
Calculus (MATH11007): Solutions 8 2012

First-order differential equations

1. The differential equation is separable. However if P (0) = P̂ = β/δ then dP/dt = 0 and
P (t) = P̂ prvoides the solution for (ii). For parts (i) and (iii)

∫ P (t)

P0

1

P ′(β − δP ′)
dP ′ =

∫ t

0

ds, which gives ln

∣
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P (P̂ − P0)

P0(P̂ − P )

∣

∣

∣

∣

∣

= βt.

Thus in both (i) and (iii), we deduce that

P (t) =
P̂P0

(P̂ − P0)e−βt + P0

.
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Figure 1: The population, P (t)/P̂ , as a function of βt for (i) P0/P̂ = 2; (ii) P0/P̂ = 1; and (iii)
P0/P̂ = 0.5.

2. First write the differential equation as
dx

dy
=

y2 + x

y
. This is then in the form for which an

integrating factor may be introduced

dx

dy
−

x

y
= y which gives x = y2 + Cy.

3. From direct integration we find y =

∫ x

0

exp (sin(s)) ds. But −1 ≤ sin(s) ≤ 1 and so

xe−1 ≤ y(x) ≤ xe.

4. Both parts have separable differential equations

(a)

∫ x(t)

1

1

x′3
dx′ = −

∫ t

0

1

2
ds, which gives x(t) = (t + 1)−1/2, valid for t > −1.
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(b)

∫ x(t)

1

1

x′3
dx′ =

∫ t

0

1

2
ds, which gives x(t) = (1 − t)−1/2, valid for t < 1.

5. (a) x(t) =

(

t + 2

2

)2

.

(b) x(t) =

(

t

2

)2

.

(c) x(t) = 0.

The function
√

x is not differentiable at x = 0 and so a unique solution is not guaranteed.

6. Separating variables

∫

dx =

∫

1

(2 + y)(1 − y)
dy =

∫

1

3

(

1

2 + y
+

1

1 − y

)

dy. Hence we

deduce

ln
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∣

∣

2 + y

1 − y

∣

∣

∣

∣

= 3x + C.

(a) The condition y(0) = 0 implies

∣

∣

∣

∣

2 + y

1 − y

∣

∣

∣

∣

= 2e3x. Thus the solution is

y =
2e3x − 2

1 + 2e3x
,

because 1 > y(x). This solution is valid for all values of x.

(b) The condition y(0) = 4 implies that

∣

∣

∣

∣

2 + y

1 − y

∣

∣

∣

∣

= 2e3x. But now the solutions is

y =
2e3x + 2

2e3x − 1
,

because 1 < y(x). This solution is valid for x > −1
3
ln 2.
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Figure 2: The solutions to question 6(i) and (ii)

7. (a) The differential equation has solution

φ(x) = sin x +
cos x + C

x
,

where C is a constant of integration.

(i) When φ(0) = 0, C = −1 and φ(x) = sin x +
cos x − 1

x
.

(ii) When φ(0) = 1, no value of C can be found to satisfy the boundary condition.
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(b) Writing
dφ

dx
= f(φ, x) =

x cos x − φ

x
, we see that: (i) f(0, 0) is defined; but (ii) f(1, 0)

is singular. Thus in (ii) the existence of a solution is not guaranteed.

8. (a) The solution is y(x) = ex and so y(a) = ea.

(b) Euler’s method gives yn+1 = yn + hf(nh, yn). Thus yn+1 = (1 + h)yn. Hence given
y0 = 1, yn = (1 + h)n.

(c) Suppose there are N equally spaced steps so that h = a/N . Then

yN =
(

1 +
a

N

)N

→ ea as N → ∞.

9. (a) The exact solution is y(t) = 6 − 2e−t − 3e−t/2.

(b) The figure shows the exact curve with the approximations with (i) h = 1; (ii) h = 0.1;
and (iii) h = 0.01. For the latter case, it is difficult to distinguish it from the exact
result.
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Figure 3: The exact solution to question 9, together with the numerical approximations using
Euler’s method with h = 1, 0.1 and 0.01.
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