

Calculus (MATH11007): Solutions 8
First-order differential equations

2012

1. The differential equation is separable. However if $P(0) = \hat{P} = \beta/\delta$ then $dP/dt = 0$ and $P(t) = \hat{P}$ provides the solution for (ii). For parts (i) and (iii)

$$\int_{P_0}^{P(t)} \frac{1}{P'(\beta - \delta P')} dP' = \int_0^t ds, \text{ which gives } \ln \left| \frac{P(\hat{P} - P_0)}{P_0(\hat{P} - P)} \right| = \beta t.$$

Thus in both (i) and (iii), we deduce that

$$P(t) = \frac{\hat{P}P_0}{(\hat{P} - P_0)e^{-\beta t} + P_0}.$$

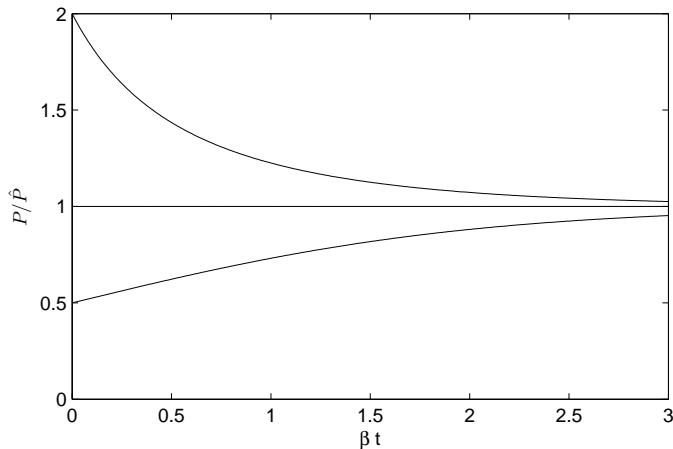


Figure 1: The population, $P(t)/\hat{P}$, as a function of βt for (i) $P_0/\hat{P} = 2$; (ii) $P_0/\hat{P} = 1$; and (iii) $P_0/\hat{P} = 0.5$.

2. First write the differential equation as $\frac{dx}{dy} = \frac{y^2 + x}{y}$. This is then in the form for which an integrating factor may be introduced

$$\frac{dx}{dy} - \frac{x}{y} = y \text{ which gives } x = y^2 + Cy.$$

3. From direct integration we find $y = \int_0^x \exp(\sin(s)) ds$. But $-1 \leq \sin(s) \leq 1$ and so

$$xe^{-1} \leq y(x) \leq xe.$$

4. Both parts have separable differential equations

(a) $\int_1^{x(t)} \frac{1}{x'^3} dx' = - \int_0^t \frac{1}{2} ds$, which gives $x(t) = (t + 1)^{-1/2}$, valid for $t > -1$.

- (b) $\int_1^{x(t)} \frac{1}{x'^3} dx' = \int_0^t \frac{1}{2} ds$, which gives $x(t) = (1-t)^{-1/2}$, valid for $t < 1$.
5. (a) $x(t) = \left(\frac{t+2}{2}\right)^2$.
- (b) $x(t) = \left(\frac{t}{2}\right)^2$.
- (c) $x(t) = 0$.
- The function \sqrt{x} is not differentiable at $x = 0$ and so a unique solution is not guaranteed.
6. Separating variables $\int dx = \int \frac{1}{(2+y)(1-y)} dy = \int \frac{1}{3} \left(\frac{1}{2+y} + \frac{1}{1-y} \right) dy$. Hence we deduce
- $$\ln \left| \frac{2+y}{1-y} \right| = 3x + C.$$
- (a) The condition $y(0) = 0$ implies $\left| \frac{2+y}{1-y} \right| = 2e^{3x}$. Thus the solution is
- $$y = \frac{2e^{3x} - 2}{1 + 2e^{3x}},$$

because $1 > y(x)$. This solution is valid for all values of x .

- (b) The condition $y(0) = 4$ implies that $\left| \frac{2+y}{1-y} \right| = 2e^{3x}$. But now the solutions is
- $$y = \frac{2e^{3x} + 2}{2e^{3x} - 1},$$

because $1 < y(x)$. This solution is valid for $x > -\frac{1}{3} \ln 2$.

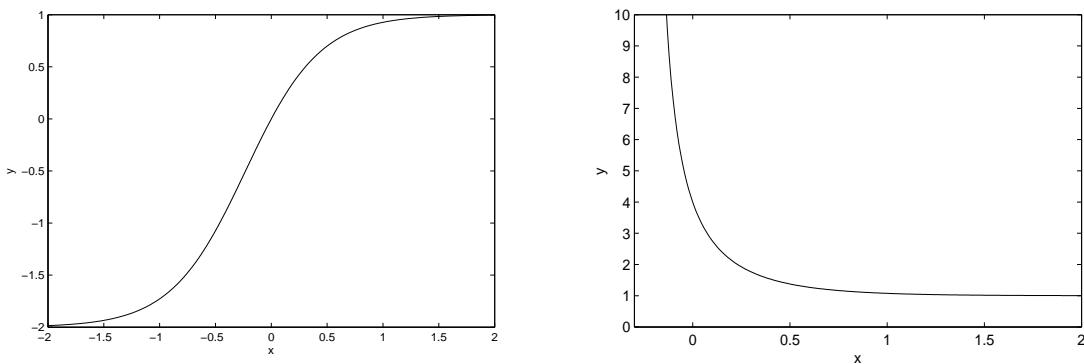


Figure 2: The solutions to question 6(i) and (ii)

7. (a) The differential equation has solution

$$\phi(x) = \sin x + \frac{\cos x + C}{x},$$

where C is a constant of integration.

- (i) When $\phi(0) = 0$, $C = -1$ and $\phi(x) = \sin x + \frac{\cos x - 1}{x}$.
- (ii) When $\phi(0) = 1$, no value of C can be found to satisfy the boundary condition.

- (b) Writing $\frac{d\phi}{dx} = f(\phi, x) = \frac{x \cos x - \phi}{x}$, we see that: (i) $f(0, 0)$ is defined; but (ii) $f(1, 0)$ is singular. Thus in (ii) the existence of a solution is not guaranteed.
8. (a) The solution is $y(x) = e^x$ and so $y(a) = e^a$.
- (b) Euler's method gives $y_{n+1} = y_n + h f(nh, y_n)$. Thus $y_{n+1} = (1 + h)y_n$. Hence given $y_0 = 1$, $y_n = (1 + h)^n$.
- (c) Suppose there are N equally spaced steps so that $h = a/N$. Then

$$y_N = \left(1 + \frac{a}{N}\right)^N \rightarrow e^a \text{ as } N \rightarrow \infty.$$

9. (a) The exact solution is $y(t) = 6 - 2e^{-t} - 3e^{-t/2}$.
- (b) The figure shows the exact curve with the approximations with (i) $h = 1$; (ii) $h = 0.1$; and (iii) $h = 0.01$. For the latter case, it is difficult to distinguish it from the exact result.

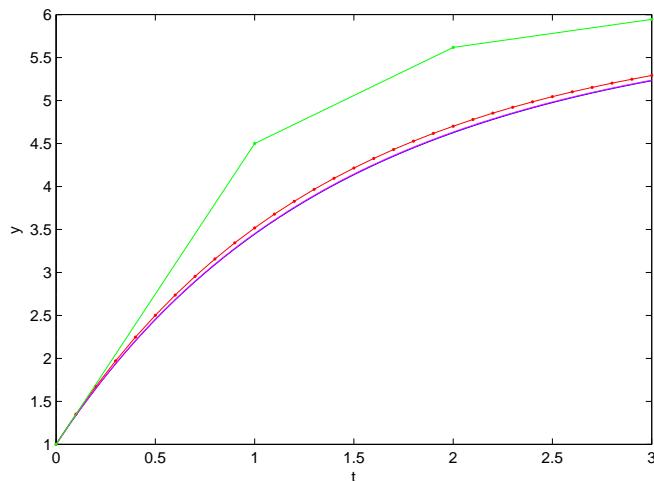


Figure 3: The exact solution to question 9, together with the numerical approximations using Euler's method with $h = 1, 0.1$ and 0.01 .