
Calculus (MATH11007): Solutions to Sheet 7 2012

First-order differential equations

1. (a) ex is an integrating factor and so we have
d

dx
(yex) = e2x. Hence

exy = y(0) +

∫ x

0

e2t dt = 1 − e2x

2
− 1

2
=

1

2

(

1 + e2x
)

.

Thus y = cosh x. This solution is valid for x ∈ R.

(b) This is separable and we find

∫

y dy −
∫

x dx = y2 − x2 = C .

Hence y =
√

C + x2.

(c) x2 is an integrating factor and we have
d

dx

[

x2y
]

= x4 . Hence

x2y(x) =

∫

x4dx + C =
x5

5
+ C

and so y = x3/5 + C/x2.

(d) This is separable.
∫ y

1

du

u2
=

∫ x

0

2t dt

and so −1

y(x)
+ 1 = x2 , i.e. y(x) =

1

1 − x2
.

The range of validity is |x| < 1.

(e)
√

1 + t2 is an integrating factor. So
d

dt

[√
1 + t2x

]

= t
√

1 + t2 Hence

√
1 + t2 x(t) − 1 =

∫ t

0

τ
√

1 + τ 2 dτ
u=1+τ2

↓

=
1

2

∫ 1+t2

1

√
u du =

1

3

[

(1 + t2)
3

2 − 1
]

.

Therefore

x(t) =
1

3

[

1 + t2 +
2√

1 + t2

]

.

This is valid for t ∈ R.

(f) This is separable. Hence

∫ s

2

du

u2
=

∫ t

0

sin τ dτ , i.e. s(t) =
1

cos t − 1
2

.

This is valid for |t| < π/3.
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(g) This is separable.

∫

dp

p
=

∫

s

s2 + 1
ds = ln

√
1 + s2 + ln C .

Hence p = C
√

1 + s2.

(h) esin t is an integrating factor. Hence
d

dt

[

esin tu
]

= cos t esin t . So

u = e− sin t

[
∫ t

esin z cos z dz + C

]

= e− sin t
[

esin t + C
]

= 1 + Ce− sin t .

(i) ex2

is an integrating factor. So
d

dx

[

ex2

y
]

= 2x3ex2

. Hence

y(x) = e−x2

[
∫ x

2t3et2 dt

]

= e−x2

[

x2ex2 −
∫ x

2tet2 dt

]

= e−x2
[

(x2 − 1)ex2

+ C
]

= x2 − 1 + Ce−x2

.

(j) We write
dx

dt
=

−1

2 + x
t

and therefore recognise that the equation is homogeneous.

With the substitution u = x/t, the equation is transformed to

t
du

dt
=

−1

2 + u
− u = −(1 + u)2

2 + u
.

This is separable:

∫

dt

t
= −

∫

2 + u

(1 + u)2
du = −

∫
[

1

1 + u
+

1

(1 + u)2

]

du = − ln |1+u|+ 1

1 + u
+ ln C .

and so we find

|t| =
C

|1 + x/t|e
1

1+x/t .

2. (a) The equation is separable:

∫

dy
√

4 − y2
=

∫

dx

1 − x2
leads to y = 2 sin

(

ln

√

∣

∣

∣

∣

x + 1

x − 1

∣

∣

∣

∣

+ C

)

.

(b) eax is an integrating factor and so

d

dx
[eaxy] = beax .

Hence

y(x) = e−ax

[

b

∫ x

eat dt + C

]

=

{

bx + C if a = 0
b
a

+ Ce−ax otherwise
.

(c) Factorising gives (y′ − 2)(y′ − 1) = 0. So there are two solutions: y(x) = 2x and
y(x) = x + 1.
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3. On substituitng y(x) = u(x)α, we find
dy

dx
= αuα−1du

dx
. This transforms the original

equation to

α
du

dx
= fu + guνα−α+1.

In this expression we are free to select the value of α. A convenient choice is such that
(ν − 1)α + 1 = 0, which implies that α = 1/(1 − ν). Then the equation ahs become

1

1 − ν

du

dx
= fu + g.

(a) Choose α = −1/2, so y(x) = u(x)−1/2 and the problem becomes

du

dx
− 2xu = −2x, u(0) = 2.

Integrating factor is e−x2

and the solution is given by

1

y(x)2
= u(x) = 1 + ex2

.

(b) Choose α = 1/2, so σ(t) = u(t)1/2 and the problem becomes

du

dt
− 2u = 2t, u(0) = 1.

Integrating factor is e−2t and the solution is given by

σ(t)2 = u(t) = −t − 1

2
+

3

2
e2t.

4. This is separable. y = 1 and y = −1 are solutions. There are other solutions, valid in
certain regions. We consider two cases:

(a) |x| < 1. Then
dy±

√

1 − y2
±

=
±dx√
1 − x2

and the solution is y±(x) = sin(± arcsin x + C).

(b) |x| > 1. Then
dy±

√

y2
± − 1

=
±dx√
x2 − 1

and the solution is y±(x) = cosh(±arccoshx + C).

5. (a) This is separable:
∫ u(t)

0

ρsd
2

∆ρgd2 − 18µs
ds =

∫ t

0

dv.

On integrating and re-arranging, we find that

u(t) =
∆ρgd2

18µ

(

1 − exp(−18µt

ρsd2
)

)

.
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(b) The terminal velocity Vs = lim
t→∞

u(t) =
∆ρgd2

18µ
.

(c) Solving for u(t) = Vs(1 − e−1), we determine t = ts = ρsd
2/[18µ].

(d) For 100µm sand particles in water, Vs = 0.87cm s−1 and ts = 0.0014s.

6. This equation is separable

∫ x(t)

0

1

(a − s)(b − s)
ds = K

∫ t

0

dv.

Hence
b − x

a − x
=

b

a
eK(b−a)t. and so

x(t) =
ab(1 − eK(b−a)t)

a − beK(b−a)t
.

Hence as t → ∞ x(t) → b if b < a and x(t) → a if a < b.
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