o e e e e e e e e e e e e
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Figure 4: The phase plane for question 4. The solid lines are trajectories; the arrows are the
vector field (&, 7).

(b) Ast — oo, the system may evolve towards either of the stable nodes, depending upon
the starting position. This means that both the possible final states are with one of
the species being eliminated (either z = 0 or y = 0). There is a curve passing through
the saddle (1/,1/2), which separates the phase plane into initial conditions that evolve
towards (0,2) and initial conditions that evolve towards (1,0). This curve is termed
a ‘separatrix’.
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