Calculus (MATH11007): Solutions to Sheet 7 2012

First-order differential equations

1. (a) e”is an integrating factor and so we have e (ye®) = e**. Hence
T

|

emy:y(0)+/ dt=1———-==(1+6").
0

1
2 2 2
Thus y = cosh x. This solution is valid for z € R.
(b) This is separable and we find

/ydy—/xd$:y2—x2:C.
Hence y = VC + 22.

d
(c) #? is an integrating factor and we have e [*y] = 2" . Hence
x

25
o2y (z) :/x4dx+C: €+C

and so y = x3/5 + C/2.
(d) This is separable.

y x
/ du / 2t dt
0

—1 1
41 = 2
y(x)+ x*, ile. y(z) = T

The range of validity is |z| < 1.

d
(e) V1412 is an integrating factor. So T [\/ 1+ t%} = tVv'1+t% Hence

and so

u:1+7—2 1 1+t2

t
1
\/1+t2x(t)—1:/7\/1+7'2d7' = 5 \/ﬂdu:§[(1+t2)%—1
0 1

Therefore

x(t):1[1+t2+ 2 } .

3 V142
This is valid for t € R.

(f) This is separable. Hence

*du 1
/ / sinTdr, ie. s(t) = .
5 Uu? cost — 1

This is valid for |t| < 7/3.
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(g) This is separable.

/@:/ ® ds=IVitL+InC.
P s2+1

Hence p = Cv/1 + s2.
(h) esint

is an integrating factor. Hence

eyl = coste™t. So
dt

t
u = e—sint [/ eSinZCOSZdZ 4 C:| — e—sint [esint 4 C:| =1 4 Ce—sint ]

d
(i) e*” is an integrating factor. So W [eﬁy} = 227" . Hence
x

y(a) =™ {/ 23’ dt] —e {ﬁemz — / 2te’” dt]

—x2

=e [(m2 —1)e” + C’} 2> —14+Ce™ .
(j) We write de -~

T 7Tz and therefore recognise that the equation is homogeneous.
T

With the substitution u = x/t, the equation is transformed to

t%— —1 (4w

& 2+u T 24w
This is separable:

[i=avmr

1
du=—In|l ——+InC'.
IT+u (14 u)? B n| +u\+1+u+nc

and so we find

2. (a) The equation is separable:

dx

d
/73/:/7 leads to y = 2sin | In
‘/4_y2 1—,'172

(b) € is an integrating factor and so

x—l—l‘jLC).
x—1

d ax o ax

a[e y| = be™" .

s {b/weathC} _{bx+C ifa=0

Z 4+ Ce ™  otherwise

Hence

y()

Factorising gives (y' — 2)(y’ — 1) = 0. So there are two solutions: y(x) = 2z and
y(r) =a+ 1.
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3. On substituitng y(z) = u(z)*, we find d_y = auo‘_ld—u. This transforms the original
x T

equation to

du
a— = fu+ gu’*,

dzx
In this expression we are free to select the value of a. A convenient choice is such that
(v — 1)a+ 1 = 0, which implies that & = 1/(1 — v). Then the equation ahs become

1 du_f N
1—vdr “rg

(a) Choose a = —1/2, so y(z) = u(x)~"/? and the problem becomes

d
£ — 2zu = 2, u(0) = 2.

2

Integrating factor is e™" and the solution is given by

=u(z) =1+¢".

y(z)?

(b) Choose o = 1/2, so o(t) = u(t)"/? and the problem becomes

i 2u = 2t, u(0) = 1.

2t and the solution is given by

1
ot =ult) =~ 5 + ge%.

Integrating factor is e™

4. This is separable. y = 1 and y = —1 are solutions. There are other solutions, valid in
certain regions. We consider two cases:

(a) || < 1. Then
dyi +dz

V1-vy} V1o
and the solution is y4(x) = sin(+ arcsinz + C).
(b) |z| > 1. Then

dy+ +dz

VE-1 Vo1

and the solution is y4(x) = cosh(zarccoshx + C).

5. (a) This is separable:

u(t) 2 t
psd
— B ds= [ do.
/0 Apgd® — 18us /0 ’

On integrating and re-arranging, we find that

Apgd? 18t
u(t) = 18/ <1 —exp(— psdz) :
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Apgd?
(b) The terminal velocity V; = tlim u(t) = 1p8g .
— 00 M

(c) Solving for u(t) = Vi(1 —e™!), we determine t = t, = p,d*/[18].
(d) For 100um sand particles in water, V, = 0.87cms™! and ¢, = 0.0014s.

6. This equation is separable

/Ox(t) m ds = K/ot do.

o ab(l _ eK(b—a)t)
x( ) T g — beK(-a)t

Hence as t — oo z(t) — bif b < a and z(t) — a if a < b.
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