
Calculus (MATH11007): Solutions 9 2012

Second-order differential equations

1. (a) Seeking a solution of the form y(x) = erx we find that

r2 + 5r + 6 = (r + 3)(r + 2) = 0.

Thus the general solution is y(x) = Ae−3x + Be−2x, where A and B are constants.

(b) Applying the condition y(0) = 1 implies A + B = 1.

Applying the condition y′(0) = 0 implies −3A − 2B = 0. Thus A = −2, B = 3 and
the solution is

y(x) = −2e−3x + 3e−2x.
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Figure 1: The solution y(x) = −2e−3x + 3e−2x as a function of x (Question 1).

2. Seeking a solution of the form x(t) = ert we find that

r2 − 4r + 1 = (r − 2)2 − 3 = 0.

Thus r = 2 ±
√

3 and the general solution is x(t) = Ae(2+
√

3)t + Be(2−
√

3)t. Applying
x(0) = 0, we deduce A +B = 0 and from dx/dt(0) = 1, (2 +

√
3)A +(2−

√
3)B = 1. Thus

A = −B = 1/[2
√

3] and the solution is

x(t) =
1

2
√

3

(

e(2+
√

3)t − e(2−
√

3)t
)

=
e2t

√
3

sinh
(√

3t
)

.
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Figure 2: The solution x(t) = e2t

√
3
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)

as a function of t (Question 2).

3. Seeking a solution of the form y(x) = erx we find that

r2 + 9 = (r − 3i)(r + 3i) = 0.

Thus r = ±3i and the general solution is y(x) = A sin 3x + B cos 3x.

(a) When y(0) = 0 and y′(0) = 1, we find that y(x) = 1
3
sin 3x.

(b) When y(0) = 1 and y′(0) = 0, we find that y(x) = cos 3x.

4. Seeking a solution of the form y(x) = erx to the homogeneous problem, we find that

r2 + 4r + 3 = (r + 1)(r + 3) = 0.

Thus r = −1,−3 and the complementary function is y(x) = Ae−x + Be−3x.

(a) Try y(x) = Ce2x and so 4C + 8C + 3C = 1, thus the general solution is

y(x) =
1

15
e2x + Ae−x + Be−3x.

(b) Try y(x) = ax2 + bx + c and so 2a + 4(2ax + b) + 3(ax2 + bx + c) = x2. Thus the
general solution is

y(x) =
x2

3
−

8x

9
+

26

27
+ Ae−x + Be−3x.

(c) Try y(x) = C sin 5x + D cos 5x and so (−25C − 20D + 3C) sin 5x + (−25D + 20C +
3D) cos 5x = sin 5x. Thus the general solution is

y(x) = −
5

221
cos 5x −

11

442
sin 5x + Ae−x + Be−3x.

(d) e−x is in the complementary function, so try y(x) = Cxe−x. Thus (−2C + 4C)e−x =
e−x and the general solution is

y(x) =
xe−x

2
+ Ae−x + Be−3x.
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5. Seeking a solution of the form y(x) = erx, we find that

r2 − 4r + 8 = (r − 2)2 + 4 = 0.

Thus r = 2 ± 2i and so the general solution is y(x) = e2x (A sin 2x + B cos 2x). Then
enforcing u(0) = 0 implies B = 0.

(a) If u(π/2) = 0, then A remains undetermined.

(b) If u(1) = 0, then A = 0 and the only solution is u(x) = 0.

6. Seeking a solution to the homogeneous problem of the form z(x) = erx, we find that

r2 − 6r + 9 = (r − 3)2 = 0.

So there is a repeated root and the complementary function is z(x) = (A + Bx)e3x.
To find the particular integral we try z(x) = Cx2e3x. Then 2Ce3x = e3x and so the
general solution is

z(z) = (A + Bx)e3x +
x2e3x

2
.

7. From Q3, the solution satisfying the differential equation and y(0) = 0 is y(x) = A sin 3x.
If y(L) = 0 then sin 3L = 0 and so 3L = mπ with m an integer.

8. Seeking a solution of the form y(x) = erx, we find that

r2 + 2r + 1 + ω2 = (r + 1)2 + ω2 = 0.

So r = −1 ± iω and the general solution is y(x) = e−x (A sin ωx + B cos ωx). Enforcing
y(0) gives B = 0 and enforcing y(π) = 0 implies that ω = m (with m an integer) for a
non-trivial solution.

9. (a) Seeking a solution of the form y(x) = erx, we find that

r2 − 2r + 1 = (r − 1)2 = 0.

Thus r = 1 is a repeated root and y(x) = (Ax + B)ex. After applying boundary
conditions we find that y(x) = xex.

(b) Seeking a solution of the form y(x) = erx, we find that

r2 − (2 + ǫ)r + 1 + ǫ = (r − 1)(r − 1 − ǫ) = 0.

Thus the general solution is y(x) = Aex+Be(1+ǫ)x. After applying boundary conditions

we find that y(x) = −
ex

ǫ
+

e(1+ǫ)x

ǫ
.

Now consider the limit ǫ → 0 and note that (eǫx − 1)/ǫ → x, so that y(x) → xex

(recovering solution to (a)).
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