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Rapid granular flows down inclined planar
chutes. Part 1. Steady flows, multiple solutions

and existence domains
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The highly agitated flow of grains down an inclined chute is modelled using a kinetic
theory for inelastic collisions. Solutions corresponding to steady, fully developed
flows are obtained by solving numerically a nonlinear system of ordinary differential
equations using a highly accurate pseudospectral method based on mapped
Chebyshev polynomials. The solutions are characterized by introducing macroscopic,
depth-integrated variables representing the mass flux of flowing material per unit
width, its centre-of-mass and the mass supported within the flowing layer, and the
influence of the controlling parameters on these solutions is investigated. It is shown
that, in certain regions of parameter space, multiple steady solutions can be found for
a specified mass flux of material. An asymptotic analysis of the governing equations,
appropriate to highly agitated flows, is also developed and these results aid in the
demarcation of domains in parameter space where steady solutions can be obtained.

1. Introduction
Gravity-driven flows of granular material occur extensively in industrial and

environmental settings and there are pressing needs to develop predictive models
of their motion. In industry, manufacturing processes involving grains often operate
below the design performance: an accurate physical description of granular flows
would aid in the design and operation of grain handling processes. In nature, the
familiar examples of snow avalanches, rockfalls and pyroclastic flows can have a
devastating effect on human life. As population pressure continues to increase
habitation in areas at risk from these flows, accurate modelling is required to mitigate
their impact. However, the understanding of granular media remains incomplete and
there is currently no continuum model capable of describing granular flow across the
observed regimes (Jaeger, Nagel & Behringer 1996; Forterre & Pouliquen 2008).

When the granular assembly is highly agitated the grains interact predominantly
through instantaneous collisions. An analogy can be made between the uncorrelated
grain motion and the motion of molecules in a gas. By drawing on this analogy and
adapting the kinetic theory of dense gases (Chapman & Cowling 1970) to inelastic col-
lisions, granular kinetic theories have been developed to describe the bulk flow in this
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collisional regime (Jenkins & Savage 1983; Lun et al. 1984; Jenkins & Richman 1985;
Campbell 1990; Sela & Goldhirsch 1998; Garzó & Dufty 1999; Goldhirsch 2003).

The kinetic theory description introduces the ‘granular temperature’ as the kinetic
energy associated with fluctuations, and it is a measure of the energy content of the
flow (Campbell 1990). Since energy is lost in inelastic collisions, in the absence of a
supply of energy, the granular temperature rapidly falls and the grains form high-
density clusters with enduring particle contacts (McNamara & Young 1992, 1994). In
order to maintain the collisional flow it is therefore necessary to supply energy to the
grain assembly. In a shearing flow of grains, fluctuation energy is produced by shear
work and transported by the motion of grains, as well as through particle collisions.
A balance of production, conduction and dissipation of granular temperature can
prevent inelastic collapse and allows a rapid flow to persist.

Inclined planar chutes present a simple geometry for laboratory experiments
(examples include Savage 1979; Ahn, Brennen & Sabersky 1991; Drake 1991;
Azanza, Chevoir & Moucheront 1999; Forterre & Pouliquen 2001), which have been
performed extensively to guide the development of continuum models and to assess
the predictions of these models (see e.g. Johnson, Nott & Jackson 1990; Richman &
Marciniec 1990; Ahn, Brennen & Sabersky 1992; Anderson & Jackson 1992;
Forterre & Pouliquen 2002; Mitarai & Nakanishi 2004). These studies demonstrate
the rich character of solutions corresponding to steady, fully developed flows. Here, in
Part 1, we calculate the steady profiles of velocity, granular temperature and volume
fraction and investigate the influence of the controlling parameters on the solutions
for the flow. Through our development of a Chebyshev pseudospectral method, which
we couple to a parametric continuation algorithm, we can calculate steady solutions
to high accuracy and with efficiency, and vary the controlling parameters to elucidate
the domains in parameter space where steady solutions exist, and the character
of these solutions. Interestingly, we find that, in some regions of parameter space,
multiple solutions exist for a fixed mass flux of material. For some parameter values,
it is possible to have three solutions for a specified mass flux; for others, there is a
minimum mass flux for which solutions can be obtained and above this minimum
there are always two solutions for a specified mass flux, whereas in some regions of
parameter space only a single solution is possible. Furthermore, we demonstrate the
robustness of the steady solutions to changes in the continuum model, in particular,
assessing the influence of the form of the boundary conditions employed to model
the free surface of the flow.

Comparisons between existing experiments and solutions of the kinetic theory
continuum model are inevitably limited by the measurement of quantities at sidewalls
rather than interior measurements of the velocity, density, pressure and stress fields.
We therefore characterize our solutions by macroscopic, depth-integrated variables
and focus particular attention on the relationship between the flow depth and the
imposed flux of material, finding multiple solutions for a fixed mass flux of material.

Recent theoretical studies of granular chute flows have been focused on the dense
flow regime (Jenkins 2006, 2007; Kumaran 2008) with the aim of enhancing the basic
kinetic theory to provide a continuum model capable of describing the features of
dense granular flows elucidated by discrete element modelling (Silbert et al. 2001,
2002, 2007; Mitarai & Nakanishi 2005). These extensions are appropriate for dense
flows, indeed Jenkins (2007) alters the basic kinetic theory only when the volume
fraction of grains ν > 0.49. At concentrations below this value, Jenkins (2007) applies
the constitutive relations from the basic kinetic theory where this simple theory is
thought to be adequate to describe rapid granular flows. We limit our study to these
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relatively dilute flows, and employ the constitutive relations provided by the basic
kinetic theory of Lun et al. (1984) and Jenkins & Richman (1985), which have been
shown to reproduce many of the features of rapid granular flows seen in experiments
(Ahn et al. 1991; Azanza et al. 1999; Hanes & Walton 2000) and discrete element
simulations (such as Campbell & Brennen 1985; Walton 1993; Zheng & Hill 1996;
Hanes & Walton 2000). We anticipate that the methodology we develop in this study
could be readily applied to the more elaborate models for dense granular flows.

This paper is organized as follows. In § 2 the continuum model, derived from
a granular kinetic theory, is presented. Solutions corresponding to steady, fully
developed flows are obtained numerically in § 3 through the development of a
mapped Chebyshev pseudospectral method. We focus particular attention on the
characterization of the solutions through macroscopic, depth-integrated variables,
in particular, investigating the relationship between the mass flux of material and
the centre-of-mass of the flow. While the majority of our analysis is performed with
asymptotic free surface conditions, in § 3.7 we employ the surface boundary conditions
of Jenkins & Hanes (1993) which enforce conditions at an interface between the
collisional flow and saltating grains and show that our results are robust to this
change. We also show in the Appendix that the modified Fourier form of the heat
flux has little influence for the inclined chute flows. Steady solutions can be found
only in certain regions of parameter space and in § 4 we predict the existence domains
with the aid of an asymptotic analysis of the governing equations, appropriate for
high temperature, dilute flows. A summary of our results is given in § 5.

In Woodhouse & Hogg (2010, subsequently referred to as Part 2) we go on to
assess the linear stability of the steady solutions to small perturbations in three
dimensions, extending the analysis of Forterre & Pouliquen (2002) and Mitarai &
Nakanishi (2004). Here the highly accurate polynomial approximation of the steady
solutions, which we obtain via the Chebyshev pseudospectral approach, greatly aids
the linear stability analysis. Our analysis shows the existence of a continuous spectrum
of eigenvalues which appears among the discrete normal mode eigenvalues and which
leads to the requirement of high accuracy in the numerical approximation of the steady
solutions and the perturbations. We demonstrate the existence of three qualitatively
different forms for the unstable perturbations, and investigate the linear stability of
steady solutions as the controlling parameters are varied, with a particular focus on
the linear stability along macroscopic flow curves.

2. Kinetic theory continuum model of granular flows
In this section we briefly present the kinetic theory continuum model of Lun et al.

(1984) (derived independently by Jenkins & Richman 1985) which we adopt in this
study to describe the highly agitated flow of grains down an inclined planar chute.
Granular kinetic theory has been extended to include the effects of particle roughness,
either phenomenologically (Johnson & Jackson 1987) or by including friction in
the micromechanical description (Jenkins & Zhang 2002), and more recently to
incorporate the emergence of particle chains and clusters (Jenkins 2006, 2007). While
it is possible that these extensions will enhance the agreement with experiments, the
simple theory has been applied more widely (e.g. in the recent studies of Forterre &
Pouliquen 2002 and Mitarai & Nakanishi 2004) and appears capable of describing
many of the key features of rapid granular flows. However, the rich parameter space
remains poorly investigated. For example, Ahn et al. (1992) employ a kinetic theory
continuum model to describe steady, fully developed flows down inclined chutes
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and classify their solutions into three types: flows which are productive throughout
the interior, flows which are dissipative throughout the interior and flows which have
productive regions and dissipative regions. However, it is not clear how these solutions
are controlled by the material parameters and, in addition, Ahn et al. (1992) employ
base boundary conditions which fix the mean field variables at the base rather than
enforcing the physical mass, momentum and energy flux conditions we adopt here.
Productive and dissipative flows have also been found by Anderson & Jackson (1992)
and by determining solutions analytically for simplified constitutive relationships,
in the regime of high density, the character of solutions can be elucidated as the
controlling parameters are varied. In § 4 we determine the existence of solutions
as the governing parameters are varied. To this end we show that it is useful to
analyse dilute highly agitated flows, and we determine asymptotic representations of
the granular temperature, velocity and volume fraction of particles in this regime.
Our analysis provides a method of determining whether a given set of controlling
parameters results in productive or dissipative flows, and yields results that share
some features with that of Anderson & Jackson (1992).

The chute flow study of Richman & Marciniec (1990), in which an approximate
analytical solution of a kinetic theory continuum model is developed, demonstrates
the existence of two steady flow solutions for a fixed mass flux of material, one a dilute,
fast and deep flow and the other dense, slow, and shallow. Multiple solutions have
been observed in the chute flow experiments of Johnson et al. (1990) and obtained in
kinetic continuum models (Johnson et al. 1990; Anderson & Jackson 1992; Nott &
Jackson 1992). The theory of Johnson et al. (1990) includes a phenomenological
extension of the kinetic theory to account for frictional interactions between grains,
and Anderson & Jackson (1992) compare this model with a purely collisional kinetic
continuum description. Anderson & Jackson (1992) suggest the collisional theory
predicts a maximum flow rate at which steady solutions are possible, which is not
observed in experiment (Johnson et al. 1990; Hanes & Walton 2000). When using the
frictional extension to the collisional theory, Anderson & Jackson (1992) show the
maximum flow rate is no longer predicted and suggest that the frictional contribution
is necessary to obtain solutions with the behaviour observed in experiments. This is
in contrast to the results we obtain, where no maximum flow rate is predicted by our
purely collisional continuum description.

2.1. Governing equations

We model a rapid granular flow as a continuum, with ‘hydrodynamic’ equations
describing the evolution of the mean field variables. These mean field variables are
the density ρ, the mean velocity u = (u, v, w) and the granular temperature T = 〈C2〉/3
where C represents the fluctuation velocity of grains away from the mean velocity
and 〈. . . 〉 denotes an average over microscopic (grain-scale) configurations. The
continuum equations governing the time evolution and spatial variations of the mean
field variables under a gravitational body force are

Dρ

Dt
= −ρ∇ · u, (2.1)

ρ
Du
Dt

= ρg − ∇ · P, (2.2)

3

2
ρ

DT

Dt
= −P : ∇u − ∇ · q − γ, (2.3)
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where D/Dt = ∂/∂t + u · ∇ denotes the advective derivative, g is the acceleration due
to gravity, P is the pressure tensor, q is the flux of granular temperature (which we
refer to as the heat flux) and γ is the dissipation due to inelastic collisions. Equations
(2.1) and (2.2) are the familiar equations of mass and momentum conservation,
respectively. Equation (2.3) represents the conservation of energy and describes the
changes in the granular temperature due to the production by shear work (the term
−P : ∇u), the conduction (−∇ · q), and dissipation in collisions (−γ ).

Kinetic theory provides constitutive relations to close the system of governing
equations by expressing the pressure tensor, the heat flux and dissipation as functions
of the mean field variables. The constitutive theory of Lun et al. (1984) gives the
pressure tensor and heat flux in the form

P = (p − ξ (∇ · u)) I − 2ηS, (2.4)

q = −K∇T + K∗∇ν, (2.5)

S =
1

2
(∇u + ∇uT) − 1

3
(∇ · u) I (2.6)

where I is the identity matrix and S is the deviatoric part of the symmetric strain rate
tensor, and where ν = ρ/ρp is the volume fraction with ρp the material density of a
grain. The pressure tensor has the familiar form from Newtonian fluid mechanics,
with the shear stresses linearly proportional to the strain rate. However, for a rapid
granular flow the viscosity is dependent on the local density and granular temperature.
The heat flux is a modified Fourier conduction law, with a term proportional to the
gradient of ν. The kinetic theory of Lun et al. (1984) results in K∗ � 0, a diffusion
along density gradients from diffuse to dense regions. In the studies of Forterre &
Pouliquen (2002) and Mitarai & Nakanishi (2004), this additional term is discarded
with the justification that it has little effect on the steady flow solutions but increases
the algebraic complexity of the system. We retain this term in this study but investigate
the effect of setting K∗ ≡ 0 in the Appendix.

The pressure p, viscosity η, bulk viscosity ξ , conductivities K and K∗ and the dis-
sipation γ are given as functions of the volume fraction and granular temperature as

p = ρpg1(ν)T , η = ρpdg2(ν)T 1/2, ξ = ρpdg6(ν)T 1/2,

K = ρpdg3(ν)T 1/2, K∗ = ρpdg4(ν)T 3/2, γ =
ρp

d
g5(ν)T 3/2,

⎫⎬
⎭ (2.7)

where d is the grain diameter and the dependence on the volume fraction has been
collected into dimensionless functions gi(ν) given in table 1 (Lun et al. 1984), each
of which depend on the radial distribution function g0(ν). We employ the radial
distribution function proposed by Lun & Savage (1986), as recalled in table 1, which
diverges as the volume fraction approaches the maximum volume fraction ν∗ (we
take ν∗ = 0.62 in the following analysis). The constitutive functions introduce the
coefficient of restitution between particle collisions e, with 0 <e � 1. Note that K∗ is
proportional to 1 − e, so vanishes in the elastic limit, and γ is proportional to 1 − e2,
the ratio of the pre-collision and post-collision kinetic energy of colliding grains. The
kinetic theory of Lun et al. (1984) is appropriate for nearly elastic grains.

2.2. Boundary conditions

The governing equations are augmented with conditions to account for the effect of
boundaries on the flow domain. Observations of granular flows show a slip velocity at
solid walls, and shear work produces velocity fluctuations and a heating of the flow.
However, inelastic collisions between flowing grains and the boundary wall dissipate
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g0 =

(
1 − ν

ν∗

)−5ν∗/2

g1 = ν [1 + 2(1 + e)νg0]

g2 =

√
πν (5 + 4(1 + e)νg0)

120(3 − e)(1 + e)νg0

[5 + 2(1 + e)(3e − 1)νg0] +
4

5
√

π
(1 + e)ν2g0

g3 =

√
π (5 + 6(1 + e)νg0)

4(1 + e)(49 − 33e)g0

[
5 + 3(1 + e)2(2e − 1)νg0

]
+

2√
π

(1 + e)ν2g0

g4 =
3
√

π (5 + 6(1 + e)νg0)

4(49 − 33e)νg0

e(1 − e)
d

dν
(ν2g0)

g5 =
12√

π
(1 − e2)ν2g0

g6 =
4

3
√

π
(1 + e)ν2g0

Table 1. Dimensionless constitutive functions gi(ν; e), including the radial distribution
function g0(ν; ν∗).

kinetic energy. It is therefore possible to obtain a flow where the wall is a net source
of granular temperature (which we refer to as a productive boundary) whereas in
another situation the wall becomes a net sink of granular temperature (a dissipative
boundary). While boundary conditions at solid walls have been proposed based on
heuristic arguments (Johnson & Jackson 1987; Johnson et al. 1990), Richman (1988)
derives boundary conditions based on the kinetic theory with assumptions consistent
with the constitutive relations of Lun et al. (1984), and we adopt these boundary
conditions in this study.

We consider a solid boundary, with an inward pointing unit normal n, roughened
by randomly fixing hemispherical grains. Such roughened boundaries are typical in
experimental realizations (Forterre & Pouliquen 2002) to maintain an agitated flow at
the wall. The roughness of the boundary is quantified in terms of the average spacing
of the attached grains, sw , and their diameter, dw , through the boundary roughness
parameter, r , defined by

r =
sw + dw

d + dw

. (2.8)

The boundary is roughened by increasing r , although the range of r is restricted
to prevent grains making contact with the flat boundary. In the following we take
dw = d , so the grains attached to the wall have the same size as those within the flow,
and r is restricted to 1/2 � r �

√
3/2.

We define us = U − u to be the slip velocity, with U the velocity of the boundary
and u the velocity of grains at the boundary. A balance of the momentum in the flow
adjacent to the solid boundary with the momentum generated by the boundary gives

M = P · n, (2.9)

where M is the boundary traction force with components determined by Richman
(1988) as

Mi = ρpνχT

[
ni +

√
2

π

usi√
T

κ +

√
2

π

d̄√
T

∂uk

∂xj

(A(ν)Jijk + nj Iik)

]
, (2.10)
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where d̄ = (d + dw)/2, κ is a function of the roughness parameter,

κ(r) =
2

3

(
2

1 +
√

1 − r2
−

√
1 − r2

)
, (2.11)

the function A(ν) is given by

A(ν) = 1 +
dπ

12
√

2d̄

(
1 +

5

8νg0(ν)

)
(2.12)

and the tensors I and J have components

Iik = (κ + 2
√

1 − r2)nink + κ(τiτk + ti tk),

Jijk = (r2 − 2)ninjnk − 1
2
r2[ni(τj τk + ti tk) + nj (τkτi + tkti) + nk(τiτj + ti tj )],

}
(2.13)

where the vectors n, τ , t form an orthonormal triad. The summation convention is
employed in (2.10). The function χ is the ‘exclusion factor’ which accounts for the
proportion of grains in the flow which cannot collide with the wall due to obstruction
by other grains, and as yet remains undetermined.

An energy balance at the wall gives,

q · n = M · us − D, (2.14)

where D is the dissipation of granular temperature due to collisions between flowing
grains and the hemispheres attached to the boundary. If ew is the coefficient of
restitution characterizing these collisions, Richman (1988) determines the boundary
dissipation as

D =

√
2

π

2(1 − ew)

1 +
√

1 − r2
ρpνχT 3/2. (2.15)

In the derivation of the macroscopic boundary closures from a micromechanical
model of collisions between flowing grains and a bumpy boundary, Richman (1988)
makes the assumption that collisions between flowing grains and the boundary are
nearly elastic, which is consistent with the assumption of nearly elastic collisions in
the derivation of the constitutive relations (Lun et al. 1984). In addition, Richman
(1988) assumes that the slip velocity is small in comparison to the fluctuation velocity
(given by T 1/2). In many of the solutions we obtain this condition is not strictly
fulfilled. However, the careful derivation of the boundary conditions via a kinetic
theory approach is preferred to the heuristic boundary conditions of Johnson &
Jackson (1987).

In addition to the conditions at the solid boundary, we require boundary conditions
to describe the free surface. In a rapid granular flow there is no material surface
but a diffuse saltation layer of grains thrown from the main body of the flow.
While the kinetic theory is strictly not appropriate in this regime, since the grains
follow collisionless ballistic trajectories, several studies have applied the continuum
model on a semi-infinite domain by employing asymptotic boundary conditions
appropriate for vanishingly small volume fractions (Ahn et al. 1992; Azanza et al.
1999; Forterre & Pouliquen 2002; Mitarai & Nakanishi 2004). For the majority of the
analysis conducted in this study, we employ the asymptotic free surface conditions
and pose the continuum equations on a semi-infinite domain, demanding

ρ → 0, P → 0 and q · ẑ → 0 as z → ∞, (2.16)

where z represents the unbounded coordinate and ẑ the unit vector in that direction.
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z

x

g

θ

n

z = 0

dw

d

sw

Figure 1. Coordinate system for a granular chute flow.

An alternative surface boundary condition has been derived by Jenkins & Hanes
(1993) by identifying the point in the flow at which the mean free time between
collisions equals the time for a grain thrown free of the collisional bulk to follow
a ballistic trajectory and re-enter the bulk flow. The freely flying grain gains energy
during the ballistic flight, and the interface becomes a source of heat for the collisional
bulk flow. The conditions obtained by Jenkins & Hanes (1993), which we refer to as
the interface surface conditions, specify the normal stress and the energy fluxes due
to the overlaying freely flying grains (see § 3.7). In § 3.7 we examine the influence of
the free surface conditions on the steady flow solutions, showing that the interface
surface conditions result in only a small quantitative change in the solution profiles.

3. Steady, fully developed chute flows
3.1. Steady flow equations

We consider the gravity-driven free surface flow of grains down a planar chute
inclined at an angle θ to the horizontal (figure 1). Dimensionless variables are formed
by scaling lengths by the grain diameter d , time by d(gd cos θ)−1/2 and density by the
grain density ρp . In the following we use dimensionless variables. The transformation
to dimensionless variables leaves four parameters which we identify as the particle–
particle coefficient of restitution e, the particle–wall coefficient of restitution ew , the
boundary roughness r and the chute slope tan θ .

For steady, fully developed flow we seek solutions for the volume fraction, mean
downslope velocity and granular temperature which are dependent only on z, the
distance above the base, and for such a flow the mass conservation equation (2.1)
is satisfied with w ≡ 0. The conservation of momentum (2.2) gives equations in the
downslope and normal directions

dPxz

dz
= ν tan θ, (3.1)

dPzz

dz
= −ν, (3.2)

respectively, which can be combined and integrated immediately (employing the
stress free condition at the free surface, Pxx → 0 and Pxz → 0 as z → ∞) to obtain
Pxz = − tan θP zz. We therefore obtain the Coulomb-like relationship between the
shear and normal stresses through the flow. The heat flux in the fully developed flow
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occurs only in the direction normal to the plane, so we set q = q ẑ, and the equation
of energy conservation (2.3) becomes

dq

dz
= −Pxz

du

dz
− γ. (3.3)

The constitutive relations of Lun et al. (1984), for the fully developed flow, reduce
to

Pxx = Pzz = g1T , (3.4)

Pxz = Pzx = −g2

√
T

du

dz
, (3.5)

q = −g3T
1/2 dT

dz
+ g4T

3/2 dν

dz
, (3.6)

γ = g5T
3/2, (3.7)

and on substituting these into (3.1)–(3.3) we obtain a system of ordinary differential
equations:

d

dz
(g1T ) = −ν, (3.8)

d

dz

(
g4T

3/2 dν

dz
− g3T

1/2 dT

dz

)
=

(
(g1 tan θ)2

g2

− g5

)
T 3/2, (3.9)

du

dz
=

g1 tan θ

g2

√
T . (3.10)

The equation for the mean velocity, (3.10), is decoupled and we show below that the
boundary condition for the velocity is also decoupled. Thus the velocity field can be
obtained once the solutions for the volume fraction and granular temperature fields
are found.

The momentum balance at the base boundary, (2.9), gives two conditions,

Mx = Pxz, (3.11)

Mz = Pzz, (3.12)

and the components of the boundary traction force given by (2.10), for a fully
developed chute flow, become

Mx =

√
2

π
νχ

√
T

(
κus +

(
κ − 1

2
r2

) du

dz

)
, (3.13)

Mz = νχT , (3.14)

where us = −u(0) since the boundary is stationary. The momentum balance normal
to the base boundary (3.12) can then be used to determine the exclusion factor as
χ(ν) = g1(ν)/ν. By combining (3.10), (3.11) and (3.13) we find the slip velocity at the
base boundary is given by

us = −F1

√
T at z = 0, (3.15)

where

F1 =
tan θ

κ

(√
π

2
+

(
κ − 1

2
Ar2

) g1

g2

)
. (3.16)
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g0 = g00 + g01ν + · · · g00 = 1 g01 = 5/2

g1 = g11ν + · · · g11 = 1

g2 = g20 + · · · g20 =
5
√

π

24(3 − e)(1 + e)

g3 = g30 + · · · g30 =
25

√
π

4(1 + e)(49 − 33e)

g4 = g40 + · · · g40 =
15

√
πe(1 − e)

2(49 − 33e)

g5 = g52ν
2 + · · · g52 =

12√
π

(1 − e2)

Table 2. Leading asymptotic behaviour of the dimensionless constitutive functions gi(ν; e),
including the radial distribution function g0(ν; ν∗), for small volume fraction.

The energy balance at the base boundary is q = Mxus − D, which can be written as

−g3

√
T

dT

dz
+ g4T

3/2 dν

dz
= F2T

3/2 at z = 0, (3.17)

where

F2 = g1

√
2

π

(
κF 2

1 − g1 tan θ

g2

(
κ − 1

2
Ar2

)
F1 − 2(1 − ew)

1 +
√

1 − r2

)
. (3.18)

3.2. Far-field asymptotic behaviour

At the free surface we impose the asymptotic conditions given by (2.16). Ahn et al.
(1992) show that the no-stress condition in the far field is equivalent to demanding

ν → 0 and
dT

dz
→ 0 as z → ∞, (3.19)

and in addition these conditions ensure vanishing heat flux, q → 0 as z → ∞.
The far-field behaviour of the steady flow solution can be determined by making

an asymptotic expansion in the volume fraction ν 
 1 and heat flux |q| 
 1, retaining
only the leading terms in expansions of the governing equations and constitutive
relations. Table 2 gives the leading-order forms of the dimensionless functions gi for
ν 
 1.

The asymptotic forms of (3.6), (3.8) and (3.9) are

dν

dz
= − ν

T
, (3.20)

dT

dz
=

g40

g30

ν − q

g30

√
T

, (3.21)

dq

dz
=

(
tan2 θ

g20

− g52

)
ν2T 3/2, (3.22)

so the temperature in the far field is constant at leading order, T → T∞ as z → ∞
where the far-field temperature T∞ is undetermined. From (3.20)–(3.22) we obtain
the behaviour of the volume fraction, granular temperature and heat flux in the
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far field,

ν = ae−z/T∞, (3.23)

T = T∞ +
g40

g30

T∞ae−z/T∞, (3.24)

q = −1

2

(
tan2 θ

g20

− g52

)
T 5/2

∞ a2e−2z/T∞, (3.25)

where a is an undetermined constant. The fields decay exponentially in the far field,
with the rate of decay fixed by the undetermined far-field granular temperature. Since
the volume fraction vanishes in the limit z → ∞ there is no heat content in the far
field, even though the granular temperature is non-zero. Similar far-field behaviour,
with the fields decaying exponentially with distance from the base, has been noted in
previous studies (Johnson et al. 1990; Ahn et al. 1992; Azanza et al. 1999). There have
also been studies of vibro-fluidized grain assemblies which have found exponential
decay of the density and granular temperature as the free surface is approached
(Kumaran 1998a ,b; Brey, Ruiz-Montero & Moreno 2001).

The coupled ordinary differential equations, (3.8) and (3.9), are posed on a semi-
infinite domain with the boundary condition (3.17) at the base (z = 0) and the
conditions (3.19) at the free surface (which is taken to be at infinity).

3.3. Macroscopic variables

It is clear that the trivial solution ν = 0, T = 0, u =0, satisfies the governing differential
equations and boundary conditions and to obtain non-trivial solutions we must impose
a further constraint. In chute flow experiments it is possible to specify the mass flux
of material which is introduced onto the chute. On the semi-infinite domain the
(dimensionless) mass flux is defined as

Q =

∫ ∞

0

νu dz, (3.26)

and we seek solutions with a specified mass flux. It is also useful to characterize
the solution in terms of the depth of the flowing layer, but the semi-infinite domain
prevents an absolute notion of the depth. While the previous studies of Forterre &
Pouliquen (2002) and Mitarai & Nakanishi (2004) adopt a cutoff in density to specify
the flow depth, with the flow depth given as the height at which the density becomes
1 % of its maximum value within the flow, the choice of cutoff value is arbitrary. We
therefore adopt the (dimensionless) centre-of-mass h as a measure of the flow depth
which is defined as

h =
1

M

∫ ∞

0

νz dz, where M =

∫ ∞

0

ν dz. (3.27)

In this expression M is the (dimensionless) mass hold-up, a measure of the mass of
material within the flow. In discrete element simulations of granular chute flows the
mass hold-up is typically used as the control variable rather than the mass flux. These
depth-integrated variables provide well-defined measures of the depth and the mass
of material flowing down the chute. To model chute flow experiments we impose the
mass flux Q and augment the system of equations and boundary conditions with the
integral constraint (3.26).

3.4. Numerical method

The system of ordinary differential equations is strongly nonlinear and non-trivial
solutions must be obtained numerically. In the studies of Forterre & Pouliquen (2002)
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and Mitarai & Nakanishi (2004) the basal volume fraction is fixed and a Runge–Kutta
shooting method with domain truncation is employed to calculate solutions. However,
an appropriate truncation point cannot be determined a priori when shooting from
the base, and several iterations are required in order to converge to a solution which
satisfies all the boundary conditions at the base and in the far field. Alternatively, we
can specify the value of the granular temperature in the far field and integrate from
an asymptotic far-field solution. However, the location of the base is then not known
and we may not be able to satisfy the base boundary conditions, and thus an iterative
adjustment of the ‘initial condition’ in the far field is required (Sellar 2003).

Rather than employ the shooting procedure, we develop a Chebyshev
pseudospectral scheme (Boyd 2000) to solve numerically the system of ordinary
differential equations to a high accuracy. The pseudospectral method provides a
functional approximation of the solution which is useful for further investigation of
the solutions, in particular, the linear stability analysis of the steady flows which we
perform in part 2 of this paper. In addition, the boundary conditions at both the
base and in the far field are enforced simultaneously during the integration of the
governing equations, and we can easily incorporate the integral mass flux constraint.
Furthermore, the pseudospectral scheme lends itself to parametric continuation, which
allows us to efficiently track solutions on varying the controlling parameters. We
couple the pseudospectral solution procedure to the ‘Pitcon’ parametric continuation
algorithm (Rheinboldt 1986) to determine families of solutions as the mass flux is
varied for fixed material parameters and fixed inclination angle.

A Chebyshev polynomial of degree n is defined as Tn(x) = cos
(
n cos−1(x)

)
for

x ∈ [−1, 1] (Abramowitz & Stegun 1965). In order to apply a Chebyshev expansion
to determine chute flow solutions, it is necessary to map the semi-infinite domain
above the base boundary to the domain of the Chebyshev polynomials. We do
this by introducing a mapping from the semi-infinite domain to the unit interval,
taking ζ = e−z/L where ζ is the independent variable in the computational space
and L is an adjustable map parameter. While alternative mappings are possible, the
exponential mapping is advantageous here as the physical variables themselves decay
exponentially and we thus enforce to appropriate asymptotic behaviour, provided L

is chosen appropriately, without requiring the placement of many collocation points
in the region of exponential decay. The physical variables of volume fraction and
granular temperature are transformed to computational variables with ν(z) =X(ζ )2

and T (z) = Y (ζ )2, the squares taken to ensure the positivity of the physical fields. The
computational variables are then expanded in a series of Chebyshev polynomials,
truncated after N + 1 terms,

X(ζ ) =

N+1∑
n=1

anTn−1(2ζ − 1), Y (ζ ) =

N+1∑
n=1

bnTn−1(2ζ − 1), (3.28)

and the expansion coefficients {an} and {bn} are determined numerically by
collocation. The collocation points in computational space are given by the zeros of
TN (2ζ − 1) = 0, so are fixed in computational space for a given spectral truncation.
The map parameter L determines the distribution of these collocation points in
physical space and must be selected to ensure that the placement of collocation points
adequately covers regions of rapid variation in the solution. Since the governing
equations are nonlinear an iterative procedure is required to obtain the solution.

If the governing equations are analytic on the computational domain the Chebyshev
spectral expansion coefficients decay exponentially (Boyd 2000) and this offers
considerable computational efficiency. We can ensure the governing equations are
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Figure 2. (a) Volume fraction profiles ν(z), (b) granular temperature profiles T (z) and (c)
velocity profiles u(z) for three steady chute flows with mass flux Q = 3, with material parameters
e = ew = 0.8, r = 0.6 and a slope tan θ = 0.3. The flows are described as a high temperature,
dilute flow (—) (A : T∞ = 7.34, h = 8.84, M = 0.44), a mid-temperature flow (· · · ·) (B: T∞ = 2.54,
h = 3.98, M =0.59) and a low temperature, dense flow (- - - -) (C: T∞ = 0.19, h = 1.77, M =1.26).

analytic through our choice of the map parameter L. An asymptotic analysis of the
transformed governing equations around ζ = 0 (corresponding to the limit z → ∞ in
physical space) shows the fields have the form

X ∼ X0ζ
α/2 + X1ζ

3α/2 + X2ζ
5α/2 + · · · ,

Y ∼ Y0 + Y1ζ
α + Y2ζ

2α + · · · ,

}
for ζ 
 1, (3.29)

where α = L/T∞ and Y0 =
√

T∞. These series are consistent with the far-field behaviour
of the fields determined above (3.23)–(3.24). The asymptotic series can be made
analytic as ζ → 0 (so the fields are analytic on the whole computational domain) by
taking

L = 2kT∞, (3.30)

for k ∈ �. Thus analyticity can be ensured if the far-field granular temperature
is known. However, when imposing the mass flux (3.26) the far-field granular
temperature is obtained as part of the solution and so we cannot ensure analyticity
a priori. We therefore adjust the map parameter during the solution process, and our
freedom in selecting the map parameter is through the choice of the integer k.

3.5. Results

For fixed material parameters steady solutions are found only for a finite range
of inclination angles (Anderson & Jackson 1992; Forterre & Pouliquen 2002). The
domains in the parameter space for which steady solutions can be found are examined
in § 4. Here we investigate the character of the solutions and the influence of the
controlling parameters. We begin by fixing the material parameters, taking e = ew = 0.8
and r = 0.6, and fixing the chute slope at tan θ = 0.3.

Imposing a mass flux of Q = 3 we find that three solutions are possible, as shown in
figure 2. The flows can be categorized, using the granular temperature in the far field,
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as high, mid- and low temperature flows, or by using the depth-integrated variables
of mass hold-up and centre-of-mass. The high temperature flow, which has a far-field
granular temperature T∞ =7.34, is dilute and deep, with a mass hold-up M = 0.44 and
centre-of-mass h = 8.84. The low temperature flow has far-field temperature T∞ = 0.19
and is dense and shallow, with M =1.26 and h = 1.77, and shows a density inversion
in the volume fraction profile. The mid-temperature flow has a far-field granular
temperature T∞ = 2.54 lying intermediate between the high and low temperature
flows and has M =0.59 and h = 3.98. However, the mid-temperature flow here more
closely resembles the high temperature profiles, with a monotonically decaying volume
fraction.

With increasing density we observe in figure 2(c) a decrease in the slip velocity at
the base. This reduces the shear work production of fluctuation energy and results
in a decrease in the granular temperature throughout the flow depth. However, for
this choice of material parameters the production of fluctuation energy at the base is
always larger than the loss due to inelastic collisions between the flowing grains and
the solid boundary, and the granular temperature profiles have a maximum at the
base. As there is no flux of granular temperature through the surface, the fluctuation
energy produced at the base must be dissipated by collisions in the flowing grain
assembly. The interior flow must then be a net energy sink, and we therefore refer
to such flows as dissipative. For alternative material parameters the base boundary
becomes an energy sink and the collisional flow must be a net source of granular
temperature, so the flow is productive. We discuss productive flows in § 3.6.

The features seen in these flows are similar to those calculated by Forterre &
Pouliquen (2002) with a model employing different boundary conditions and with
a different choice material parameters, suggesting the qualitative character of the
solutions is robust to changes in the governing equations. However, Forterre &
Pouliquen (2002) did not report multiple solutions for fixed control parameters.
Furthermore, we show in the Appendix that the form of the heat flux has little effect
on the profiles and the multiple solutions persist if a Fourier form of the heat flux is
employed rather than the modified Fourier form we adopt.

Multiple solutions were reported by Johnson et al. (1990), Nott & Jackson (1992)
and Anderson & Jackson (1992) in their studies on rapid granular flows on inclined
planes. However, these studies found only two solutions for a specified volume flux
of material, unless a frictional contribution was included in the constitutive relations
giving rise to a third solution (Anderson & Jackson 1992). In contrast, we find three
solutions can be obtained for a fully-collisional rapid granular flow model. The third
solution is a dilute and relatively deep flow and a highly accurate numerical scheme
is required to obtain this solution branch. The pseudospectral method developed here
specifically maps the flow domain onto the unit interval and makes use of the low
volume fraction asymptotic form of the solutions in the far field; it is thus well suited
to obtaining these dilute solutions.

The flow solutions in figure 2 are found using parametric continuation to vary
the mass flux and trace the family of solutions for fixed material parameters. The
relationships between the macroscopic depth-integrated variables for a family of
solutions is shown is figure 3, for a slope tan θ =0.3. When specifying the mass flux of
material and measuring the flow depth, defined here as the centre-of-mass, or mass of
material, defined as the mass hold-up, we find a region where multiple solutions can
be obtained, with three solutions of equal mass flux. Outside of this region we find a
unique solution for a specified mass flux. If instead the mass hold-up is specified there
is a one-to-one relationship with the centre-of-mass. However, in experimental chute
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Figure 3. (a) Centre-of-mass h as a function of mass flux Q, (b) mass hold-up M as a
function of mass flux Q and (c) centre-of-mass h as a function of mass hold-up M for steady,
fully developed rapid granular flows on a chute with slope tan θ =0.3 and material parameters
e = ew = 0.8, r = 0.6. Points labelled on the curves correspond to the flows in figure 2.

flows the mass of material on the chute cannot be directly controlled, rather the mass
flux of material down the chute is fixed at the point of release. We therefore prefer to
consider the mass flux of material as the natural control parameter for chute flows.
Multiple solutions for a specified mass flux are also found when employing a cutoff
height to quantify the flow depth rather than the depth-integrated centre-of-mass.

The three branches on the Q–h and Q–M curves can be distinguished with reference
to the magnitude of the far-field granular temperature, as with the categorization of
the three solution profiles in figure 2. The high temperature branch has flows which
are deep and dilute, such as the high temperature flow in figure 2 which is marked as A
in figure 3. The solutions on the low temperature branch, such as the low temperature
flow in figure 2 which is marked as C in figure 3, are shallow and relatively dense. The
mid-temperature branch has solutions which are intermediate between these two, for
example, the mid-temperature flow in figure 2 which is marked as B in figure 3. The
three solution branches are also found if interface surface conditions are employed
rather than the asymptotic surface conditions, as demonstrated in § 3.7.

We consider now the influence of the inclination angle of the chute on the
macroscopic flow behaviour, focusing on the relationship between the centre-of-
mass and the imposed mass flux of material, as shown in figure 4 for fixed material
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Figure 4. The centre-of-mass h as a function of mass flux Q for chutes slopes in the range
(a) tan θ ∈ [0.22, 0.3] and (b) tan θ ∈ [0.3, 0.36], for fixed material parameters e = ew = 0.8 and
r = 0.6. Solid lines indicate steady solutions which exhibit a density inversion, whereas dashed
lines indicate solutions with monotonic volume fraction profiles.

parameters, e = ew = 0.8 and r = 0.6. For these parameter values the base boundary
remains a source of fluctuation energy for all inclination angles for which steady
solution can be found. On the gentle chute slopes in figure 4(a) a region of multiple
flow solutions for a specified mass flux occurs for all inclination angles, with the size
of this region increasing as the slope becomes steeper. On further increasing the slope
angle, as shown in figure 4(b), we observe a qualitative change in the relationship.
For sufficiently steep slopes, here tan θ > 0.33 giving an inclination angle of θ > 18◦,
we can no longer find three flow solutions at equal mass flux. Instead there is a
minimum mass flux at which steady flows are possible and above this minimum value
we always find two solutions for a specified mass flux. Furthermore, the mass flux
and flow depth are each increasing as the granular temperature approaches zero on
the steep slopes (tan θ > 0.33) (this behaviour is not shown in figure 4), whereas the
mass flux and flow depth approach zero at low granular temperature on the gentle
slopes. Forterre & Pouliquen (2002) also noted a qualitative change in behaviour
which occurs at an inclination angle of 18◦ when characterizing flows using the flow
depth and mean density. However, in view of the different constitutive relations and
boundary conditions, the concurrence of the inclination angles may be fortuitous.

We also display in figure 4 steady flows which exhibit a density inversion, where
the maximum volume fraction occurs above the base boundary. For gentle slopes,
with a chute slope tan θ < 0.29 no solutions are found which have a density inversion.
On increasing the chute slope we find density inverted solutions if the flow depth
is sufficiently small. On further increasing the chute inclination, we find that all
solutions that we obtain display a density inversion for tan θ > 0.333. The presence
of a density inversion has been proposed as a cause of instability in the steady chute
flow (Forterre & Pouliquen 2002). In part 2 of this paper we investigate further the
linear stability of the steady flows and the role of density inversions in the steady
profiles and find no correlation between linear instability and density inversion in the
underlying steady solution.

3.6. Productive flows

On varying the material parameters we can obtain steady flows for which the shear
work in the interior of the flow dominates inelastic dissipation and there is a net
production of fluctuation energy. In order to achieve an energy balance the base
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Figure 5. (a) Volume fraction profiles ν(z), (b) granular temperature profiles T (z) and
(c) velocity profiles u(z) for a productive steady chute flows with mass flux Q = 3, with
material parameters e = 0.9, ew = 0.6, r = 0.8 and a slope tan θ = 0.4.

boundary must dissipate the excess energy. While it is difficult to determine in advance
the appropriate parameter values to achieve a productive flow (see § 4), we can predict
that it will be necessary to increase the coefficient of restitution in particle–particle
collisions e, and decrease the coefficient of restitution in particle–wall collisions ew .
By taking e = 0.9, ew = 0.6 and r = 0.8 we find productive steady flows for a range of
inclination angles, typically at steeper slopes than found for dissipative flows.

An example of a productive flow solution is shown in figure 5, where the flow
parameters are e =0.9, ew = 0.6 and r = 0.8, and the chute slope is tan θ = 0.4. The
striking difference with dissipative flows is the increase in granular temperature with
distance from the base. However, as shown in the asymptotic form of the granular
temperature at large heights in (3.24), the granular temperature must decay to its
far-field value from above, so for productive flows the maximum granular temperature
occurs in the interior of the flow. This feature is seen in a close inspection of the
granular temperature profile.

The relationship between the macroscopic centre-of-mass h and mass flux Q for
productive flows on a range of chute slopes is shown in figure 6, and is seen to be
markedly different from the corresponding relationship for a dissipative parameter
set. In particular, for these chute slopes we do not observe any multiplicity in the
solutions, but a one-to-one relationship between the centre-of-mass and mass flux. It
is possible to obtain productive flows on more gentle slopes, and here multiplicity is
seen. However, for productive flows the multiplicity is found only in a small part of
parameter space.

3.7. Interface surface boundary conditions

The asymptotic surface boundary conditions impose the governing equations on a
semi-infinite domain, with the form of the governing equations at small volume
fraction ensuring that the stresses and energy flux vanish as z → ∞. However, in
this extremely dilute flow the kinetic theory description of the motion may not be
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Figure 6. The centre-of-mass h as a function of mass flux Q for chutes slopes in the range
tan θ ∈ [0.4, 0.44], for fixed material parameters e = 0.9, ew =0.6 and r = 0.8. For this parameter
set, the flows are productive in the interior and the base is dissipative.

appropriate. An alternative surface condition, proposed by Jenkins & Hanes (1993),
imposes a balance between the collisional stresses and energy flux in the bulk flow
with those in an overlying saltation zone consisting of collisionless freely flying grains.
The surface of the collisional flow is taken to be the interface between the collisional
bulk and the freely flying grains.

We define z = H to be the height of this interface for a steady, fully developed
granular chute flow, noting that H must be determined as part of the solution. At the
interface a balance of the collisional mean free time and the duration of a ballistic
flight of a grain thrown from the interface provides a normal stress condition which,
in the dimensionless variables appropriate to the chute flow, specifies (Jenkins &
Hanes 1993)

p =
√

π/48. (3.31)

The freely flying grains are accelerated under gravity and so gain energy during their
ballistic flight. This energy is transferred to the collisional bulk when the grain impacts
with grains at the interface, so the saltating grains heat the collisional flow. The heat
flux at the interface, in the dimensionless variables is (Jenkins & Hanes 1993)

q = −p
√

T tan2 θ. (3.32)

Note q < 0 at the surface which represents a downward heat flux into the collisional
bulk.

The interface conditions supplement the base boundary condition and the
third-order system of equations. However, the location of the interface remains
undetermined and to fully specify the problem we require an additional constraint;
here we impose the mass flux of material. The governing equations are solved using a
Chebyshev pseudospectral method, similar to that used when asymptotic conditions
are imposed, except that here the equations are posed on a finite domain and
an exponential mapping is not required. In figure 7 the volume fraction profiles
of the three solutions found with mass flux Q =3 are shown, together with the
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tan θ =0.3 and the flow parameters are e = ew = 0.8, r =0.6.

corresponding profiles obtained when asymptotic surface conditions are imposed.
The profiles obtained with interface conditions share the same qualitative features
as the profiles on the semi-infinite domain, and the form of the surface boundary
condition has only a small influence on the solution profiles.

Similarly, the qualitative features of the macroscopic variables used to characterize
the flows are relatively unaffected by the form of the surface boundary conditions.
This is seen in figure 8, where the relationships between the centre-of-mass and
the imposed mass flux are shown for a chute with slope tan θ = 0.3 with either the
asymptotic or interface conditions enforced. We note in particular that the form of
the surface boundary condition has little influence on the Q–h relationship on the
low temperature branch, where the flow is dense and shallow.

In figure 9 we investigate the Q–h curves as the chute slope is varied. Comparing
with figure 4 where the asymptotic surface conditions are applied, we see that much
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Figure 9. The centre-of-mass h as a function of mass flux Q for chute slopes in the range (a)
tan θ ∈ [0.22, 0.3] and (b) tan θ ∈ [0.3, 0.36], for fixed material parameters e = ew = 0.8 and
r = 0.6, with interface surface boundary conditions. Solid lines indicate steady solutions which
exhibit a density inversion, whereas dashed lines indicate solutions with monotonic volume
fraction profiles.

of the behaviour is reproduced when we employ interface conditions. In particular,
we observe the transition from solution curves where there is a region with three
steady flow solutions with equal mass flux at gentle inclinations (tan θ � 0.33) to
solution curves with a minimum mass flux, and with two solutions of equal mass flux
above this minimum value, on steeper chutes (tan θ � 0.34). However, the interface
boundary conditions do slightly change the transition from density inverted steady
flows to flows with monotonic volume fraction profiles. In particular, when asymptotic
surface conditions are employed there are density inverted flows for a chute slope
tan θ = 0.29 whereas no density inverted flows are found for this chute slope when
the interface conditions are used.

The qualitative features of the steady, fully developed rapid granular flows are
seen to be insensitive to the form of the surface boundary conditions. However, we
note that the interface conditions result in a finite domain on which the governing
equations are defined (although the location of the interface is not known a priori ),
which is an advantage in the numerical solution of the nonlinear system of equations.
The pseudospectral expansion on the finite domain converges exponentially quickly,
and we find that many fewer Chebyshev polynomials are required in solving the
system to a specified tolerance with interface conditions than are required for the
corresponding system with asymptotic conditions (where we introduce an exponential
mapping of the semi-infinite domain).

4. Domains of existence and high temperature asymptotic solutions
It has been shown that steady, fully developed solutions of the kinetic theory

continuum model for rapid granular flows can only be found for a limited range of
inclination angles (Anderson & Jackson 1992; Forterre & Pouliquen 2002). However,
it is not known how the material parameters control this domain of existence, so
it is not possible to predict in advance of any computation whether steady, fully
developed solutions can be found for a given set of parameters, but the determination
of the domains in which solutions exist using the full system of equations is a
computationally expensive task. In this section we tackle this task by analysing the
governing equations in the regime of high granular temperature to obtain a system
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of equations containing a single controlling parameter and we are able to predict the
regions in parameter space where steady solutions can be obtained.

Anderson & Jackson (1992) analysed the collisional theory of Haff (1983), using
the high-density limit of the constitutive relations of Lun et al. (1984) to determine
the unknown functions, under the assumption that the volume fraction of particles
is high throughout the entire flow depth. Although this assumption fails as the free
surface is approached, Anderson & Jackson (1992) were able to derive analytical
solutions to the simplified equations and predict domains in parameter space where
solutions of their full collisional theory could be obtained. Their analysis resulted in
parameter groups which determined the nature of the energy balance within the flows
and the effects of the boundary. Our asymptotic analysis results in parameter groups
which share some of the characteristics of those determined by Anderson & Jackson
(1992). In addition we are able to predict the qualitative change in the character of
the density profiles (see figure 4), where there is a transition from high temperature
flows where the volume fraction decreases monotonically with increasing distance
from the base to high temperature flows which exhibit a density inversion.

4.1. Leading-order equations for high temperature flows

We analyse the governing equations in the regime of high temperature throughout,
T � 1, to derive a reduced system with a single residual dimensionless parameter. To
this end it is convenient to use ε = 1/T∞ 
 1 as an ordering parameter and introduce
T = τ/ε, where τ is order unity throughout. We anticipate, and confirm later, that
the regime of high temperature also corresponds to dilute flows (ν 
 1). Therefore we
may simplify the constitutive functions, given in table 1, to their leading-order forms,

g1 ∼ ν, g2 ∼ g20, g3 ∼ g30, g4 ∼ g40, g5 ∼ g52ν
2, (4.1)

where g20, g30, g40 and g52 are functions of the coefficient of restitution, as given in
table 2. In addition the boundary functions F1 and F2 are similarly approximated by
their leading-order forms, so that F1 ∼ F10, F2 ∼ F21ν where

F10 =
tan θ

κ

(√
π

2
− 1

2
A0r

2g20

)
, (4.2)

F21 =

√
2

π

(
π

2

tan2 θ

κ
−

√
π

2

tan2 θ

2κg20

A0r
2 − 2(1 − ew)

1 +
√

1 − r2

)
, (4.3)

and where

κ(r) =
2

3

(
2

1 +
√

1 − r2
−

√
1 − r2

)
, A0 =

5π

96
√

2
. (4.4)

The parameter F21 determines the direction of the heat flux at the base boundary for
the high temperature flow, with a productive boundary (i.e. a production of granular
temperature at the boundary which is transported into the interior) if F21 > 0, and a
dissipative boundary if F21 < 0.

In order to make an asymptotic analysis of the governing equations, we introduce
a change of coordinate to the computational domain via the mapping

s = exp (−z/T∞) = exp (−εz). (4.5)

From the far-field asymptotic analysis of § 3.2, we note that the fields behave as
polynomials as s → 0. Here we seek an asymptotic approximation to the fields which
is applicable over the entire domain, s ∈ [0, 1].
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The governing equations, in the scaled variables and transformed onto the finite
computational domain, are, to leading order in ε and ν,

s
d

ds
(ντ ) = ν, (4.6)

s
d

ds

(
2g30

3
s

d

ds

(
τ 3/2

)
− g40τ

3/2s
dν

ds

)
= δε−2ν2τ 3/2, (4.7)

subject to the energy base boundary condition

g30

dτ

ds
− g40τ

dν

ds
= F21ε

−1ντ at s = 1, (4.8)

and the free surface conditions which demand ν → 0 and τ → 1 as s → 0. The
parameter

δ = g52 − tan2 θ

g20

(4.9)

in (4.7) represents the local competition between dissipation and production of
granular temperature within the interior of the flow. If δ > 0 the dissipation exceeds
the production throughout the high temperature flow and so the boundary must be
a net source of energy in order to maintain the flow. On the other hand, if δ < 0 the
flow is productive, with energy production exceeding dissipation throughout and so a
dissipative boundary is required. A distinguished scaling for (4.7) is found by setting
ν =αεψ , where ψ is an order 1 quantity and

α =
2g30

3F21

. (4.10)

We then obtain, to leading order in ε,

s
d

ds
(ψτ ) = ψ, (4.11)

λs
d

ds

(
s

d

ds

(
τ 3/2

))
= ψ2τ 3/2, (4.12)

subject to

d

ds

(
τ 3/2

)
= ψτ 3/2 at s = 1, (4.13)

and φ → 0, τ → 1 as s → 0. We are left with a single parameter

λ =
3F 2

21

2g30δ
, (4.14)

which is a function of the controlling parameters e, ew , r and tan θ . Note that λ> 0
if the high temperature flow is dissipative, and λ< 0 if the high temperature flow is
productive. Although this reduced system now only contains a single dimensionless
parameter, rather than the four parameters of the full system, the approximate
equations remain nonlinear and no analytic solution can be found.

We can obtain an asymptotic approximation to the velocity field, appropriate to
high temperature flows, by taking the leading-order form of the decoupled velocity
equation. We first transform to the computational domain and use the leading-order
form of the constitutive functions to obtain

εs
du

ds
= − tan θ

g20

εν
τ 1/2

ε1/2
, (4.15)
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Figure 10. The centre-of-mass h as a function of mass flux Q on logarithmic axes, for chute
slopes in the range tan θ ∈ [0.22, 0.3], for fixed material parameters e = ew = 0.8 and r = 0.6.
On the high temperature branch the curves become parallel to a line with slope 2 (shown as
the dashed line), indicating that h ∼ Q2 at sufficiently high temperatures.

with u = ε−1/2F10τ
1/2 at s = 1. We make the scaling u = ε−1/2F10U and obtain

s
dU

ds
= −μψτ 1/2, where μ =

α tan θ

F10g20

. (4.16)

The boundary condition for the slip velocity is

U = τ 1/2 at s = 1. (4.17)

We can therefore recover the high temperature velocity field once solutions of (4.11)
and (4.12) are known.

The scalings introduced when forming the high temperature asymptotic system
directly show that the macroscopic flow variables, for high temperature, are
approximated by

Q =

∫ ∞

0

νu dz = ε−1/2αF10

∫ 1

0

ψU

s
ds, (4.18)

M =

∫ ∞

0

ν dz = α

∫ 1

0

ψ

s
ds, (4.19)

h =
1

M

∫ ∞

0

νz dz = −ε−1 α

M

∫ 1

0

ψ log s

s
ds. (4.20)

The asymptotic analysis therefore suggests that the centre-of-mass scales as h ∼ Q2 if
the granular temperature is sufficiently high. This scaling is observed in the solutions
of the full system of equations, as demonstrated in figure 10 for dissipative flows
on relatively gentle inclines. In comparison, the centre-of-mass of a steady viscous
incompressible Newtonian fluid flowing down an inclined plane scales as h ∼ Q1/3.
The Bagnold scaling, which gives the shear stress proportional to the square of the
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Figure 11. The parameters λ and δ as functions of the chute slope for flow parameters
e = ew = 0.8 and r = 0.6. Note that λ diverges as δ → 0. The parameter δ represents the
competition between production by shear work and dissipation by inelastic collisions of
fluctuation energy in the interior of the high temperature flow, with the high temperature flow
dissipative if δ > 0 and productive if δ < 0.

velocity gradient, when applied to a granular chute flow with constant density results
in the relation h ∼ Q2/5.

4.2. Approximate solutions for high temperature flows

In figure 11 we show the parameters λ and δ as functions of tan θ for flow parameters
e = ew = 0.8 and r = 0.6. We see that, for gentle slopes, the parameter |λ| 
 1 (with
|λ| < 1 for tan θ < 0.354). Therefore, for sufficiently gentle slopes, the quantity λ can be
taken as a small parameter within an asymptotic approximation of the solution. Fur-
thermore |λ| 
 1 represents a regular perturbation to the equivalent system with λ= 0
(note that taking φ = 0, τ =1 satisfies (4.11), (4.12) and (4.13) when λ= 0, so |λ| 
 1
is not a singular perturbation) and we can readily obtain an approximate solution
via a regular perturbation expansion. For |λ| 
 1 we find the approximate solution,

ψ = 2sλ + (s − 2s3)λ2 + O(λ3), (4.21)

τ = 1 + 2
3
s2λ +

(
2
3
s2 − 5

18
s4

)
λ2 + O(λ3), (4.22)

U = F10 +
(
2μ (1 − s) + 1

3
F10

)
λ +

(
5
9
μ −

(
s − 4

9
s3

)
μ + 5

36
F10

)
λ2 + O(λ3). (4.23)

An example of the profiles obtained from the reduced system of equations describing
high temperature flows, obtained from the regular perturbation expansion including
terms up to λ2, is shown in figure 12, together with a numerically determined
solution to the full nonlinear system of equations (3.8)–(3.10). When the parameter
λ in the system of equations for high temperature flows cannot be considered
asymptotically small the system (4.11)–(4.12) must be solved numerically. We use
here a Runge–Kutta integration to solve the high temperature system of equations.
Note that the point s =0 is a regular singular point and by making a local series
expansion in the neighbourhood of this point we can generate an initial condition
for the Runge–Kutta integration. This analysis gives the conditions

ψ ∼ cs, τ ∼ 1 +
c2s2

6λ
, τ ′ ∼ c2s

3λ
, (4.24)

for s 
 1, which we enforce as initial conditions at a small distance from the singular
point at s = 0. The constant c > 0 remains undetermined by the local analysis. With
an arbitrary value for c the Runge–Kutta method can be used to integrate the
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Figure 12. Comparison of an approximate solution (- - - -) to the reduced system of equations
describing high temperature flows, obtained from a regular perturbation expansion, including
terms up to λ2, with numerical solutions of the full nonlinear system of equations ( ).
The material parameters are e = ew = 0.8, r = 0.6 and the chute slope is tan θ =0.3. Solutions
are obtained for a far-field temperature T∞ =50. For these parameter values the expansion
parameter λ ≈ 0.27.

governing equations to the boundary point s = 1. However, for an arbitrary c the
boundary condition at s = 1 will not be satisfied, so c must be iteratively adjusted
until this condition is enforced. The value obtained for c depends on the parameter
λ. An example of a solution to the high temperature system of equations is shown
in figure 13, where the material parameters are e = ew =0.8, r = 0.6 and we have
taken a chute slope tan θ ≈ 0.354, which gives λ=1. The iterative solution procedure
results in a parameter c = 4.5861. By comparing with a solution of the full system
of equations, we see that the asymptotic solution reproduces the features of the full
solution. In particular, the solution exhibits a density inversion even at this high
temperature, and this is well approximated by the solution of the asymptotic system.

4.3. Flow domains for high temperature flows

The asymptotic system provides useful approximations to flows at high temperature
and, since the system contains a single parameter λ, it is possible to determine the
existence of high temperature solutions much more easily than is possible for the full
system.

We consider first the case δ > 0, so the high temperature flow is dissipative
throughout. In order to balance this energy loss in the flow, the base boundary
must be a source of granular temperature and so we require F21 > 0, and thus λ> 0.
By repeated solution of the asymptotic system of equations we find no solution is
possible for λ> 2.284. We note that for values of λ in the neighbourhood of this
upper bound, the numerical solution of the asymptotic system is difficult, since the
depth of the flow increases dramatically and the point at which the initial condition
should be implemented approaches the singular point at s = 0. The accumulation of
numerical error may then cause uncertainty in the bound. However, we tentatively
use this bound to confine high temperature solutions to the range 0 < λ< 2.284. For
fixed material parameters e, ew and r , these bounds on λ correspond to a finite range
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Figure 13. Comparison of an approximate solution (- - - -) to the reduced system of equations
describing high temperature flows, obtained by solving numerically the simplified system of
equations, with a numerical solution of the full nonlinear system of equations (—). The material
parameters are e = ew = 0.8, r = 0.6 and the chute slope is tan θ ≈ 0.354 which gives λ= 1.
Solutions are obtained for a far-field temperature T∞ =100.

of chute slopes for which steady solutions can be obtained. In particular the bound
λ=0 predicts the minimum chute slope for steady flows.

In addition, it is possible to determine the regions where monotonic and inverted
density profiles are found. For λ< 0.660 the volume fraction is monotonic, with the
maximum density occurring at the base boundary. In contrast, if λ> 0.660 the high
temperature flows exhibit density inversions. For e = ew = 0.8 and r = 0.6, the curve
at λ= 0.660 corresponds to a slope of tan θ =0.335 (θ =18.6◦), which is close to the
slope of tan θ = 0.33 at which the qualitative change in behaviour of the macroscopic
flow curve is found (as demonstrated in figure 4b). We therefore suggest that the
change in behaviour of the macroscopic flow curve is a result of density inversion
for high temperature flows, and the mid-temperature branch is a signature of the
adjustment from monotonic density profiles at high temperature to inverted profiles
at low temperature. Our numerical solutions of the full system of equations support
this, as seen in figure 4 where the transition from macroscopic Q–h curves with three
solutions for a given flow depth coincides with the transition to steady flows which
always display a density inversion.

In figure 14(a) we show the bounding curves corresponding to λ= 0 and λ=2.284,
between which solutions of the high temperature asymptotic system can be obtained.
The curves are plotted on the tan θ–r plane (for 1/2 < r <

√
3/2), and we have taken

e = ew = 0.8. We also mark points at which solutions to the full system of equations
are found. The high temperature asymptotic system provides good approximations to
the boundaries demarking the existence of solutions, as determined by the full system
of equations. In particular, the curve corresponding to λ=0 is in good agreement with
the boundary at which solutions of the full system of equations are found, except for a
small region with tan θ > 0.35, r > 0.83 where solutions of the full system of equations
exist but high temperature asymptotic solutions are not possible (these solutions of
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Figure 14. The domains of parameter values for which fully developed solutions exist and
the predictions of the boundaries from the high temperature asymptotic solutions. In (a)
we take coefficients of restitution e = ew = 0.8 resulting in dissipative flow (δ > 0). In (b) the
coefficients of restitution are e = 0.9 and ew = 0.6 and we find relatively steep slopes result
in productive flows (δ < 0) while relatively gentle slopes give dissipative flows. Solutions of
the high temperature asymptotic system can be found between the curves corresponding to
λ= 0 and λ= 2.284, as indicated on the plot. In addition, the curve corresponding to λ= 0.660
denotes the boundary between monotonic (λ< 0.660) and inverted (λ> 0.660) volume fraction
profiles. The points mark solutions to the full system of equations with T∞ = 1, T∞ = 10,
T∞ =100 and T∞ = 500.

the full system of equations are of low granular temperature, with T∞ = 1). The cause
of this boundary of existence is clear; for λ< 0 and δ > 0 the boundary is dissipative
and so too is the flow, so there is no possible energy balance. On the other hand,
the boundary at λ= 2.284 provides a less accurate approximation of the existence
boundary, perhaps due to the numerical errors in the solution of the asymptotic
system. Since the direction of the boundary flux here is consistent with the dissipation
within the flow, the existence boundary here results from an inability to match the
magnitude of the energy fluxes, so the dissipation in the flow is insufficient to remove
the energy supplied by the base boundary.

Let us now consider the case δ < 0, corresponding to high temperature flows which
are productive in the interior. It is clear that we now require a flux of granular
temperature into the base boundary in order to remove the fluctuation energy from
the flow, so require F21 < 0 and thus λ< 0. On repeatedly solving the high temperature
asymptotic system, varying the parameter λ, we are unable to find a lower bound
on λ, suggesting high temperature solutions are possible whenever δ < 0 and λ< 0.
Furthermore all high temperature flows we find have monotonic volume fraction
profiles. On taking the coefficients of restitution e = ew = 0.8, it is not possible to
choose r ∈ [1/2,

√
3/2] and tan θ such that δ < 0 and λ< 0, so no high temperature

productive flows are possible. If instead we take e = 0.9 and ew = 0.6, so that there is
less dissipation in the flow but more at the base boundary, then it is possible to obtain
flows with productive interiors and a dissipative base boundary. The bounding curves
of the high temperature asymptotic system and some solutions of the full system
are shown in figure 14(b). For these parameter values it is possible to find solutions
to the full system of equations in a region with δ > 0 and λ< 0, where no solutions
of the high temperature asymptotic system are possible. Solutions in this region
cannot be classified as productive or dissipative, but rather are productive in some
parts of the interior of the flow and dissipative in others. Such behaviour cannot be
described by the high temperature asymptotic analysis. Furthermore, solutions of the
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full system of equations in this region cannot be found for arbitrarily large far-field
granular temperature. However, for those parameter values which result in either
purely productive or purely dissipative flows, the boundaries obtained from the high
temperature asymptotic analysis can be used to predict the domains in parameter
space where steady solutions can be found.

The boundary curves, given in terms of the parameter λ, can be recast to give the
range of inclination angles for which steady flows are possible. For dissipative flows,
for which δ > 0, we find solutions of the high temperature system for 0 < λ< λc, where
λc = 2.284. Recasting these bounds in terms of the chute slope, we find dissipative
flows for inclination angles with tan2 θ <L/M , where

L =
πλcg30g52

3
, M =

πλcg30

3g20

. (4.25)

This condition follows from the inequality δ > 0 (note L/M = g20g52). Further we
have shown that solutions with high granular temperatures require 0 < λ< λc and
this implies the more restrictive condition that l/m < tan2 θ < tan2 θ0, where it is
convenient to define

l =
2 (1 − ew)

1 +
√

1 − r2
, m =

π

2κ
−

√
π

2

A0r
2

2κg20

, (4.26)

and tan θ0 is defined by

m tan2 θ0 − l = (L − M tan2 θ0)
1/2. (4.27)

The functions l, m, L and M determine the energy balance of the flow, with l and
m representing the loss of energy at the base due to inelastic collisions, and the
production of energy at the base due to shear work, respectively. Furthermore L can
be associated with the dissipation of energy within the flow interior due to inelastic
collisions, and M represents the production of energy in the interior of the flow
by shear work. For productive flows, for which δ < 0, high temperature solutions
are possible for λ< 0. We therefore find productive flows for inclination angles with
tan2 θ >L/M , and high temperature solutions can be found for L/M < tan2 θ < l/m.
These bounds on the chute slope are qualitatively similar to those obtained by
Anderson & Jackson (1992) from an analysis of flows at high density, and the
functions l, m, L and M can be compared to the functions obtained in this earlier
study.

5. Conclusion
A continuum description of rapid granular flows, derived from a granular kinetic

theory, has been used to model grain flows down an inclined planar chute. We have
developed a mapped Chebyshev pseudospectral method to obtain highly accurate
numerical approximations to solutions corresponding to steady fully developed
flows.

The kinetic theory continuum model introduces several parameters which control
the character of the steady solutions. By coupling the pseudospectral solution scheme
to a parametric continuation algorithm we are able to investigate efficiently the
influence of the controlling parameters on the steady solutions. We obtain solutions
in which the interior of the flow is dissipative, and here the density profiles can be
inverted or monotonically decreasing, and flows which are productive in the interior
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and the density decreases monotonically. The character of the solutions is robust to
a change from asymptotic surface conditions to interface conditions.

We characterize solutions using depth-integrated variables, in particular the mass
flux of material and the centre-of-mass, and determine the relationship between these
macroscopic variables. We find regions of parameter space where multiple solutions
are obtained for a specified mass flux of material. In some regions of parameter space,
three flows of differing depth are found for a fixed mass flux, in other regions there is
a minimum mass flux for steady solutions and above this minimum two distinct flows
are found for a specified mass flux. The transition to families of solutions with two
flows of equal mass flux coincides with a change in behaviour of the solution profiles
at high temperature, from flows with monotonic density profiles to density inverted
flows. In some other regions of parameter space, where the flows are productive in
the interior and the base is dissipative, we find a single solution for a specified mass
flux.

Steady solutions are found only in certain domains in the parameter space. It is
difficult to determine these domains a priori, but through an asymptotic analysis of
the governing equations, appropriate to dilute, high temperature flows, we are able to
obtain a simplified, although still nonlinear, system of equations from which we are
able to predict the domains of existence. In addition, the asymptotic system predicts
a transition in the high temperature solutions from monotonic to inverted density
profiles. The point at which this transition occurs is in close correspondence with a
transition seen in the macroscopic flow curves, where there is a change from curves
displaying three solutions for a specified mass flux to curves where we always obtain
two distinct solutions. This correspondence leads us to suggest that the transition
from monotonic to density inverted flows at high temperature results in the transition
between the Q–h relationship on gentle slopes, where there is a finite region where
three steady solutions with equal mass flux can be found and outside of this region
only one steady solution is obtained, and the relationship on steep slopes, where there
is a minimum mass flux for which steady solutions exist and above this minimum value
we can always obtain two solutions for a given mass flux. Our numerical solutions
of the full system of equations support this view. We have also shown through our
asymptotic analysis that for highly agitated, dilute flows we have a scaling relationship
h ∼ Q2, which is markedly different from the Bagnold relationship h ∼ Q2/5 which is
obtained when the volume fraction is constant.

Although we have obtained steady flow solutions from the kinetic theory continuum
model, we may be unable to observe these solutions in experimental realizations. If a
steady flow is unstable to small perturbations then it is unlikely to be observed in an
experiment. In part 2 of this paper we assess the linear stability of the steady solutions
to small perturbations in both the downslope and cross-slope directions, extending
the methodology of Forterre & Pouliquen (2002) and Mitarai & Nakanishi (2004).
We also note that the kinetic theory of Lun & Savage (1986) neglects frictional
interactions and enduring contacts in the microscopic interactions, and therefore
this simple kinetic theory continuum description may be unable to reproduce fully
experimental observations. As the granular kinetic theory continues to develop, for
example, by accounting for frictional interactions (Jenkins & Zhang 2002) and the
development of enduring contacts (Jenkins 2007; Kumaran 2008), we anticipate a
closer correspondence between predictions and observations. The methodology we
have developed could be utilized to obtain solutions from these extended continuum
models.
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Figure 15. A comparison of the solution profiles obtained with the reduced heat flux (. . . .)
(taking g4 ≡ 0) with the corresponding solutions with the modified Fourier heat flux (- - - -). For
a specified mass flux of Q = 3 three solutions are found; (a–c) high temperature flow; (d–f )
mid-temperature flow; (g–i ) low temperature flow. The material parameters are e = ew = 0.8,
r = 0.6 and the chute slope is tan θ = 0.3.
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Appendix. Steady solutions with a Fourier heat flux
The granular kinetic theory of Lun et al. (1984) results in a modified Fourier form

of the heat flux, with a term proportional to ∇ν. The modified Fourier heat flux also
appears in a similar form in the constitutive theories of Sela & Goldhirsch (1998) and
Garzó & Dufty (1999). This feature has been shown to be an important characteristic
of vibro-fluidized granular beds (Soto, Mareschal & Risso 1999; Brey et al. 2001;
Ramı́rez & Soto 2003; Huan et al. 2004). Previous chute flow studies (Forterre &
Pouliquen 2002; Mitarai & Nakanishi 2004) discarded the conduction along density
gradients. Here we show that retaining this term does not qualitatively change the
character of the solutions we obtain. The solutions with the Fourier form of the heat
flux are found by setting the constitutive function g4 ≡ 0.

In figure 15 we show flow solutions for a specified mass flux Q =3, comparing
the profiles obtained with the reduced heat flux with the corresponding solution with
the modified Fourier heat flux (which are shown in figure 2). The character of the
solutions is not affected by the form of the heat flux term, with the difference between
the solutions most apparent in the granular temperature profiles.



Rapid granular flows down inclined planar chutes. Part 1. 457

–0.4 –0.2 0
0

5

10

15

20

25

0

5

10

15

–0.4 –0.2 0 –0.4 –0.2 0
0

1

2

3

4

5

6

7

z

(a) (b) (c)

Figure 16. Comparison of terms contributing to the heat flux for (a) the high temperature
steady flow, (b) the mid-temperature steady flow and (c) the low temperature steady flow with
mass flux Q = 3. The heat flux along temperature gradients (—, g3T

1/2(dT/dz)) dominates the
flux along volume fraction gradients (- - - -, g4T

3/2(dν/dz)) for each of the flows. The material
parameters are e = ew =0.8, r = 0.6 and the chute slope is tan θ = 0.3.

The small influence of this term representing a heat flux along density gradients
can be seen in figure 16, where the two terms contributing to the heat flux are shown
for the three steady solutions with mass flux Q =3. The heat flux along temperature
gradients dominates the flux along volume fraction gradients, and therefore the
solutions with a Fourier form for the heat flux differ little from those where the
modified Fourier form is retained.

Although the modification of the Fourier heat flux to include a contribution along
density gradients introduces only a subdominant term into the heat flux for the steady
flows in figure 15, there is an observable effect on the granular temperature profile.
This can be understood through an asymptotic analysis of the governing equations
in regions where the volume fraction and heat flux are small, as in § 3.2. With the
modified Fourier form the temperature field behaves as

T = T∞ +
g40

g30

T∞ae−z/T∞ for z � 1, (A 1)

from (3.24), where a is an undetermined constant. In contrast, if the heat flux along
volume fraction gradients is neglected, so g4 ≡ 0, we find,

T = T∞ − a2

4g30

(
tan2 θ

g20

− g52

)
T 3

∞e−2z/T∞ for z � 1, (A 2)

so the temperature field decays more rapidly to the far-field value if g4 ≡ 0. This
behaviour is seen is figure 15, particularly for the low temperature flow.

Finally, the form of the heat flux also has only a small influence on macroscopic
flow variables used to describe the flow, with the character of the Q–h curve unaffected
by taking g4 ≡ 0, as shown in figure 17.

We conclude that the character of the steady solutions, for the parameter values
studied, is unaffected by the form of the heat flux. However, if the grains are made less
elastic, by reducing the coefficient of restitution, the modification to the Fourier form
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Figure 17. The centre-of-mass h as a function of mass flux Q obtained with the reduced
heat flux (taking g4 ≡ 0), with the corresponding curve with the modified Fourier heat flux, as
indicated. The material parameters are e = ew =0.8, r = 0.6 and the chute slope is tan θ = 0.3.

becomes more important, since the constitutive function g4 ∼ (1 − e). Furthermore, in
geometries other than the chute flow, or when sidewalls are imposed, the concentration
gradients may be stronger than those observed here and then the influence of the
modified heat flux will be stronger.
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Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C., Levine, D. & Plimpton, S. J. 2001 Granular
flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302/1–14.

Silbert, L. E., Grest, G. S., Brewster, R. & Levine, A. J. 2007 Rheology and contact lifetimes in
dense granular flows. Phys. Rev. Lett. 99, 068002/1–4.

Silbert, L. E., Grest, G. S., Plimpton, S. J. & Levine, D. 2002 Boundary effects and self-
organization in dense granular flows. Phys. Fluids 14 (8), 2637–2646.

Soto, R., Mareschal, M. & Risso, D. 1999 Departure from Fourier’s law for fluidized granular
media. Phys. Rev. Lett. 83 (24), 5003–5006.

Walton, O. R. 1993 Numerical simulation of inclined chute flows of monodisperse, inelastic,
frictional spheres. Mech. Mater. 16, 239–247.

Woodhouse, M. J. & Hogg, A. J. 2010 Rapid granular flows down inclined planar chutes. Part 2.
Linear stability analysis of steady flow solutions. J. Fluid Mech. Forthcoming.

Zheng, X. M. & Hill, J. M. 1996 Molecular dynamics modelling of granular chute flow: density
and velocity profiles. Powder Technol. 86, 219–227.


