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Abstract

Enclosed bodies of water such as lakes or harbours often experience large-scale oscillatory motions (seiching). As a simple

model of such flow, we investigate exact solutions to the shallow-water equations which represent oscillatory flow in an

elliptical basin with parabolic cross section. Specifically, we consider two fundamental modes of oscillation, in one of which the

flow is parallel to the axis of the ellipse, while in the other it is radial. We obtain periodic analytical solutions for sediment

transport, including erosion, deposition and advection, under either mode of oscillation, and present a method for obtaining such

solutions for a more general class of flow fields and sediment transport models.

Our solutions provide estimates of the morphodynamical importance of seiching motions and also reveal a characteristic

pattern of net erosion and deposition associated with each mode. In particular, we find that a net flux of suspended sediment can

be transported from the deeper to the shallower regions of the basin. These transport patterns, which are driven essentially by

settling lag, are highly robust to the formulation of the sediment transport relation and appear not to be substantially affected by

the omission of frictional terms in the hydrodynamics: they should thus provide considerable insight into sediment transport in

less-idealised systems.
D 2003 Elsevier B.V. All rights reserved.
Keywords: Shallow-water environment; Nearshore sedimentation; Sand; Silt; Cyclic processes

1. Introduction particular, an understanding of these processes is
The processes by which sediment is mobilised and

redistributed in confined bodies of water such as

harbours, lagoons and lakes are naturally of consid-

erable interest to the coastal and civil engineer, as

well as to the sedimentologist or limnologist. In
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necessary in order to predict and control the morpho-

logical evolution of such systems, with potentially

important ecological and navigational consequences.

To date, these topics have been addressed almost

exclusively through empirical and numerical studies,

and the object of this paper is to complement such

studies with a theoretical investigation of some of the

mechanisms involved.

We approach the problem by developing exact

solutions for the suspended sediment field in the water

body under specific types of hydrodynamic forcing.
d.
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These solutions are useful in two respects. Firstly,

they offer insight into the physical processes which

control sediment redistribution, in a clearer form than

may readily be obtained from field data or from

extensive numerical simulations. Secondly, they pro-

vide easily reproduced test cases which may be used

to validate numerical models for the prediction of

sediment transport. We now discuss each of these

points in turn.

In a confined body of water, bedload transport, in

the form of either granular flows of noncohesive

material (see, e.g. Seminara, 2001) or fluid mud layers

(e.g. Roberts, 1993; Ali et al., 1997), is directed

preferentially downslope into the deeper regions in

the middle of the basin. Other mechanisms such as

sediment focussing by secondary circulation are also

known to contribute to this net inward movement of

sediment (Bloesch, 1995). However, it is less obvious

how or whether there is some return flux of suspended

sediment into the shallower regions of the basin—a

question which is clearly of considerable importance

for the morphodynamics of the system.

One obvious candidate mechanism for such trans-

port is wind-generated waves and the associated

currents, which may be expected to be particularly

important where the water is relatively shallow. How-

ever, when considering transport in deeper regions, it

is necessary to examine the possible effects of other

hydrodynamic processes. In particular, both internal

and surface seiching motions have been proposed as

possible mechanisms for sediment reworking and

transport in studies of contemporary and historical

sedimentation (see, for example, Bloesch, 1995;

Shteinman et al., 1997; Chapon et al., 1999), and

there is therefore a useful role to be played by a

theoretical investigation of such transport. The current

study is complementary to recent investigations of the

role of suspended sediment transport on tidal flats

(Pritchard et al., 2002; Pritchard and Hogg, submitted

for publication (a)) and in tidal inlets (Schuttelaars and

de Swart, 1996, 1999; Schuttelaars, 1998).

In the current study, we confine ourselves to

considering surface seiches in a somewhat idealised

geometry. The advantage of this approach is that

we are able to employ the exact solutions for the

nonlinear normal modes of oscillation of fluid in a

basin of parabolic cross section which were derived

by Thacker (1981) and thus to obtain exact analytical
solutions for suspended sediment transport. This

allows a clearer and somewhat more thorough inves-

tigation of the transport mechanisms than a purely

numerical study.

A particular difficulty encountered in numerical

models of nearshore hydrodynamics and sediment

transport is the representation of the variables in

shallow water close to the moving shoreline. In order

to obtain reliable results in this region, it is essential

that numerical methods be validated both against field

data and against exact solutions where these are

available. There is, however, a scarcity of available

solutions for such validation even for the hydrody-

namic fields and even fewer for the suspended sedi-

ment field: this therefore represents an important

secondary motivation for the work described here. A

particular feature of the Lagrangian approach, which

we employ to develop our solutions, is that the

moving shoreline boundary may be handled without

the need to impose extra physical or numerical con-

ditions on the suspended sediment concentration here.

In this paper, we compare the sediment transport

under two basic modes of oscillation of the fluid body.

In one, the basin is elliptical in plan view, and the

fluid motion is parallel to one axis of the ellipse; in the

other, the basin is circular in plan view, and the fluid

motion is radial. A distinct pattern of net sediment

transport is associated with each mode: axial flow

transports material outwards from the centre and

deposits it in the shallower parts of the basin, while

radial flow erodes material from an annular region and

deposits it principally landwards of this region. The

robustness of these results suggests that they offer

genuine insight into how such oscillations may con-

tribute to long-term patterns of sediment movement

and thus to morphological change.

In Section 2, we introduce the shallow-water

equations which describe the fluid motion and sedi-

ment transport. In particular, we describe a model for

the erosion and deposition of sediment which is

principally intended to represent coarse sand, but

which may easily be adapted to finer and even to

cohesive sediment. In Section 3, we consider axial

oscillations in an elliptical basin, and in Section 4, we

consider radial oscillations in a circular basin. In both

sections, exact periodic solutions to the sediment

transport equation are constructed using the general

method described in Appendix A. Finally, in Section
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5, we summarise our results and discuss their impli-

cations for more general bathymetries. Appendix B

deals briefly with the extent to which the neglect of

friction in obtaining these results may be justified.
2. Description of the model

Throughout this study, we are concerned with

basins which have the form

d̂ðx̂; ŷÞ ¼ D̂0 1� x̂2

D̂2
x

� ŷ2

D̂2
y

 !
; ð1Þ

where x̂ and ŷ are orthogonal horizontal coordinates

and where d̂ represents the vertical depth of the bed

below an arbitrary datum. We assume that the hori-

zontal extent of the basin in the x̂- and ŷ-directions is

similar, D̂x=D̂y=O(1). (Here and throughout, caretsˆ

and bars ¯ denote dimensional quantities, and the

nondimensional variables which are introduced below

are unadorned.)

Fig. 1 illustrates the flows which we will consider.

The region occupied by fluid is bounded by the

instantaneous shoreline, which consists of a set of

points x̂sh(t): in subsequent sections, it will be possible

either to express the shoreline in terms of a single

radial coordinate, r̂ = r̂sh(t̂ ), or in terms of a simple

relationship between the Cartesian coordinates x̂sh(t̂)

and ŷsh(t̂).

2.1. Hydrodynamics

We employ the shallow-water formulation for the

hydrodynamics which has been employed in many

other recent studies of coastal and estuarine sediment
Fig. 1. Schematics (vertical scale exaggerated) showing cross sections of th

and dotted lines): (a) axial mode (Section 3); (b) radial mode (Section 4).
transport. This formulation is based on the assumption

that the horizontal extent of the flow is large com-

pared to its depth (Peregrine, 1972), which for the

flows we consider here is generally satisfied.

The hydrodynamics are then described in terms of

the vertically averaged velocities in the x̂ - and ŷ -

directions,

ūðx̂; ŷ; t̂Þ ¼ 1

ĥ

Z ĥ�d̂

�d̂

ûðx̂; ŷ; ẑ; t̂Þdẑ; ð2Þ

where û=(û, v̂) and where ĥ(x̂, ŷ, t̂) is the total depth of

fluid at a point. We nondimensionalise these quantities

with respect to a horizontal length scale L̂h which we

identify with D̂x, a vertical length scale L̂zbL̂x which

we identify with D̂0, and a time scale T̂0 = D̂x/(ĝD̂0)
1/2.

In nondimensional form, then, the shallow-water

equations in two dimensions are

Bh

Bt
þ B

Bx
ðuhÞ þ B

By
ðvhÞ ¼ 0; ð3Þ

Bu

Bt
þ u

Bu

Bx
þ v

Bu

By
þ B

Bx
ðh� dÞ ¼ 0; ð4Þ

Bv

Bt
þ u

Bv

Bx
þ v

Bv

By
þ B

By
ðh� dÞ ¼ 0: ð5Þ

In this formulation of the shallow-water equations,

we have assumed that the effects of vertical variation

in the horizontal velocities may be neglected. This is a

standard procedure in studies of both oscillatory and

non-oscillatory flows (see, for example, Carrier and

Greenspan, 1958; Roberts et al., 2000; Brocchini et

al., 2001; Peregrine and Williams, 2001): it is known
e basin with surface elevations at two points of the oscillation (solid
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to provide a good leading-order description of the

hydrodynamics, in an analogous way to the von

Kármán momentum integral approach to aerodynamic

boundary layers (Batchelor, 1967).

The first correction to such a vertically uniform

description of the flow would be to allow for the

presence of a near-bed turbulent boundary layer,

whose depth d̂ scales with the maximum friction

velocity û*
max and the period of the motion,

d̂f
ûmax
* T̂

2p
; where ûmax

* ¼

ffiffiffiffiffiffiffiffiffi
ŝ
b
max

q̂

s
ð6Þ

for ŝb
max, the maximum bed shear stress attained during

an oscillation (Dyer, 1986). While we will not incor-

porate this correction in our description of the flow

field, we will comment on its significance below.

A further dynamical simplification is the neglect of

bed friction, which again follows studies such as

Peregrine and Williams (2001). While this simplifica-

tion has been applied successfully even in the swash

zone, it is most valid in deeper water, away from the

instantaneous shoreline; close to the shoreline, fric-

tional effects may become important and may be

modelled in a number of ways. For example, if we

use the Chezy drag term, the frictional term omitted

from Eqs. (4) and (5) has the dimensional magnitude

ŝd/ĥ = cDq̂ AūA2/ĥ , where cD is a dimensionless

frictional coefficient which is typically of order

10� 3 (Dyer, 1986). In dimensionless form, this term

has the form KAuA2/h, where Ku cDD̂x/D̂0 is typi-

cally a small quantity. The region in which frictional

terms are significant depends on the details of the

hydrodynamics, and so the assumption that friction

may be neglected will be discussed and justified a

posteriori for each case considered.

2.2. Sediment dynamics

We describe the sediment dynamics in terms of the

volumetric mass concentration of suspended sedi-

ment, ĉ(x̂ , ŷ , ẑ , t̂ ). Defining the vertically averaged

value

c̄ðx̂; ŷ; t̂Þ ¼ 1

ĥ

Z ĥ�d̂

�d̂

ĉdẑ; ð7Þ
we may then construct a depth-averaged equation for

the advective transport, erosion, and deposition of

sediment,

Bc̄

Bt̂
þ ū

Bc̄

Bx̂
þ v̄

Bc̄

Bŷ
¼ 1

ĥ
½q̂eðū; v̄Þ � q̂dðū; v̄; ĉbÞ�; ð8Þ

where q̂e and q̂d represent mass erosion and deposition

rates, respectively, and ĉb is the near-bed suspended

sediment concentration. These three quantities will be

discussed in more detail below.

In constructing Eq. (8), we have neglected the

turbulent diffusion of sediment in the horizontal plane,

as the ratio of advective transport to turbulent diffu-

sion scales as the ratio D̂x/D̂0 and so is typically much

greater than unity. We have also used the approxima-

tion of vertical uniformity in the velocities, so that

Z ĥ�d̂

�d̂

ûĉdẑ ¼ ū

Z ĥ�d̂

�d̂

ĉdẑ ¼ ĥūc̄; ð9Þ

regardless of the precise vertical distribution of ĉ.

Unlike the vertical distribution of velocity, the verti-

cal distribution of suspended sediment may not nec-

essarily be treated as uniform to first order and may

vary in time.

It is helpful to define two dimensionless numbers.

In a steady flow, the vertical distribution of suspended

sediment arises from a balance between turbulent

mixing and particle settling and may be described

by the Rouse number Bu ŵs /(jû*), where ŵs is a

particle settling velocity, û* ¼
ffiffiffiffiffiffiffiffiffi
ŝb=q̂

p
is the friction

velocity, which quantifies the turbulent intensity of the

flow, and jc 0.4 is the von Kármán constant. For

Rouse numbers Bb1, the sediment may be treated as

well-mixed in the water column, while for B =O(1),
the vertical structure must be taken into account, and

for BH1, sediment concentrates in a near-bed bound-

ary layer. The model which we employ for the vertical

distribution of sediment is described below; for the

moment, we note that in the current study, typical

Rouse numbers will be in the range B]1 (see Table

1), and so to leading order, we may neglect the rather

complex dynamics of a near-bed boundary layer.

The second useful dimensionless number is a ‘bed

exchange parameter’ E0u T̂0ŵs/D̂0. This describes the

ratio of the time scale over which the fluid motion

changes to the time taken for sediment to settle out of



Table 1

Approximate values of the governing dimensionless parameters for various values of the physical input quantities: cases correspond to those

discussed in Section 3

Case D̂s (m) K ue ue/umax E0 B0 gb Cb E

(i) 10� 4 0.015 0.10 0.37 0.009 0.32 0.016 2.7 0.02

(ii) 3� 10� 4 0.015 0.18 0.63 0.08 2.9 0.023 82 6.6

(iii) 3� 10� 5 0.015 0.057 0.2 0.0008 0.03 0.011 1.12 0.0009

(iv) 2� 10� 4 0.015 0.15 0.52 0.036 1.27 0.02 20.7 0.74

In each case, the maximum depth D̂0 = 10 m, the basin length D̂x = 100 m, and the dimensionless amplitude A= 0.2; consequently, the period is

approximately 45 s and the boundary layer thickness is approximately 0.8 m (see text for discussion).
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suspension; it can be thought of as a measure of how

quickly the suspended sediment concentration adjusts

to changes in the hydrodynamics.

It is also useful to express Eq. (8) in Lagrangian

form. In this formulation, we follow fluid elements

with position x̂L(t̂ ; x̂0), keeping track of the erosion

and deposition which they experience, as well as of

the changing vertical distribution of sediment within

that fluid element. This is a natural way to view the

sediment transport processes since suspended sedi-

ment is advected with the fluid.

The depth-averaged sediment concentration c̄L(t̂) in

a fluid element satisfies the equation

d

dt̂
c̄Lðt̂; x̂0Þ ¼

1

ĥL
½q̂eðūLÞ � q̂dðūL; ĉLbÞ�; ð10Þ

where the subscript L indicates that the variables are the

Lagrangian quantities associated with a fluid element.

The element position satisfies the advection equation

dx̂L

dt̂
¼ ūðx̂L; t̂Þ: ð11Þ

The ordinary differential equation (10) is considerably

more convenient to investigate analytically than the

partial differential equation (8). In fact, as long as the

deposition rate q̂d is linear in c̄L, Eq. (10) can be

integrated analytically for any form of q̂e and q̂d,

whenever the Lagrangian quantities x̂L, ūL, and ĥL
are known. This integration is described in greater

detail in Appendix A.

Following Dyer and Soulsby (1988), we express ĉL
in the form

ĉL ¼ c̄Lðt̂ÞCLðẑ; t̂Þ; where

Z ĥ�d̂

�d̂

CLðẑ; t̂Þdẑ ¼ ĥ:

ð12Þ
Presuming the suspension is sufficiently dilute that

there is no feedback effect of the suspended particles

on the vertical distribution of turbulence, the ‘shape

factor’ C(ẑ, t̂), which emerges from a balance between

settling and mixing, depends only on the sediment

properties and the leading-order (depth-averaged) hy-

drodynamics and is therefore a function of the Rouse

number B, which is discussed further below.

The bed exchange fluxes q̂e and q̂d may be

expressed in terms of the near-bed sediment concen-

tration ĉb = c̄Cb, where Cb is evaluated at a small

reference height ẑb above the bed. This is in fact the

only place in which the vertical distribution of ĉ enters

our leading-order description of the sediment dynam-

ics: we will show below how it can be absorbed into

the bed exchange parameter E0.

We now consider the closures for the vertical

distribution of suspended sediment and for the erosion

and deposition rates.

2.2.1. Closures for the vertical structure

The simplest model of the vertical sediment distri-

bution, which is formally valid in the regime Bb1, is

to treat the sediment as being vertically well-mixed in

the water column. In this case, C = 1 and ĉb = c̄.

More complex models of the vertical distribution

involve specifying an eddy viscosity structure and

solving the vertical equation for a balance between

turbulent diffusion and settling. The available mod-

els vary widely in sophistication and tractability, and

while their properties have been rather thoroughly

investigated for steady flows (see, for example,

Dyer and Soulsby, 1988), the nature of sediment

response under oscillatory motions is rather less

well understood.

In the current study, we follow the approach

recently advocated by Soulsby (1997) and approxi-



D. Pritchard, A.J. Hogg / Coastal Engineering 49 (2003) 43–7048
mate the vertical distribution of sediment by a power-

law profile (Dyer and Soulsby, 1988),

ĉðf̂Þ ¼ ĉb
ẑb

f̂

� �B0

in ẑbVf̂Vĥ: ð13Þ

Here, f̂ = ẑ + d̂ is the distance above the bed; B0 is the

‘time-averaged’ Rouse number defined by B0 = ŵs/

(jû*
av), where û*

av=(ŝav/q̂)1/2 and sav is the time-averaged

bed shear stress sav over the period; and ẑb is the

near-bed ‘reference height’ below which particles are

considered to have settled out of the flow.

Integrating Eq. (13) from f̂= ẑb to f̂= ĥ, we obtain

the relation between the depth-averaged and near-bed

concentrations,

ĉb

c̄
¼ 1� B0

gbðgB0�1
b � 1Þ

; ð14Þ

where gb = ẑb/ĥ . Values of both B0 and gb for our

calculations are tabulated in Table 1, and the

corresponding values of Cb = ĉb/c̄ are plotted in Fig.

2, which indicates that the variation of ĉ with depth

can substantially increase the near-bed concentration

(and thus the deposition rate) relative to a vertically

well-mixed model.

To determine an appropriate value for ẑb, we follow

the method due to van Rijn and described by Soulsby

(1997), in which the reference height can be related to

height of the mature bedforms which would occur

under a unidirectional flow: the principal dependen-

cies of ẑb are then that it increases with depth ĥ and
Fig. 2. The ratio between near-bed and depth-averaged sediment concentrat

line), 0.02, 0.03 (bottom line).
with particle size D̂s. We employ a simplified form of

the van Rijn formula,

gb ¼
ẑb

ĥ
¼ 0:519

D̂s

D̂0

� �0:3

; ð15Þ

noting that more complex expressions for ẑ b could

readily be incorporated within the analytical frame-

work described below.

2.2.2. Closures for the erosion and deposition rates

A wide range of empirical and semi-empirical

expressions have been proposed to describe the en-

trainment and deposition of sediment, and none has as

yet gained universal acceptance. In this study, we

consider erosion rates of the form

q̂eðūÞ ¼
m̂e

AūA2

û2e
� 1

	 
n
when AūA > ûe

0 when AūA V ûe:

8<
: ð16Þ

Here, m̂e is a dimensional erosion rate, ûe is a critical

velocity for the entrainment of sediment, which may

be obtained from a Shields criterion (Dyer and

Soulsby, 1988) together with the Chezy closure for

bottom drag, and n is a dimensionless exponent. The

prototypical sediment considered here will be in

the grain size range 3� 10� 5 m (medium silt) to

3� 10� 4 m (fine sand), for which many of the models

which have been employed in the literature have a

more complicated form than that presented here (see,

for example, the review by Garcia and Parker, 1991).
ions for various values of the Rouse number B0 and for gb = 0.01 (top
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However, Eq. (16) shares the principal features of

almost all such models, which are the existence of a

critical shear stress for the entrainment of sediment

and the asymptotic form qef sd
n for large bed

stresses. By considering a range of values for n, we

will demonstrate that the results obtained here are

rather robust to the functional form of the erosional

relation.

We also note that, with n = 1 and appropriate

choices for ûe and m̂e, Eq. (16) may also be employed

to describe the erosion of cohesive sediment (Dyer,

1986; Sanford and Maa, 2001).

We assume that particles are deposited with a

constant settling velocity ŵ s. In this case, the mass

settling rate has the form

q̂dðĉbÞ ¼ ŵsĉb ¼ ŵsc̄Cbðgb;B0Þ: ð17Þ

For the deposition of cohesive sediments which floc-

culate in the water column, more complicated depo-

sition formulae such as that due to Einstein and Krone

(1962) are commonly employed: Appendix A

explains how these may be treated within the frame-

work described here.

2.2.3. Nondimensionalisation

In nondimensionalising Eq. (8), we employ a

concentration scale given by an order-of-magnitude

balance between erosion and deposition, ĉ0 = m̂e/

(ŵsCb), along with the hydrodynamic scales described

earlier. We then obtain the nondimensional equation

Bc

Bt
þ u

Bc

Bx
þ v

Bc

By
¼ E

h
½qeðu; vÞ � qdðu; v; cÞ�; ð18Þ

where E =E0Cb(gb, B0) and where the net bed ex-

change term has the nondimensional form

qe � qd ¼
AuA2

u2e
� 1

	 
n
�c when AuA > ue;

�c when AuAV ue:

ð19Þ

8><
>:

The Lagrangian form of Eq. (18) is

d

dt
cLðt; x0Þ ¼

E

hL
½qeðuLÞ � qdðuL; cL; tÞ�;

where
dxL

dt
¼ uðxL; tÞ: ð20Þ
2.3. Summary of parameters and reference values

We now summarise the dimensionless parameters

in this flow and calculate the values they take in

particular situations. While the analysis will be pre-

sented in terms of dimensionless variables, we also

provide dimensional examples of the predicted pat-

terns of sediment movement.

The key dimensional parameters in these flows

are the dimensions of the basin, D̂x and D̂0, and the

size of the sedimentary grains, D̂s. In addition, it is

necessary to specify the mass erosion rate m̂e or,

equivalently, the reference concentration ĉ 0, which

measures the magnitude of the suspended load. The

period of the motion, T̂ , is determined by the

dimensions of the basin, and anticipating subsequent

sections, we find that T̂ ¼ p
ffiffiffi
2

p
T̂0, while the maxi-

mum dimensional velocity ûmax ¼ A
ffiffiffi
2

p
D̂x=T̂0, where

A is the amplitude of the motion (assumed to be less

than unity).

Other important dimensional scales are determined

as follows. Firstly, the bed shear stress is estimated

using a Chezy drag law, ŝb = cDq̂AūA2, and so the

friction velocity û*=AūA
ffiffiffiffiffi
cD

p
. The settling velocity is

estimated using Stokes’ law,

ŵs ¼
1

18

q̂s � q̂
l̂

ĝD̂2
s ; ð21Þ

which is appropriate for the low particle Reynolds

numbers considered here. Finally, the critical veloc-

ity for erosion and suspension ûe is estimated by

setting the Shields parameter equal to unity. Thus,

we find

ŝe
ĝðq̂s � q̂ÞD̂s

¼ 1 and so ûe ¼
ĝ

cD

q̂s � q̂
q̂

D̂s

� �1=2
:

ð22Þ

Given these estimates of dimensional quantities,

we now summarise the dimensionless parameters

in the flow. These are the dimensional drag

coefficient

K ¼ cD
D̂x

D̂0

; ð23Þ

ngineering 49 (2003) 43–70 49
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the dimensionless critical velocity for erosion

ue ¼
1

ðĝD̂0Þ1=2
ĝ

cD

q̂s � q̂
q̂

D̂s

� �1=2

¼ q̂s � q̂
cDq̂

� �1=2
D̂s

D̂0

� �1=2
; ð24Þ

the dimensionless bed exchange ratio

E0 ¼
T̂0ŵs

D̂0

¼ 1

18

q̂s � q̂
l̂

ĝ1=2
D̂2

s D̂x

D̂
3=2
0

; ð25Þ

and the Rouse number

B0 ¼
1

18

q̂s � q̂
l̂

ĝ1=2
1

cDj
D̂2

s

D̂
1=2
0

: ð26Þ

To provide numerical estimates of these parame-

ters, we assume the following standard values:

cD = 1.5� 10� 3 for a sandy to silty bed (Dyer,

1986), qs = 2.6� 103 kg m� 3 (Allen, 1985), j = 0.4

(Dyer, 1986), l = 10� 3 kg m� 1s� 1, and ĝ = 10 m s� 2.

Table 1 provides approximate values of these

quantities for a range of physically realistic conditions

under seiching flow. We reiterate that the analysis and

the discussion of results which follow are independent

of the precise values taken by these parameters,

although to relate the results to a particular physical

example, these values must be specified.

Considering the values in Table 1, we find that the

drag coefficient K is small for all cases, so we may

expect the effects of friction to be confined to a small

region close to the shoreline: this is discussed in more

detail in Appendix B.

The typical Rouse numbers for fine sand and silt are

of order 1, and so the near-bed suspended sediment

concentration is generally substantially greater than

the depth-averaged concentration, reducing the sedi-

ment response time and thus reducing lag effects. The

bed exchange rate E, which quantifies how quickly the

suspended sediment concentration responds to

changes in the fluid velocity, is strongly dependent

on sediment size, ranging from much smaller than 1 for

fine silt (when we may expect considerable lags to

occur) to rather greater than 1 for fine sand, for which

lag effects may be less pronounced.
As a reference case, we will consider the values in

the top row of Table 1, which correspond to silty

sediment in a small lake or harbour. We will consider

variation in the principal governing parameters about

this value and discuss the robustness of our results to

this variation.

Finally, we note briefly the values of two important

dimensional quantities. The typical period of motions

is of the order of a minute, which reflects the

relatively small size of the basins considered here.

The thickness of the oscillatory boundary layer d̂ ,
which may be calculated from Eq. (6), is a little less

than a metre (i.e. around 10% of the water column).

For fine sediment (D̂sV 10� 4 m), it is therefore

generally less than the depth of the significantly

sediment-laden region of the water column. For

coarser sediment, it is possible that the inclusion of

this boundary layer might modify our results some-

what; however, this lies beyond the scope of the

current study.

2.4. Sediment fluxes and equilibrium concentrations

In order to interpret the results, it is useful to define

two ‘equilibrium’ values of sediment concentration

for a fluid element. The first is the instantaneous

equilibrium value ceq which arises from a balance

between erosion and deposition,

ceq ¼
AuA2

u2e
� 1

	 
n
when AuA > ue;

0 when AuAV ue :

8<
: ð27Þ

At a given instant, this value is the one towards which

the concentration in a fluid element is adjusting, with

the rate of adjustment proportional to the parameter E

and inversely proportional to the depth of water h;

hence, in very shallow water near the shoreline, ceq
provides a good approximation to c and thus allows

the concentration field to be determined.

The second ‘equilibrium’ quantity is that which

arises from a balance between the net deposition and

erosion over a period,

cT ¼ 1

T

Z T

0

AuLðtÞA2

u2e
� 1

� �n

dt; ð28Þ
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where T is the period of the oscillation. This constant

value provides a good approximation to c in deep

water, where the sediment load responds only very

slowly to changes in AuA.
To assess the morphodynamic effect of the sedi-

ment transport described here, we calculate the net

sediment flux over a period of the fluid motion. The

instantaneous flux q(x, y, t) is defined as

qðx; y; tÞ ¼
Z h�d

�d

cðx; y; z; tÞuðx; y; z; tÞdz; ð29Þ

which to leading order in the vertical velocity struc-

ture is equal to chu, regardless of the vertical sediment

concentration distribution C(z). The net flux over a

period is then given by

Qðx; yÞ ¼
Z T

0

qðx; y; tÞdt; ð30Þ

where T is the period of the motion and the net mass

of sediment deposited at a point over one period of the

motion is given by M(x, y) =�j.Q.

For the radial flows discussed in Section 4, we

have u = ur(r, z, t)er, where r2 = x2 + y2 and er is the

unit vector in the radial direction. We then have

q = curher, and it follows that Q(r) =Q(r)er, where

QðrÞ ¼
Z T

0

qðr; tÞdt; and so

MðrÞ ¼ � 1

r

d

dr
r
dQ

dr

� �
: ð31Þ

It is useful to consider these quantities in dimen-

sional terms. If the seiching persists for a time T̂sei,

then the net depth of erosion at a point over that time

is given by

Ẑe ¼
T̂sei

T̂

ĉ0

ĉbed
D̂0M ; ð32Þ

where ĉbed is the mass concentration of particles in the

bed, which for a packing fraction of around 0.7 is

approximately 1800 kg m� 3, and where ĉ0 is the

reference concentration defined above. We will em-

ploy this formula in subsequent sections to quantify

the morphological importance of these flows: for this

purpose, we will take ĉ0 to be defined such that the

long-term average concentration ĉT in the most rapidly
moving fluid element is of the order of 1 kg m� 3, and

we will quote the results for a seiching time of 1 hour.
3. Axial flow in an elliptical basin

We now describe the two principal modes of

oscillation obtained by Thacker (1981), and we

calculate the resulting sediment transport. In this

section, we consider unidirectional flow parallel to

one axis of the basin, and in the next section, we

consider radial flow.

3.1. Hydrodynamics

Thacker (1981) obtained solutions for various

modes of flow in which the free surface is planar

(Fig. 1a). We consider the simplest such mode: this

describes flow in an elliptical basin, d(x, Y) = 1� x2�
Y2, where, for notational convenience, we have de-

fined the rescaled lateral coordinate Y= ŷ /D̂y. The

solutions are such that the oscillatory flow is parallel

to one axis of the ellipse, and without loss of gener-

ality, we take this to be the x-axis, u=(u, 0).

Thacker’s solutions have the form

uðtÞ ¼ �Axsinxt; v ¼ 0; and

hðx; y; tÞ ¼ 2Acosxt x� A

2
cosxt

� �
þ ð1� x2 � Y 2Þ;

ð33Þ

where A represents a dimensionless amplitude for the

motion and where x ¼
ffiffiffi
2

p
. The amplitude A may take

any value, but for physically plausible seiching

motions, we consider rather small values of A. It

may be verified by direct substitution that Eq. (33)

do indeed satisfy the shallow-water equations (3), (4)

and (5).

It is simple to obtain the Lagrangian description,

xLðt; x0Þ ¼ x0 � Aþ Acosxt;

uLðtÞ ¼ �Axsinxt and

hLðx0; Y Þ ¼ 1� R2; where R2 ¼ ðx0 � AÞ2 þ Y 2;

ð34Þ

and where x0 is the original x-coordinate of the fluid

element. The depth of fluid is known in terms of the



Fig. 3. Schematic illustrating the magnitude of u2 as a function of time, and the corresponding intervals of simultaneous erosion/deposition and

of pure deposition. These are used to construct the Lagrangian concentration field.
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single quantity R, and so we immediately obtain the

result that, at any instant in time, concentration c

must be constant on the ellipses R2=(x�A cos

xt)2 + Y2 = constant. (The shoreline h = 0 is a special

case of these curves, with R =F 1, and is given by

xsh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y 2

p
þ Acosxt.) We also note that the

forcing in the Lagrangian equation (10) has period

p=
ffiffiffi
2

p
, half that of the Eulerian motion, and so we

seek a Lagrangian solution cL(t; R) which shares this

periodicity (although after substituting in for R(x, y, t),

the Eulerian solution will have period p
ffiffiffi
2

p
).

3.2. Construction of the solution

We now sketch the construction of the solution;

more complete mathematical details can be found in

Appendix A. The solution is constructed by dividing

the period of a fluid oscillation into successive inter-

vals in which AuA>ue and AuA < ue. In each such

interval, the Lagrangian concentration Eq. (10) may

be solved explicitly for each fluid element, given the

initial concentration, and the concentration at the end

of that (erosional or depositional) interval is then used

to set the concentration at the start of the succeeding

(depositional or erosional) interval. Finally, by iden-

tifying the concentration at the end of a period with

that at the start, we obtain a periodic solution for cL(t)

in each fluid element.

It is helpful to refer to Fig. 3, which shows the

successive erosional and depositional intervals expe-

rienced by a given fluid element.
The starts and ends of these intervals are given by

the times t0 = te, t1 ¼ p=
ffiffiffi
2

p
� te, t2 ¼ p=

ffiffiffi
2

p
þ te, and

so forth, where te is such that AuL(te)A = ue, i.e.

te ¼
1ffiffiffi
2

p sin�1 ueffiffiffi
2

p
A

� �
: ð35Þ

During erosional intervals, when AuLA>ue, the

concentration equation (10) has the form

dcL

dt
¼ E

hL

u2L
u2e

� 1

� �n

�cL

� �
uaeðtÞ � cLðtÞbeðtÞ;

ð36Þ

and the solution has the form cL(t) =He(t, tk) + ckXe

(t, tk), where t = tk is the start of the interval, ck is the

concentration at t = tk, and the quantities Xe and He

are defined as

Xeðt; tkÞ ¼ exp � Eðt � tkÞ
1� R2

� �
ð37Þ

and

Heðt; tkÞ ¼ exp � Eðt � tkÞ
1� R2

� � Z t

tk

exp
Eðs � tkÞ
1� R2

� �

� E

1� R2

2A2sinxs
u2e

� 1

� �n
ds:

ð38Þ
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During depositional intervals, when AuA < ue, Eq.

(10) has the form

dcL

dt
¼ � E

hL
cL ¼ �bdðtÞcLðtÞ; ð39Þ

and the solutions can be expressed as cL= ckXd(t, tk),

where tk and ck are defined as before and where Xd(t,

tk) =Xe(t, tk). The quantities Xe(t, tk) and Xd(t, tk)

quantify the exponential decay of the concentration

field as particles settle out during periods of low

current speed, while He(t, tk) quantifies the effect of

simultaneous erosion and deposition while AuA> ue.

The integral for He may be evaluated in terms of

elementary functions when n is a positive integer and

is relatively simple to compute for noninteger n.

Finally, having constructed our periodic solution

for cL(t; R), we substitute for R2=(x�Acosxt)2 + Y 2

to obtain the Eulerian solution c(x, Y, t).

3.3. Typical solutions

In principle, we may vary the dimensionless param-

eters of the model independently and thus investigate

questions such as the dependence of the solutions on

the critical Shields parameter or their sensitivity to the

sediment entrainment and deposition models in con-
Fig. 4. Analytical solution for suspended sediment concentration under a

offshore flow.
siderable detail. Our main interest here is in illustrating

the basic processes, and so we will select a represen-

tative ‘reference case’ (case (i) in Table 1) and discuss it

in some detail first. We will briefly consider the

robustness of this result to small changes in the param-

eters, but the main form of variation we are interested in

occurs as the sediment size D̂s is varied leaving all other

physical parameters unchanged. This is an important

variation for two reasons. Firstly, we may expect a

range of sediment sizes in any physical context, and it is

important to be aware of the different behaviour which

may be expected from different sediment modes. Sec-

ondly, the scalings in Section 2.3 indicate that the

effective bed exchange parameter E varies very strong-

ly with D̂s, both through the direct variation ŵs~D̂s
2 and

through the tendency of larger particles to be trans-

ported closer to the bed, as B0~D̂s
2. Consequently, a

single decade of variation in D̂s leads to almost four

decades of variation in E (see Table 1) and may thus

lead to important differences in the lag-driven net

transport patterns.

3.3.1. Reference case (i)

Fig. 4 shows the concentration field for Y= 0, in

other words, along the centreline of the ellipse. Only

the region x>0 is plotted, as the rest may be obtained
xial flow, for reference case (i) with n= 1. (a) On-shore flow; (b)



D. Pritchard, A.J. Hogg / Coastal Engineering 49 (2003) 43–7054
by symmetry, and plots for other values of Y are

omitted as they share the same qualitative features as

those for Y= 0.

The most prominent feature of the solutions is the

maximum of suspended sediment concentration

which forms near or at the shoreline during erosive

periods, and which is reminiscent of the ‘turbid edge’

which has been observed in tidal flow over mudflats

(Christie and Dyer, 1998). Especially at the start of

phases of onshore and offshore flow, when fluid

accelerations are highest, the peak in c is very

sharply defined and may be somewhat exaggerated

by the neglect of friction in the hydrodynamics (see

Appendix B). In contrast to the solution under radial

flow which will be described in Section 4, velocities

in the centre of the basin are sufficient to suspend

sediment, and since it only settles out slowly, con-

centrations are maintained here throughout the oscil-

lation. The main difference between concentrations at
Fig. 5. Analytical solutions for (a) net flux Q over a period; (b) net depositi

with n= 1. Dashed lines indicate the positions of the shoreline at maximum

erosion or deposition).
the edge and in the centre of the basin is the greater

variability of c over a cycle, which occurs because of

the shallower water: otherwise, the dynamics are

almost identical.

Although the solutions for the suspended sediment

concentration field c(x, y, t) are periodic in time, they

may produce a net flux of sediment through the well-

known processes of settling and scour lag (Dyer,

1986; Le Hir et al., 2000). Both processes refer to a

hysteresis effect: because it takes a finite time (which

is controlled by E and by the local depth of water h)

for the concentration field to adjust to equilibrium

with the local velocity field, the net fluxes of sediment

in different directions do not necessarily cancel out

over a period of the oscillation. It is usual to distin-

guish between settling lag, which refers to hysteresis

associated with deposition, and scour lag, which refers

to hysteresis associated with erosion (see for example

Le Hir et al., 2000; Bartholdy, 2000); however, it is
on M=�BQ/Bx over a period under axial flow, for reference case (i)

run-up and run-down; dotted grid indicates the surface M= 0 (no net
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not clear that in the current context, it is helpful to

separate these processes, and so here and in subse-

quent sections, we refer to them together under the

general term ‘suspension lag’.

We have recently given a rather more detailed

discussion of the mechanisms of suspension lag for

cohesive sediment (Pritchard and Hogg, submitted for

publication (a)), and the same principles apply in the

present case. Essentially, the lag associated with the

deposition and re-entrainment of material seen in the

Eulerian frame corresponds to the transfer of sediment

between fluid parcels in the Lagrangian frame and

thus to a net spatial movement of sediment. In many

situations, the dominant effect of suspension lag under

tidal flows is to transfer material landwards into the

shallower regions of an estuary or inlet (Nichols and

Biggs, 1985), and we observe (Fig. 5) that the same

occurs here.

Fig. 5 illustrates the pattern of net cross-shore

sediment flux Q(x, Y) and the corresponding pattern

of net erosion and deposition for our reference case.

Only the region (x>0, Y>0) is shown since the rest can

be obtained by symmetry.

The first interesting feature is that Q>0 throughout

the region x>0, so the residual flux is always directed

axially outwards. In other words, the effect of sus-
Fig. 6. Analytical solution for suspended sediment concentration under a

offshore flow.
pension lag under this mode of oscillation is to move

material shorewards, depositing it in the shallower

part of the basin during the deposition period around

maximum run-up.

The greatest net cross-shore fluxes occur in regions

between the maximum and minimum extents of the

shoreline, which are inundated during only part of the

oscillation. This represents a balance between the

enhancement of suspension lag effects in moderately

shallow water, when the concentration changes sig-

nificantly over a period, and the vanishing of the

sediment load ch at the shoreline. By symmetry, there

can be no net transport across the line x = 0, and in

fact, there is a substantial region around (x, Y)=(0, 0)

in which Q is very low since concentrations do not

vary greatly in deep water over the course of a period

(Fig. 4). We also note that the net fluxes are rather

small compared to the peak instantaneous fluxes q,

which are of order 1: thus, the imbalance between

seaward and landwards fluxes which leads to net

transport is a rather delicate one.

Fig. 5b illustrates the net erosion and deposition

due to a single seiche: material is eroded from a region

just landwards of the position of maximum run-down

and deposited just seawards of the position of maxi-

mum run-up. Employing the approach described in
xial flow, for reference case (i) with n= 3. (a) On-shore flow; (b)
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Section 2.4 to obtain the net erosion and deposition in

dimensional terms, we find that the maximum bed

level change represented in Fig. 5b is AẐeAc 8 mm

over 1 hour of seiching.

3.3.2. Robustness of the reference case (i)

We now briefly describe the robustness of the

solution for the reference case (i) to small changes

in the dimensionless parameters. Variations in E will

be dealt with in the next section; we consider varia-

tions in the erosion exponent n, in the dimensionless

erosion velocity ue, and in the dimensionless ampli-

tude of the seiching motion A.

Figs. 6 and 7 illustrate the effect of varying the

exponent n in the erosion formula from 1 to 3. The

immediately obvious effect of taking a higher value of

n is to increase the average concentration of sus-

pended sediment by a factor of about 30 and the peak

concentration by a factor of about 50: the dimension-
Fig. 7. Analytical solutions for (a) net flux Q over a period; (b) net depositi

with n= 3. Dashed lines indicate the positions of the shoreline at maximum

erosion or deposition). The maximum bed level change in dimensional va
less net flux increases in proportion to this. (This

increase, however, is largely an artefact of the non-

dimensionalisation selected: we recall that the con-

centration scale is proportional to the dimensional

parameter m̂e, and there is no reason why this should

have the same value for different values of n. Recall

that in calculating the net bed level changes AẐeA, we
normalise by ĉT.)

Perhaps surprisingly, there is almost no qualitative

difference between the solutions for different values

of n. For n = 3, erosion is slightly slower than for

n = 1 when u2� ue
2 is small, and conversely more

rapid when u2 is greater, and this shows up in the

plots of c, where the peak value of ceq is increased

somewhat more than the value cT in deeper water. It

is also evident in the slightly slower growth of the

shoreline concentration maximum and in the gener-

ally slightly higher variation of the concentration

field in shallow water. As Fig. 7 illustrates, however,
on M=�BQ/Bx over a period under axial flow, for reference case (i)

run-up and run-down; dotted grid indicates the surface M= 0 (no net

riables is AẐeAc 1.3 cm over an hour of seiching.



Fig. 8. Analytical solution net deposition M=�BQ/Bx over a period under axial flow, for reference case (i) with n= 1 and the revised values

A= 0.4, ue = 0.2. Dashed lines indicate the positions of the shoreline at maximum run-up and run-down; dotted grid indicates the surface M= 0

(no net erosion or deposition). The maximum bed level change in dimensional variables is AẐeAc 8 mm over an hour of seiching.
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these features have very little influence on the

pattern of net sediment transport across the basin;

and in fact, the maximum bed level change Ẑ e is
Fig. 9. Analytical solutions for (a) net flux Q over a period; (b) net deposi

n= 1. Dashed lines indicate the positions of the shoreline at maximum ru

erosion or deposition). The maximum bed level change in dimensional va
increased by a factor of less than 2, reflecting the

slightly enhanced lag effects which occur for higher

values of n.
tion M=�BQ/Bx over a period under axial flow, for case (iii) with

n-up and run-down; dotted grid indicates the surface M= 0 (no net

riables is AẐeAc 1.3 mm over an hour of seiching.



Fig. 10. Analytical solution for suspended sediment concentration under axial flow, for case (ii) with n= 1. (a) On-shore flow; (b) off-shore flow.

Fig. 11. Analytical solutions for (a) net flux Q over a period; (b) net deposition M=�BQ/Bx over a period under axial flow, for case (ii) with

n= 1. Dashed lines indicate the positions of the shoreline at maximum run-up and run-down; dotted grid indicates the surface M= 0 (no net

erosion or deposition). The maximum bed level change in dimensional variables is AẐeAc 1.6 cm over an hour of seiching.
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Varying the dimensionless erosion velocity ue has

the effect which might be expected: as ue decreases,

concentrations generally increase and so, therefore, do

the net fluxes. The pattern of transport, however, is

unaltered, and so the plots are omitted for brevity.

Increasing ue from 0.1 to 0.15 reduces Ẑ e to approx-

imately half its value, while decreasing ue from 0.1 to

0.05 increases Ẑe by a factor of almost 5. (To leading

order, we can estimate these changes by assuming that

Ẑe is proportional to a ‘typical’ value of the erosion rate

qe
typ=(utyp

2 /ue
2� 1); this may be a useful tool for adapt-

ing these calculations to obtain estimates of morpho-

logical change without recalculating the solutions.)

Finally, varying the dimensionless amplitude A

while keeping the ratio ue/umax constant has almost

no effect on the maximum bed level change, and the

pattern of erosion and deposition relative to the shore-

line positions remains effectively the same (Fig. 8).

3.3.3. Effect of varying the particle size

As noted above, altering the particle size D̂s has a

very strong effect on the effective bed exchange
Fig. 12. Analytical solutions for (a) net flux Q over a period; (b) net depos

n= 1. Dashed lines indicate the positions of the shoreline at maximum ru

erosion or deposition). The maximum bed level change in dimensional va
parameter E = ŵsCbT̂ /D̂0. This quantifies how rapidly

the concentration responds to changes in the fluid

velocity and, consequently, may be expected to mod-

ify the suspension lag effects which lead to the net

sediment transport patterns discussed above.

Fig. 9 illustrates the effect on transport patterns of

reducing the sediment grain size from 0.1 to 0.03

mm (i.e. from coarse to fine silt): the parameter

values are given as case (iii) in Table 1. As for the

reference case (i), transport is effectively confined to

the region between maximum run-up and run-down

of the shoreline. This is because we are still in the

regime Eb1, and so it is only in very shallow water

hfE where significant changes to the suspended

sediment concentration may occur in the course of

an oscillation.

It is more interesting to consider the effect of

increasing the grain size. The concentration field and

net transport patterns for D̂s = 0.3 mm (case (ii) in Table

1) are shown in Figs. 10 and 11, respectively, while the

transport patterns for the intermediate value D̂s = 0.2

mm (case (iv) in Table 1) are shown in Fig. 12.
ition M=�BQ/Bx over a period under axial flow, for case (iv) with

n-up and run-down; dotted grid indicates the surface M= 0 (no net

riables is AẐeAc 5.4 cm over an hour of seiching.
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The considerably larger value of E for case (ii)

leads to a much more substantial variation of sus-

pended sediment concentration over the course of a

cycle: there is even a noticeable variation in the

deepest water in the centre of the basin (Fig. 10).

This means that suspension lag is effective throughout

the basin, and, in fact, it is now least evident in very

shallow water (note the decay of Q towards the

position of maximum run-up in Fig. 11a).

Because suspension lag now occurs preferentially

in rather deeper water, the transport pattern in general

is shifted towards the centre of the basin. The region

of net deposition now encompasses everywhere be-

tween maximum run-up and run-down, as well as

some distance seawards of this, while sediment is

eroded throughout the interior of the basin. If similar

patterns are able to occur for extended periods of time,

the net effect will be to deepen the basin while

forming a steeper ‘lip’ around its edge, ultimately

reducing its lateral extent.

The greater effectiveness of suspension lag for

coarser sediment also leads to distinctly higher rates

of erosion and deposition, with Ẑe for case (ii) being

some 10 times greater than for case (i). Case (ii),

however, does not represent the maximum bed level

change possible: this can be expected to occur when E

is of order 1, allowing lag effects to occur in both the

deeper and shallower parts of the basin.

This is illustrated in Fig. 12, which shows the

transport patterns for case (iv). The overall pattern is

intermediate between those for cases (i) and (ii), with

the erosional region around maximum run-down still

evident, but now with some net transport and erosion

even in the centre of the basin. The rates of change

here may be as high as several centimetres of depo-

sition in an hour of seiching, suggesting that for sandy

sediments, this may be a rather significant morpho-

dynamical process.
1� a
4. Radial flow in a circular basin

4.1. Hydrodynamics and construction of the solution

In this section, we consider flows in a circular

basin, d(r) = 1� r2, where r2 = x2 + y2. In this

bathymetry, modes of oscillation are possible in

which the fluid motion is entirely in the radial
direction, u = urer, and the free surface is axisym-

metric (Fig. 1b).

Thacker (1981) obtained solutions in which the

free surface is a quadratic function of r. In dimen-

sionless variables, Thacker’s solutions have the

form

urðr; tÞ ¼
ffiffiffi
2

p
ar

sin
ffiffiffi
8

p
t

1� acos
ffiffiffi
8

p
t

ð40Þ

and

hðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p

1� acos
ffiffiffi
8

p
t
� r2

1� a2

ð1� acos
ffiffiffi
8

p
tÞ2

 !" #
;

ð41Þ

where a < 1 represents a dimensionless amplitude

for the change in elevation at the centre of the

basin (note that as a! 1, the motion becomes

unbounded). For notational convenience, for the

remainder of this section, we will write u(r,

t) = ur(r, t).

Fluid elements then have position rL(t; r0), radial

velocity uL(t; r0), and depth hL(t; r0) given by

rLðt; r0Þ ¼
r0ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� acos

ffiffiffiffi
8t

pq
;

uLðt; r0Þ ¼
ffiffiffi
2

p
ar0ffiffiffiffiffiffiffiffiffiffiffi

1� a
p sin

ffiffiffi
8

p
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� acos
ffiffiffiffi
8t

pp ;

hLðt; r0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
� r20ð1þ aÞ

1� acos
ffiffiffi
8

p
t

: ð42Þ

We note that t = 0 corresponds to the innermost

position of a fluid element.

The shoreline occurs at r= rsh(t), where

rshðtÞ ¼ rLðt; r0shÞ for r0sh ¼
1� a
1þ a

� �1=4

: ð43Þ

The maximum velocity attained by the fluid ele-

ment labelled by r0 is

umðr0Þ ¼ 2r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

pp
ffiffiffiffiffiffiffiffiffiffiffip ; ð44Þ
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while the maximum and minimum radial positions of

this element are

rminðr0Þ ¼ r0 and rmaxðr0Þ ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a
1� a

r
: ð45Þ

Thus, we obtain the maximum velocity under an

oscillation, which is given by

umax ¼ umðr0shÞ ¼ 2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
 !1=2

: ð46Þ

If we require that the maximum velocity under this

mode of seiching is equal to that under the axial flows

considered in Section 3, it then follows that

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ A2

2

� ��2
s

; ð47Þ

so we may obtain flows which are ‘equivalent’ to the

reference case (i) of Section 3 by setting ac 0.2 and

taking other parameter values as in Table 1.

Eq. (46) also provides a bound on the region of

parameter space in which the seiche is morphody-

namically effective: clearly, if uez umax, then no

sediment transport can occur. When ueV umax, then

we may use the Lagrangian description to determine

which region of the basin is morphodynamically

active: this is given by r>r0*(ue), where um(r0*) = ue.

A little algebra reveals that

r0*ðueÞ ¼
1

2
ue

ð1� aÞ1=2

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ1=2

¼ ue

umax

1þ u2max

4
� umax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ u2max

16

r !1=2

:

ð48Þ

Fig. 13 illustrates the variation of the morphodynami-

cally active region with umax and ue. It is apparent that

for a fixed threshold of erosion ue, as the amplitude of

the motion is reduced, the region in which the

sediment is mobilised is squeezed into a progressively

narrower strip behind the shoreline.

The final quantities which we will require in the

construction of the solution are the times at which the

Lagrangian velocity uL is equal to the critical value ue.
It is helpful at this point to refer to Fig. 14, which

illustrates the key features of the solution in the (r,

t) plane: recall that the period of the motion is p=ffiffiffi
2

p
c2:22. We define

tFðuÞ ¼
1ffiffiffi
8

p cos�1 1

2a
ðkF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4k þ 4a

p
Þ

� �
;

where k ¼ 1� a
2

u

r0

� �2

; ð49Þ

and we find that uL= ue at the successive times

te1 = t+(ue) and te2 = t�(ue), and then uL=� ue at the

further succeeding times te3 ¼ p=
ffiffiffi
2

p
� t�ðueÞ and

te4 ¼ p=
ffiffiffi
2

p
� tþðueÞ.

We now construct periodic solutions using the

method described in Section 3 and in Appendix A.

As before, we distinguish between two phases of the

fluid motion for a given particle.

During erosional phases, when AuLA>ue, the sol-

utions have the form cL=He(t, tk) + ckXe(t, tk), where

He and Xe are defined in terms of integrals of ae and

be as in Section 3 and Appendix A. (Xe may be

expressed in terms of elementary functions, while He

cannot but may readily be evaluated numerically.)

During purely depositional phases, when AuA < ue,

the solutions can be expressed as cL= cdXd(t, td),

where Xd is defined as in Appendix A and may be

evaluated as an exponential of elementary functions.

As before, we construct the Lagrangian solution in

each interval in turn, then identify the concentrations

at the start and end of an oscillation to obtain a

periodic solution, and finally substitute in for the

labelling quantity r0(r, t) using Eq. (42) to obtain

the Eulerian solution c(r, t).

4.2. Typical solutions

As before, we concentrate attention on case (i) for

the two values of the erosion exponent n = 1 and n = 3,

and then comment on the effect of altering the

sediment grain size D̂s.

4.2.1. Reference case (i)

Figs. 15 and 16 show the suspended sediment

concentration for the reference cases, while Fig.

17 shows the corresponding patterns of net sediment

transport.



Fig. 13. Selected contours of r0*(umax, ue) (solid lines), together with the boundary ue = umax of the regime in which sediment can be mobilised

(dashed line). Lowest line represents r0* = 0.1, uppermost represents r0* = 0.9.
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For both values of n, the principal features of the

concentration field are a pronounced concentration

maximum at or near the shoreline and a gradual decay

of concentrations towards the inner limit of the active

region r= r0*, where velocities are no longer sufficient

to mobilise sediment. As before, concentrations for

n = 3 are considerably higher, which is essentially an

artefact of the nondimensionalisation; a genuine dif-

ference between the cases is that, as before, concen-

trations associated with the concentration maximum

are increased rather more than those in the body of the

flow because increasing n increases the maximum

value of the instantaneous equilibrium concentration

ceq more than the long-term mean concentration cT. A
Fig. 14. Plot illustrating the Lagrangian form of Thacker’s radial solution in

rL(t), with the uppermost representing the shoreline rsh(t) and the lowermo

ue = 0.15. The small open circleso represent, respectively, te1, te2, te3, and te4
see text.
consequence of this is that the decay of c towards r0*
is rather stronger for higher n.

The principal feature of the radial sediment flux

Q(r) is a pronounced peak around the mean position

of the shoreline: Q(r) falls away steeply at either side

of this and decays to zero as r! r0*. The decay is

very much weaker inward of rc 0.9, which corre-

sponds to the innermost position of the shoreline.

Comparing Fig. 17a and b, the most obvious differ-

ence is that the higher value of n results in a

noticeable region of inward net sediment transport

around r = 0.9, whereas for n = 1, the region in which

Q < 0 is much smaller and is located further inwards,

around r = 0.4.
a circular basin, for a= 0.2. Solid lines represent particle trajectories
st representing rin(t). The dashed lines represent solutions of u(r, t)=

for the particular fluid element with r0 = 0.75. For further clarification,



Fig. 15. Analytical solution for suspended sediment concentration under radial flow, for case (i) with n= 1. (a) Outward flow; (b) inward flow.

D. Pritchard, A.J. Hogg / Coastal Engineering 49 (2003) 43–70 63
This spatial pattern of net transport may be

explained as follows. In the outermost inundated

portion of the basin, there is a supply of sediment

from the high concentrations at and behind the shore-
Fig. 16. Analytical solution for suspended sediment concentration under ra
line, and suspension lag leads to a net outwards flux

(as in Section 3), as material eroded on the outflow

settles out at slack water, giving lower concentrations

on the inflow. In the region inwards of r = 1, the
dial flow, for case (i) with n= 3. (a) Outward flow; (b) inward flow.



Fig. 17. Residual net sediment flux Q(r) and net deposition M(r) under radial seiching flow, for case (i) with n= 1 (a, c) and for n= 3 (b, d). The

maximum bed level change for n= 1 is AẐeAc 8 mm, and for n= 3 is AẐeAc 1.3 cm, each over 1 hour.
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growing concentration maximum on the inflow causes

a peak inward flux which increases strongly with

decreasing r; however, the peak outward flux varies

more weakly over this range because during the

erosive phase, lower concentrations are being

advected outwards from the region near r0*. The effect

of this is that the inward fluxes eventually become

large enough to overwhelm the outward fluxes and

lead to a net inwards movement of sediment in this

region. Both outward and inward fluxes gradually

decrease with decreasing r as mean concentrations

fall, and so the net flux decays towards zero at r = r0*.

Despite the differences in the patterns of net flux

for the two values of n, the overall patterns of erosion

and deposition (Fig. 17c and d) are rather similar, with
material being eroded from an annular region just

outward of the position of maximum run-down and

deposited principally higher up the sides of the basin.

The major difference which the erosion formulation

makes is to the amount of material which is deposited

towards the centre of the basin: for n = 1, this quantity

is practically negligible and is deposited far inwards,

while for n = 3, a noticeable ‘lip’ of deposited material

forms just inwards of the eroded annulus. If these

transport patterns persist for long periods, we might

expect the formation of a formation resembling a

beach step around the mean position of the shoreline;

however, it is likely that before such a feature forms,

the hydrodynamics will be significantly affected by

the more complex bathymetry.



stal Engineering 49 (2003) 43–70 65
4.2.2. Effect of varying the particle size

The general trends in the net sediment transport

as the parameters a and ue are varied are the same

as under axial flow and may be explained in the

same way: we therefore omit them here for brevity.

However, it is again valuable to consider the vari-

ation of the transport patterns with D̂s: this is shown

in Fig. 18.

The broad pattern of erosion and deposition is

qualitatively the same for all sediment sizes, with

significant deposition towards the outside of the basin,

slight deposition nearer the centre, and an eroded

annulus in-between. However, it varies significantly

in both magnitude and position as D̂s is varied.

As D̂s is increased, the critical velocity for erosion

ue increases somewhat, and so the inner boundary of

the active region r = r0* moves outwards. (This is

particularly evident for the coarser grain sizes, cases

(ii) and (iv) in Fig. 18.) At the same time, the bed

exchange rate E increases strongly, so suspension lag

D. Pritchard, A.J. Hogg / Coa
Fig. 18. (a) Residual net sediment flux Q(r) and (b) net deposition M(r) und

line); case (iii) (dotted line); case (iv) (heavy dashed line). The exponent
becomes more effective in deeper water. The net effect

of these two processes is to compress the pattern of

erosion and deposition into a narrower annulus; the

reduced distance between the eroded region and the

inner boundary also encourages deposition towards

the centre of the basin at maximum run-down, so that

for the coarsest sediment considered (case (ii) in Fig.

18), this deposit is comparable to that in the outer part

of the basin.

It is interesting to note that despite the different

hydrodynamics, the rates of erosion and deposition

are comparable to those under axial flow (Section 3).

The maximum rate of bed level change again occurs

for D̂ s = 0.2 mm (case (iv) in Fig. 18) and is again

approximately 5 cm over an hour of seiching. This

supports the consistency of this approach as a way of

estimating the morphodynamical importance of seich-

ing motions, even when the precise details of the

hydrodynamics are rather more complex than those

considered here.
er radial seiching flow, for case (i) (solid line); case (ii) (light dashed

n= 1 in each case.
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5. Discussion and conclusions

The principal finding of this study is that a char-

acteristic pattern of net sediment transport is associ-

ated with each of the modes of oscillation considered.

When flow is parallel to one axis of the basin,

material is transported exclusively from deeper to

shallower parts of the basin, leading to erosion in

the interior and deposition around the edges of the

basin. In contrast, radial flow leads to slight deposi-

tion in the centre of the basin and substantial depo-

sition around the edges, while material is eroded from

the annular region in-between.

This general pattern of transport is highly robust to

most of the physical parameter values as well as to the

sediment entrainment relation employed, suggesting

that it has genuine physical significance. Both the net

rate and, to a lesser extent, the spatial pattern of

erosion and deposition are influenced strongly by

the sediment grain size D̂s, which controls the time

taken for the suspended sediment concentration to

respond to changes in the fluid velocity. This offers

the possibility of seiching as a mechanism to explain

the segregation of different types of sediment; we note

that the behaviour of a multimodal sediment regime

could be addressed directly using the method de-

scribed here.

The patterns of sediment transport described here

may be explained in terms of the mechanisms of

suspension lag. When offshore concentrations are

maintained, so there is a supply of sediment to the

nearshore region, the settling of material from suspen-

sion at high water tends to move sediment from deeper

to shallower regions, as occurs in a number of other

coastal situations (Nichols and Biggs, 1985; Pritchard

and Hogg, submitted for publication (a)). However,

when offshore concentrations are low or vanished, for

example, due to the presence of a local minimum in the

velocity field, the lag effect tends to import sediment

into the low-concentration region as well: a similar

process was predicted under cross-shore standing

waves by Pritchard and Hogg (submitted for publica-

tion (b)). Because deeper water in the offshore region

leads to a slower sediment response at slack water, the

offshore flux of sediment in this region is rarely as

strong as the onshore flux in the nearshore.

The exact solutions presented here apply only to a

highly idealised bathymetry. However, the mechanism
which they elucidate is clearly rather more general.

We believe therefore that it offers insight into the role

which seiching motions may play in the morphody-

namics of enclosed bodies such as lagoons and

harbours even when the bathymetry is more complex.

In particular, it offers a route by which fine sediment

may be transported up the bed slope of the basin,

possibly returning back to the deeper regions in the

form of bedload (or, for cohesive sediment, of down-

slope flows of fluid mud).

The solutions presented here have both quantitative

and qualitative applications. They allow the morpho-

dynamic importance of seiching motions to be esti-

mated by providing quantitative estimates of the

amount of transport which suspension lag can produce

under these flows: we find that seiches may be an

especially important mechanism for sediment in the

size range of fine sand, for which bed level changes

may be as much as several centimetres an hour.

Additionally, these solutions offer a means by which

observed erosion and deposition patterns may be

linked to the principal modes of seiching. This

supplies the engineer with a qualitative tool to sup-

plement numerical simulations in determining the

processes which lead to a given desirable or undesir-

able pattern of sedimentation.

From the perspective of numerical modelling, the

solutions presented here appear highly suitable as test

cases against which to validate numerical schemes. In

particular, they complement Thacker’s hydrodynamic

solutions which, with their moving shoreline in two

dimensions, already present a stern test of such

schemes. The well-defined equilibrium concentration

at the shoreline and the sharp concentration maximum

provide a good test of the numerical representation of

the concentration field in this region, and the ease

with which net fluxes Q may be obtained offers a

simple means of verifying the global predictions of a

numerical model of sediment transport. They there-

fore represent a useful complement to the hindcasting

studies which are generally used to validate sediment

transport simulations. (We further note that the meth-

od described here for constructing exact solutions is

not restricted to the description of sediment entrain-

ment and deposition described here, but may be

extended to a wide range of more complex models.)

Some interesting possibilities exist to extend the

current study. Under certain restrictions (for example,
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requiring a planar rather than a quadratic free surface),

the governing equations from which Thacker’s (1981)

solutions arise become linear, and so two or more

basic modes of oscillation may be combined to give a

compound mode. For example, in an elliptical basin,

solutions are available in which the fluid sloshes

backward and forward in the x-direction with a dimen-

sionless frequency xx ¼
ffiffiffi
2

p
and in the y-direction

with a dimensionless frequency xy ¼
ffiffiffi
2

p
D̂y=D̂x ,

while the free surface remains planar. In principle,

exact solutions for sediment transport under these

flows could be constructed and investigated in the

same manner as the current paper. In practice, while it

is easy to cast the hydrodynamics in Lagrangian form,

the bookkeeping required to locate the appropriate

erosional and depositional phases may become pro-

hibitively complicated. (The reader is referred to the

study by Shapiro (1996) for an illustration of the fluid

trajectories which must be considered.) Results could,

however, readily be obtained by numerical integration

of the governing equations in Lagrangian form (as for

Pritchard and Hogg, submitted for publication (b)),

and this would make an interesting topic for further

investigation.
Acknowledgements

AJH acknowledges the financial support of

EPSRC; DP acknowledges the support of EPSRC

and of the BP Institute. We would like to thank

two anonymous referees for their constructive

comments.
Appendix A. Constructing periodic solutions for

suspended sediment concentration

We write the equation governing the concentration

history of a fluid element labelled by x0 as

dcL

dt
ðt; x0Þ ¼ aðt; x0Þ � bðtÞcLðt; x0Þ: ð50Þ

The only constraint this places on the bed exchange

terms qe and qd is that qd is proportional to c. In

particular, it could readily be applied to models which

include a time-varying vertical concentration profile
in each fluid element, so that Cb is explicitly a

function of t.

Eq. (50) is linear in cL, and so the solution

satisfying the initial condition cL(t0) = c0 may be

written as

cLðt; t0Þ ¼ Hðt; t0Þ þ c0Xðt; t0Þ; ð51Þ

where

Hðt; t0Þ ¼ exp �
Z t

t0

bðtVÞdtV
� �

�
Z t

t0

exp

Z s

t0

bðtVÞdtV
� �

aðsÞds ð52Þ

and

Xðt; t0Þ ¼ exp �
Z t

t0

bðtVÞdtV
� �

: ð53Þ

We then construct a periodic solution by requiring

c(t) = c(t+ T), where T is the period: rearranging for

c(t), we then obtain

cðtÞ ¼ Hðt þ T ; tÞ
1� Xðt þ T ; tÞ : ð54Þ

Depending on the exact forms of a(t) and b(t), it

may not be possible to express the integrals X(t, t0)

and H(t, t0) in terms of elementary functions. (When

this is possible, as in Section 3, it is generally

achieved by dividing the period into separate erosion-

al and deposition intervals and obtaining H and X
corresponding to the appropriate forms of a and b in

each interval.) However, it is generally straightfor-

ward to evaluate it numerically. The solutions plotted

in this paper were evaluated using standard integration

routines (Press et al., 1992) implemented in FOR-

TRAN 77 or in the computer algebra packages MAPLE

6 and 7.
Appendix B. Quantifying the effects of friction

Throughout this study, we have neglected the effect

of friction on the hydrodynamics and its consequences

for sediment transport. This neglect is based on the

fact that the ratio of frictional terms to advective

acceleration terms in the momentum equation is



D0ðr; tÞ ¼
2Ka2r2sin2

ffiffiffi
8

p
tffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

ð1� acos
ffiffiffi
8

p
tÞ � ð1� a2Þr2

" #�����
� ð1� acos

ffiffiffi
8

p
tÞ2

r½2asin2
ffiffiffi
8

p
t � 4ða � cos

ffiffiffi
8

p
tÞ�

" #����� ð58Þ
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generally small. Assuming a Chezy drag law, we can

define this ratio as

Dðx; tÞu KAuA2=h

ADu=DtA
; where

Du

Dt
¼ B

Bt
þ ðu:rÞu:

ð55Þ

The condition D(x, t)>e, for some small constant e,

then defines the region of the fluid domain where the

approximation of neglecting friction is formally inac-

curate—usually, this region is a narrow strip near the

shoreline.

Without explicitly calculating hydrodynamic solu-

tions which incorporate friction, we cannot precisely

quantify the effect which it may have on the sediment

transport processes. However, we can obtain a first-

order estimate D0(x, t) by evaluating D using just the

frictionless hydrodynamic solutions. Typically, this

provides a considerable overestimate of the impor-

tance of friction around points of maximum velocity,

when the frictionless advective acceleration term

vanishes: in a solution for the frictional hydrodynam-

ics, the friction would induce a nonzero acceleration

which would partially balance it. However, by using

this overestimate, we can obtain a rather unforgiving

test of our predictions for sediment transport. The

simplest method is simply to calculate the net flux Q

disregarding all sediment transport which occurs in

the region D0>e and compare it with the net flux

which occurs when friction is neglected to determine

how much of the net transport occurs in the region

where friction is negligible. If the majority of sedi-

ment transport occurs in this region, and if the pattern

of net transport is substantially unaltered by neglect-

ing the more frictional region, then we may conclude

that our frictionless solutions offer useful insight into

the more complex dynamics which would result when

friction was included.

B.1. Axial flow in an elliptical basin

Under the axial flow of Section 3, the quantity

D0(x, t) is given by

D0ðx; tÞ ¼
1 KAsin2xt
����

����; ð56Þ

h cosxt
and so the condition D0>e corresponds to the region

AxshðtÞ � xAV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y 2

p

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� KA

eð1� Y 2Þ
sin2xt

cosxt

s������
������: ð57Þ

Employing Eq. (57), we find that the sharp shore-

line peak in c evident in Fig. 4 lies mostly in the

region where Dz 0.1 during most of the oscillation,

even for Y= 0, and so we may expect the effect of

friction to be noticeable in the concentration field and

to significantly reduce the maximum concentrations in

the nearshore region.

However, the effect on the net fluxes is less

profound: because of the decreasing depth of the

fluid towards the shoreline, the sediment load ch

does not have a local maximum near the shoreline,

and in fact tends to zero there, contributing only

weakly to the net flux. Inspection of plots of q(x, Y, t)

and of Q(x,Y ) reveals that the majority of net

sediment transport takes place in regions where

D0 < 0.2, and that the distribution of net sediment

transport is qualitatively unaltered even if the region

in which D0>0.2 is entirely omitted from the inte-

gration; the only exception to this is close to the edge

of the basin Yc 1, where fluid remains shallow

throughout the oscillation and we may expect the

hydrodynamics to differ somewhat from the friction-

less solutions of Thacker (1981).

Overall, despite our reservations about the validity

of our solutions close to the shoreline, we can be

reasonably confident that the introduction of friction

to the model would involve only a small correction to

the pattern of net sediment transport under this mode of

flow.

B.2. Radial flow in a circular basin

Under the radial flow described in Section 4, we

may evaluate the quantity D0(r, t) as
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It is again straightforward, though algebraically cum-

bersome, to solve the equation D0 = e for r and thus to

identify the region in which frictional effects may be

significant.

Referring to our reference case (Fig. 15), it is easy

to determine that, as in Section 3, the sharply defined

concentration maximum lies largely within the fric-

tional region, and so we may expect this feature to be

noticeably reduced by frictional effects. However, the

total quantity of sediment which this represents is not

substantial.

We may also, as before, consider the effect on the

net fluxes of neglecting transport in regions where

D0>e. As before, we find that this may reduce the

peak values of the integrated fluxes Q somewhat, but

does not substantially affect the pattern of transport.

The effect is strongest for low values of E, for which

lag effects are associated most strongly with very

shallow water; it is therefore smallest when the

sediment fluxes involved are most morphodynami-

cally important.
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