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The inertial migration of a small rigid spherical particle, suspended in a fluid flowing 
between two plane boundaries, is investigated theoretically to find the effect on the 
lateral motion. The channel Reynolds number is of order unity and thus both 
boundary-induced and Oseen-like inertial migration effects are important. The particle 
Reynolds number is small but non-zero, and singular perturbation techniques are used 
to calculate the component of the migration velocity which is directed perpendicular 
to the boundaries of the channel. The particle is non-neutrally buoyant and thus its 
buoyancy-induced motion may be either parallel or perpendicular to the channel 
boundaries, depending on the channel alignment. When the buoyancy results in 
motion perpendicular to the channel boundaries, the inertial migration is a first-order 
correction to the magnitude of this lateral motion, which significantly increases near to 
the boundaries. When the buoyancy produces motion parallel with the channel 
boundaries, the inertial migration gives the zeroth-order lateral motion either towards 
or away from the boundaries. It is found that those particles which have a velocity 
exceeding the undisturbed shear flow will migrate towards the boundaries, whereas 
those with velocities less than the undisturbed flow migrate towards the channel 
centreline. This calculation is of practical importance for various chemical engineering 
devices in which particles must be filtered or separated. It is useful to calculate the 
forces on a particle moving near to a boundary, through a shear flow. This study may 
also explain certain migration effects of bubbles and crystals suspended in molten rock 
flow flowing through volcanic conduits. 

1. Introduction 
The migration of neutrally buoyant small particles across the streamlines of a 

laminar flow was first documented by SegrC & Silberberg (1962a, b). Their study was 
motivated by the observation that blood corpuscles tend to be non-uniformly 
distributed across blood vessels. Segre & Silberberg performed experiments with dilute 
suspensions of rigid spheres in a laminar flow through a pipe, in the regime where the 
Reynolds number based on the pipe width was order unity or higher and found that 
the suspension developed a non-uniform concentration distribution over the pipe 
cross-section, which exhibited a peak concentration at a radial position of 
approximately 0.6 pipe radii. This result is thought to explain why the apparent 
viscosity of dilute suspensions in shear flows is lower than that predicted by Einstein’s 
result (Segre & Silberberg 1962a,b; Ho & Leal 1974). The presence of particles 
increases the viscosity of the fluid and so the systematic cross-streamline migration 
implies that the velocity profile of the fluid across the pipe is flattened. Hence 
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calculations of an effective viscosity, based upon an assumption of a quadratic flow 
profile, will overpredict the actual viscosity of the suspension. 

Following the work of SegrC & Silberberg, there has been a series of experimental 
studies which consider the migration of particles with different properties, or migration 
within flows other than Poiseuille. Two investigations of particular relevance to this 
paper are the experimental studies of Jeffrey & Pearson (1965) and Eichhorn & Small 
(1 964). These studies of non-neutrally buoyant particles within a vertical channel flow 
found that if the particle has a velocity greater than the undisturbed fluid velocity, then 
it migrates towards the channel boundaries, whereas if it lags behind the undisturbed 
fluid velocity, it migrates towards the channel centreline. In this paper, we investigate 
the migration of small non-neutrally buoyant spherical particles suspended in a fluid 
flowing between parallel plane boundaries. We calculate the migration velocity of the 
particles at varying positions across the channel and demonstrate agreement between 
the experimental results of Jeffrey & Pearson and the theoretical results computed here. 

Bretherton (1962) showed that if inertia is neglected, no lateral force can exist for a 
body of revolution in a unidirectional flow. Hence the mechanism for cross-stream 
migration has been ascribed to the inertia of the fluid and particle and there have been 
a number of theoretical investigations of this effect. There are two ways by which the 
inertia of the fluid may influence the particle motion in a channel: inertial interaction 
with the wall, or, if the particle is moving in a sufficiently large domain, by the need 
to consider inertial effects in the far field. The latter is an expression of the need to 
include Oseen-like inertial corrections. Previous theoretical studies have focused on 
one or other of these effects, but have not studied the case in which both are significant. 
If we denote the channel Reynolds number by R, = UmI/v ,  where Urn is the channel 
centreline velocity, 1 is the channel width and v is the kinematic viscosity, then the ratio 
of the magnitude of the wall effect to the Oseen-like inertial term is given by R$. This 
parameter may therefore be used to classify the previous studies, as discussed below 
and shown in table 1. 

In the regime R,  4 1, the Oseen inertial correction is negligible in comparison with 
the inertial interaction with the walls. Within this regime, regular perturbation 
expansions based on small Reynolds number are permitted. Ho & Leal (1974) and 
Vasseur & Cox (1976) employed such expansions to predict the migration velocities for 
neutrally and non-neutrally buoyant particles moving within bounded fluid domains. 
Conversely, in the regime R, 9 1, the fluid may be treated as unbounded and the 
analysis need only consider Oseen-like regions. The formative study for this regime is 
that of Saffman (1965) who studied the lift force on a particle moving in a linear shear 
flow. Saffman showed that the lift force is of order (R;), where R, is the small particle 
Reynolds number based on the velocity gradient. Subsequent studies include those by 
Harper & Chang (1968), who studied the inertial lift and drag on a body with an 
arbitrary directed velocity, by Drew (1978), who included rotational flow, and by 
McLaughlin (1991), who accounted for the effect of uniform flow in the far field. 

Other recent studies (Drew 1988; McLaughlin 1993; Shibata & Mei 1990) have 
considered the migration of a particle moving within a shear flow, bounded by a single 
rigid planar wall. These studies may not be classified by a channel Reynolds number 
because there is only one boundary. Sufficiently far away from this boundary, there is 
always an Oseen-like region in which viscous and inertial forces balance. Two of these 
studies (Drew 1988; McLaughlin 1993) assume that the boundary is sufficiently distant 
from the particle so that it lies within the region in which viscous and inertial forces 
balance. Drew (1988) assumed that the particle was moving parallel to the rigid planar 
wall, that the radius of the particle was much less than the distance to the wall and, 
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Non-neutral1 y Neutrally 
buoyant particles buoyant particles Remarks 

R, 4 1 Ho & Leal (1974) 
Vasseur & Cox (1976) 

Ho & Leal (1 974) 
Vasseur & Cox (1976) 

R, = 0(1) This study Schonberg & Hinch 
(1989) 

R, + 1 Saffman (1965) Lin, Perry & 
Harper & Chang (1968) 
Drew (1978) 
McLaughlin (1991) 

Schowalter (1970) 

Oseen-like inertial 
region is beyond the 
walls and so may use 
a regular perturbation 
expansion 

Oseen-like inertial 
region are significant 

unimportant; Oseen-like 
inertial region only 

Wall effects and 

Wall effects are 

TABLE 1. Classification of the theoretical studies of inertial migration, according to the channel 
Reynolds number. Each of the studies considers a small, rigid, spherical particle which is moving 
within a shear flow. Harper & Chang consider a body with an arbitrary directed velocity. Drew 
considers extentional and rotational flows. McLaughlin accounts for a uniform flow in the far field. 
(The author acknowledges the contribution of H. A. Stone to the compilation of this table. He 
suggested that the previous studies may be classified according to the channel Reynolds number and 
produced a version of this table.) 

following the procedure of Saffman (1965), calculated the migration velocity of the 
particle. Drew’s analysis, however, may not be applied to channel flow because a linear 
velocity profile was assumed which ignores the parabolic profile near to the channel 
centre. McLaughlin (1993) extended Drew’s work by determining an algebraic 
expression for the migration velocity of a particle moving within a wall-bounded linear 
shear flow and by once again including uniform flow effects. The other study (Shibata 
& Mei 1990) assumes that the particle is moving sufficiently close to the boundary, so 
that the boundary lies within the region in which viscous forces dominate. The work 
of Shibata & Mei (1990) is motivated by considering the motion of sand particles 
within an oscillatory flow. However, the radius of the particle is assumed to be much 
smaller than the thickness of the Stokes boundary layer and hence the flow may be 
approximated by a linear shear flow, with a time-dependent rate of shear. Shibata & 
Mei (1990) calculate how the effect of including inertial forces in the far field, away 
from the boundary, influences the velocity field around the particle and hence the 
nature of particle interactions. This may have an important effect upon the way in 
which ripples form on a sandy bed under an oscillatory flow (Shibata & Mei 1990). 

The parameter regime of order-unity channel Reynolds number is important because 
this is the regime in which experiments are typically performed. For example, Jeffrey 
& Pearson (1965) experimentally studied particle migration within a channel for 
20 < R, < 100, while SegrC & Silberberg (1962a, b) conducted their experiments a t  
2 < R, < 700. Furthermore, as indicated above, within this regime both wall effects 
and Oseen-like inertial effects are important. Schonberg & Hinch (1989) studied this 
regime for neutrally buoyant particles and the analysis developed in this paper is a 
generalization of their work to include non-neutrally buoyant particles. The theory 
uses a singular perturbation expansion within a ‘ far-field’ region in which advective 
terms balance viscous terms. The particle is assumed to be sufficiently small to induce 
only a small disturbance to the background flow, thus allowing the linearization of the 
advective inertial term. A similar technique has been used by Vasseur & Cox (1977) to 
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study the migration of particles translating through stagnant fluid. Their calculation 
was also performed in the regime R, = O( 1) and we shall show how their analysis may 
be reproduced within the theoretical framework presented here. 

We present analyses for both vertically and horizontally aligned channels and 
calculate the lowest-order inertial correction to the cross-stream motion of the particle. 
As will be shown, this inertial correction to the cross-streamline motion of a non- 
neutrally buoyant particle is small in a horizontal channel. However, for a particle 
moving perpendicularly between planar boundaries, we find that by including only 
viscous forces and their interaction with the boundaries, the reduction of the velocity 
towards the boundaries can be significant. There have been a number of theoretical 
studies of a heavy spherical particle falling between plane boundaries, but analytical 
progress is difficult owing to the lack of a natural coordinate system in which both the 
no-slip conditions on the planes and sphere can be satisfied. Brenner (1961) used a 
bipolar coordinate system to select appropriate solutions to Laplace’s equation and so 
derived an expression for the drag on a sphere as it approaches a single plane 
boundary. Ganatos, Weinbaum & Pfeffer (1980) used a ‘boundary collocation’ 
technique to study the problem of motion between an upper and lower boundary. Both 
of these studies are at zero Reynolds number, but it will be demonstrated that the 
results of Ganatos et al. (1980) may be reproduced under appropriate limits of the 
analysis presented in this paper. 

In the next section of this paper, we present a derivation of the appropriate 
governing equations and boundary conditions for a sphere moving within a channel 
flow. These equations for the evolution of the disturbance flow, which is the 
disturbance caused by the introduction of the particle, are derived in a non-inertial 
frame of reference. Some care is necessary to derive the appropriate momentum 
equation in this frame, since the final result differs from that presented by Schonberg 
& Hinch (1989); in the limit they considered, though, the difference is negligible. Also 
we introduce three independent non-dimensional groups to characterize the problem. 
Two of these follow the definition of Schonberg & Hinch (1989), namely a lengthscale 
parameter and the channel Reynolds number, while the third expresses the ratio of the 
Stokes’ settling velocity of the particle to the centreline velocity in the channel. 

The solution via matched asymptotic expansions is outlined in $3.  We construct an 
inner solution valid near the particle, derive appropriate governing equations valid in 
the outer region, where inertial effects are important and formulate the matching 
conditions. The equations are solved in 994 and 5 and the migration velocities are 
calculated. Sections 4 and 5 correspond to different limiting regimes but the majority 
of the new analysis is contained within 94. The results are discussed in 96 and some 
comparison is made to experimental and other analytical studies. We also present 
straightforward physical arguments that account for the migration effects. Finally in 
9 7, we present some applications of the calculations reported here. Appendices A-D 
present details of the calculation of the inertial migration, while Appendix E considers 
the inertial correction for the lift and drag on a sphere in an unbounded linear shear 
flow. 

2. Formulation of the problem 
2.1. Governing equations 

We consider a parabolic flow profile between two infinite parallel planes separated by 
a distance 1 (figure 1). The steady flow is maintained by a constant pressure gradient 
acting parallel to the planes and the maximum flow velocity at the midpoint between 
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FIGURE 1. The configuration of the problem; characteristic lengths and velocities. (a) An horizontal 
channel, with gravitational acceleration perpendicular to the channel axis. (b) A vertically aligned 
channel, with gravitational acceleration parallel with the channel axis. 

the planes is denoted by U,. A spherical particle of radius a is moving in the flow at 
a position Y(t). In principle, any shear flow could be analysed, but here Poiseuille flow 
is considered as the simplest flow that includes curvature in the velocity profile across 
the channel. Also, for simplicity, a two-dimensional geometry is considered but the 
calculation could be performed for a pipe of circular cross-section; such an extension 
of the analysis would produce more complex governing equations, but may be more 
appropriate for comparisons between theoretical and some experimental results. 

The governing equations for the flow are the Navier-Stokes equation and the 
incompressibility condition, 

p --+u.uu =-Vp+pV2u, (E j (2.1 a) 

u.u = 0. (2.1 b) 

The flow in the absence of the particle, which we shall henceforth term the undisfurbed 
j o w ,  is given by 

4 urn a = -z(l-z)A?, l2 

where 2 is a unit vector aligned with the x-axis. There are three boundary conditions, 
representing a no-slip condition on the surface of the sphere (2.3a), a no-slip condition 
on the plane boundary (2.3b) and the absence of any disturbance to the flow away from 
the particle (2.3 c) : 

u = U p + O p  A (x- Y )  on Ix- YI = a, (2.3 a)  
u = o  on z = O , l ,  (2.3 b) 
U + i i  as [(x- Y).PI+ co, (2.3 c) 

where Up,  np are the linear and angular velocity of the particle. Denoting the 
Newtonian stress tensor by 0, the mass of the particle by m and the gravitational 
acceleration by g ,  the balance between the particle’s drag, buoyancy and acceleration 
may be expressed as 

a - n d S  = -mg+m-. d U P  s /x- Y/=a dt 

We will demonstrate in 52.2 that within the regime of this study, the acceleration of 
the particle (m dUp/dt) is smaller than either the drag on the particle or its buoyancy. 
Hence, for clarity, we ignore the acceleration term at this stage of the analysis. A series 
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of coordinate frame changes are made to ease the solution of the governing equations 
and imposed boundary conditions. First, the equations are transformed to a non- 
inertial frame of reference, in which the origin is instantaneously at the particle centre 
and moving with the particle velocity. We use a prime to denote variables in this 
moving frame and a dot to denote differentiation with respect to time. This change 
simplifies the no-slip boundary condition on the sphere ( 2 . 3 ~ ~ ) .  The next change is to 
introduce the disturbance$ow, defined as w = u‘ - ii’, which is the perturbation caused 
to the background undisturbed flow due to the introduction of the particle. Here the 
magnitude of the disturbance flow is expected to be small because the particle itself is 
small. We write the undisturbed flow a’ in a frame moving with the sphere as 

a’ a* - u;, (2.5) 
where a* = a-a(Y(t)) is the undisturbed velocity in a frame moving with the 
undisturbed flow evaluated at the particle centre and U,* = Y- a( Y(t)) is the particle 
velocity in a frame moving with the undisturbed flow evaluated at the particle centre. 
The full governing equations and boundary conditions may then be written as 

p 7+~.V‘~+ii*.V’~- U,*-V‘w+ w-V‘a* = -V‘(p‘--p)+pV’’w, (2.6a) 

(2.6b) 
w = U : + 9 ,  A x’-u* ,  Jx’I = a, ( 2 . 6 ~ )  
w = 0,  Z’ = -d, I-d, (2.6d) 
w-to, x’+& co, (2.6e) 

(:: 1 

s lx‘l=a 

V’. w = 0, 

( c (w)+c(a ) ) .ndS  = -mg, (2.6f 1 

where a* = 4Um[(1 -2d/I) Z ’ / I - Z ’ ~ / P ] ~  and the distance of the particle from the wall 
is given by d = Y.2. 

2.2. Non-dimensionalization 
The problem can be characterized by three independent non-dimensional groups : the 
lengthscale parameter, a = a/l ,  which is the ratio of particle to channel lengthscales; 
the channel Reynolds number, R, = U, l / v ,  which is the ratio of inertial to viscous 
forces for the channel; and a buoyancy number, B = iazApg/,uUm, which is the ratio 
of the Stokes’ settling velocity to the channel centreline velocity. In addition, the 
parameter R, = U,  a2/vl = a2Rc will be used, which is the particle Reynolds number 
based upon the particle radius and average velocity gradient. These parameters follow 
the definitions of Schonberg & Hinch (1989) and express the importance of the 
particle’s size, inertia and buoyancy. Other studies (e.g. Vasseur & Cox 1976; Jeffrey 
& Pearson 1965) have chosen a different set of independent parameters, but they can 
all be expressed in terms of the ones defined above. 

The governing equations are now non-dimensionalized by the particle lengthscale a 
and the Poiseuille flow velocity Urn. We continue to work in a frame moving with the 
velocity of the centre of the sphere, but for clarity the prime notation is dropped and 
the variables are now considered to be dimensionless variables. The equations are 
therefore 

=-Vp+VZw, (2.7a) 

v.w = 0,  (2.7b) 
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and the boundary conditions are given by 

W =  u,*+a2, A X - i i * ,  1x1 = 1, (2.8 a) 

w+o, x+kco, (2.8b) 

w = 0,  z = - d / h ,  (1 - d / l ) / a ,  (2.8 c) 

(2.8d)  

where ii* = (ayz -4a2z2) 2, y = 4 - 8d/l is the shear rate, non-dimensionalized with 
respect to Urn and 1, and 2 is a unit vector in the direction of the gravitational force. 

This analysis is based upon the regime of small particles compared to the channel 
width, which implies a 6 1, the channel Reynolds number of order unity, R, = O( 1) (or 
higher, subject to the constraints that the flow must be laminar which limits the channel 
Reynolds number to less than approximately 2000) and arbitrary values of the 
buoyancy number. We consider cases ranging from one in which the sedimentation of 
the particle dominates the flow field through to the case of a neutrally buoyant particle. 

At this stage we introduce some typical dimensional lengthscales for the problem 
which justify the claim of 8 1 that this parameter regime includes both Oseen and wall 
inertial effects and which describe some of the parameter ratios relevant to the 
asymptotic analyses of 583-5. The lengthscale at which inertial effects are important, 
based on the centreline velocity, is given by 

Eum = v / U ,  = l /Rc.  

The inertial lengthscale, based on a typical shear rate for the channel flow, is 

The inertial lengthscale, based on particle sedimentation, is 

(2.10) 

(2.11) 

Both lum/l and lshear/l express the ratios of the distance from the particle at which 
inertial effects are important relative to the width of the channel. From (2.9) and (2. lo), 
we note that if R, = O(l), all these lengthscales (2, , Ishear, I )  are comparable. Therefore 
we find that there are fluid regions in which iner'Eia is important within the channel, 
which introduces Oseen-like inertial corrections in addition to those arising from 
irreversible inertial interaction with the boundaries. The ratio lshear/lsed = BR; is the 
ratio of the distances from the particle at which inertial effects arising from the shear 
flow in the channel and from particle sedimentation, become important. The magnitude 
of this ratio determines whether the inertial corrections are dominated by sedimentation 
or by shear effects. 

We also assess the magnitude of the acceleration of the particle and justify neglecting 
it, when balancing the forces on the particle (2.4), (2.6 f ) ,  (2.8d). The timescale over 
which the particle accelerates in response to moving through the mean flow is given in 
dimensional form by 7 - l /Up.  Hence the magnitude of the ratio of the acceleration of 
the particle to the viscous stress acting on it is given by 

(2.12) 
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Hence to justify neglecting the acceleration of the particle, we require 

a2BZR, < 1. (2.13) 

For the regime studied here, this is not restrictive since a < 1 and R, = O(1). The 
condition solely excludes a steady-state analysis of the motion of particles, whose 
Stokes settling velocities greatly exceed the undisturbed velocity along the centreline of 
the channel. 

3. Solution via matched asymptotic expansions 
The problem is solved using the method of matched asymptotic expansions. An 

‘inner’ Stokesian layer is constructed around the sphere, which satisfies the no-slip 
boundary condition on it. This approximate solution is matched to an ‘outer layer’ in 
which viscous forces are balanced by the advective inertia terms and the boundary 
conditions are satisfied at the channel edges. 

3.1, Inner problem 
In the limit R,/a < 1 we propose an inner expansion for the disturbance flow and 
pressure fields in ascending powers of this parameter ratio, 

(3.1) w = W, + O(R,/a), p = p o  + O(R,/a). 

This yields the following ‘creeping flow’ equations and boundary conditions for the 
sphere : 

vzw, - 0 p  = 0, ( 3 . 2 ~ )  
v - w ,  = 0,  (3.2b) 

w, = U;+f2, A x - ( a y z - 4 a 2 z 2 ) f ,  r = 1 ,  ( 3 . 2 ~ )  
w, + 0, r + m .  (3.2d) 

These equations may be solved using spherical harmonics (Lamb 1932). Since the 
equations are linear, we construct solutions which correspond to each of the boundary 
conditions on the sphere. 

(i) The solution driven by the boundary condition w, = U,* on r = 1 is 

This solution gives no couple and a drag force of - 671. U,* on the sphere. 
(ii) The solution driven by the boundary condition w, = 0, A x - a y z g  on r = 1 is 

W, = (Q,-o) A (3.4) 

0 0 fay 0 
where E =  (;iY ) and o =  (-p). 
This solution gives no drag force and a couple of 8x(52,-0) on the sphere. Hence, 
since the particle is torque-free, the particle angular velocity is equal to half the local 
shear rate (i.e. 52, = 0). 
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(iii) The solution driven by the boundary condition w, = 4a2z2f on r = 1, 
corresponding to the parabolic part of the undisturbed flow, is derived in Appendix A. 
Written in terms of spherical polar coordinates ( r ,O,$) ,  with the O = 0 axis aligned 
along the x-axis, the disturbance velocity is given by 

5 7  5 7  3 3 2  
WOr - cos0sin20cos2$ --+- + C O S 3 e  --- +case --+-+- , (3.5a) ( r5 r 3 )  (r5 r3) ( r 5  r3 r) 
- _  
a2 

3 = sin30cos2$ --+- +sin0cos2$ --- a2 ( t: l 3 )  ( z i 5  z i 3 )  

15  7 1 2 3  

!?%? = sinOcosOsin2$ 
a2 

( 3 . 5 c )  

This solution gives no couple and a drag force of -8d2 on the sphere. 
These components of the solution are combined to give the complete form of the first 

term in the inner expansion (w,). We may apply the force balance to give the particle 
velocity, measured in a frame of reference moving with the undisturbed velocity at the 
particle centre. This gives 

We note that the magnitude of the buoyancy and the orientation of the channel 
determine the motion perpendicular to the undisturbed-flow streamlines according to 
this zero-order solution in the inner layer. A neutrally buoyant particle ( B  = 0), 
therefore, exhibits no lateral migration at this order of solution, nor does a particle in 
a channel aligned with the gravitational acceleration. The term arising from the 
parabolic flow profile across the channel ( -$a22) indicates that the particle lags the 
undisturbed flow. This lag results from a particle drop across the particle and is 
expressed by the spherical harmonic p!!, of the pressure field (Appendix A). 

For matching to the outer layer we examine the far-field behaviour of this Stokesian 
solution. As r+ 00, the disturbance flow field takes the form 

U,* = Bg-%a2f. (3.6) 

w, = u*-+x- - -  X-- + x - + x - + o  (3.7) 
3 U : * X ~  5 x . E . x  -a2 R’X 

2, 4r r2 4r 2 r5 r r3 

Using the results and definitions of Appendix B, we may interpret each of these far- 
field terms. The first term, which is O(B/r) ,  is a ‘Stokeslet’ due to particle migration 
and is only non-zero for a non-neutrally buoyant particle. The second, which is 
O(ay/r2), is a ‘strainlet’ due to the linear shear on the particle. The third, which is 
O(a2/r) ,  is a ‘Stokeslet’ due to the quadratic profile of the undisturbed flow. 

For the matching procedure, we need to establish which of these conditions is 
dominant in the far field at the plane boundaries. This determination depends on the 
relative magnitude of the parameters B and a, since even though the strainlet terms 
decays more rapidly than the Stokeslet, it is still feasible that it dominates if the local 
shear rate (ay) greatly exceeds the buoyancy. In non-dimensional terms, the plane 
boundary occurs at r - l / a  and so, away from the channel centreline, the Stokeslet 
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term arising from the quadratic profile of the undisturbed flow can never dominate the 
strainlet term, due to the linear shear on the particle. Hence, we have the following far- 
field behaviour : 

(i) if B > a, then the Stokeslet term O(B/r) dominates throughout; 
strainlet O(ay/r2) dominates for 1 4 r 4 a/B,  

if < a’ then Stokeslet O(B/r) dominates for a / B  4 r .  
The dominant term at the plane boundaries determines the form of the outer layer. 
Hence, we must consider which term dominates at distances r - 1/a and, according to 
(3.7), this is established by the value of the ratio a2/B compared with unity. 

It is possible to make a regular perturbation calculation of the next term in the inner 
expansion. This term is formally of O(R,/a) and details of the calculation are given in 
Appendix C. However, as will be demonstrated, it is not necessary to calculate it to 
achieve first-order matching. 

3.2. Outer problem 
The Stokesian layer around the sphere describes a short-range solution, which decays 
like O(l/r). At greater distances from the sphere it is necessary to consider a region in 
which the viscous forces are balanced by the advective terms. This is similar to the 
problem of a sphere translating through an unbounded fluid, which exhibits 
Whitehead’s paradox. It is not possible to find a regular perturbation correction to the 
Navier-Stokes equations, for small but non-zero Reynolds numbers, that is consistent 
at all distances from the sphere. The inertial terms involve a first-order spatial 
derivative, whereas the viscous terms involve a second-order derivative. Thus if the 
velocity field decays as r-n, it is inevitable that at sufficiently large distances the two 
forces are comparable. Oseen’s improvement to the procedure for calculating the 
approximate solution to the equations of motion was to decompose the fluid velocity 
into a component moving with the sphere’s velocity and a component representing the 
disturbance to the background flow. On the assumption that the sphere induces little 
disturbance to the flow, the acceleration terms of the equation may then be linearized. 
(Using the notation developed here, this is equivalent to neglecting the term w - V W . )  
This approximation is uniformly valid throughout the flow domain, provided R,/a 4 1, 
as pointed out by Batchelor (1965). 

We construct an outer region, distant from the particle, within which viscous and 
inertial forces are comparable. We introduce an outer spatial coordinate, linked to the 
inner one via some linear scaling, 

and we denote the velocity and pressure fields in the outer region by W ( X )  = ~ ( x ) ,  

In order to determine the first term of the outer-region expansion, it is necessary to 
match the outer solution W(X)  as X+O to the inner solution W,,(X) as 1x1 + 00. This 
matching ensures that the solutions arising from the Stokes region and from the outer 
region, where viscous and inertial forces are comparable, agree in some ‘overlap 
domain’. This matching procedure is elementary for this problem and could be carried 
out using Van Dyke’s matching rule or using an intermediate-variable technique 
(Hinch 1992). However, following the approach of Saffman (1965), we encapsulate the 
matching conditions into the momentum equation by the introduction of a suitable 
forcing term. Saffman represented a general forcing by a Taylor series involving 
successive derivatives of the delta function and demonstrated that for the expansion to 
lowest order in the outer region it is necessary only to utilize the dominant term of this 
Taylor expansion. Hence, noting the calculations of Appendix B and noting the 

x= sx, (3.8) 

P(X> = P ( X ) .  
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behaviour of the inner solution as r -t co (see 93. l ) ,  we introduce the point forcings into 
the momentum equation as a means of matching the first-order inner and outer fields. 
Denoting R = 1x1, we find that the Stokeslet and strainlet velocity fields may be 
replaced by a delta function and a linear combination of derivatives of the delta 
function, respectively. Thus we replace 

W-t  S(3/4R) (U; + (q. X / R 2 )  X )  as R+ 0 with 6 7 c S 3 q  6(X),  (3.9a) 
and W +  - 5S2/2(X-  E .  X / R 5 )  X as R-tO with -$!7cS4E-V6(X). (3.9b) 

Hence we find that the governing equation in the outer region is given by 

- -+ sw. v w+ su* .v w+ s w. v u *  - su; .v w = - svP+ s2v2 w 

6nS3 6(X), a2/B g 1 ,  

\ - 1 w 
viscous inertia 1 'inertia2 ?(Y 

(3.10) 

where U* = (ayZ-4a2Z2)2.  We argue below that the dominant balance in this 
equation is between the inertial terms, denoted inertia 1 and 2, and the viscous term. 
The flow is driven by the point forcing, which represents the matching of the inner to 
the outer solution and which determines the scaling of the leading-order outer flow 
velocity. The terms denoted inertia 1 arise from the inertia of the shear flow in the outer 
region, whereas the term denoted inertia 2 arises from the inertia of the flow field 
associated with the motion of the particle. In the far field we balance the viscous terms 
with one of the inertial terms and this provides the scaling of the outer region (3.8). 

We make an Oseen-like approximation and linearize the acceleration terms in this 
governing equation, as discussed above. Here this neglects the term W .  V W and 
implies that the wake around the particle does not interact with itself. This 
approximation is justified since in the far field U( W .  V W )  4 U (  U* - V W +  W -  V U*),  
O( U,* V W ) .  The magnitude of the time-derivative term may be assessed by a simple 
scaling argument. If we neglect the time variation of the disturbance flow (T, - 12/u) ,  
then the flow must be established much faster than the time over which the particle 
moves towards the boundaries r, - l/ulateral. This condition requires 

+{ -?3S4E*V6(X), a 2 / B  >> 1 

(3.11) 

This condition is satisfied in a vertically aligned channel since the lateral migration 
velocity is small. However, with a horizontally orientated channel, the lateral migration 
velocity scales with the Stokes' settling velocity of the particle. Hence we require 

T,/& - BR, 4 1 (3.12) 

for the quasi-steady solution to be valid. If the condition (3.12) is not satisfied, the time 
variation of the velocity may not be neglected because the time taken for a particle to 
translate towards the boundary is less than the time taken to establish the flow field. 
In this paper, we focus on solving only the steady-state equations and so (3.12) must 
be satisfied for a horizontally aligned channel. 

Substituting the undisturbed flow field in terms of the outer coordinate into (3.10) 
and balancing the viscous and inertial terms, we find that there are two possibilities for 
the outer-region scaling: 

(i) viscous terms balance advective terms due to undisturbed shear velocity, 

S =  R$ if I + B~R,;  (3.1 3 a)  
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(ii) viscous terms balance advective terms due to sphere migration, 

S =  R,B/a if 1 < B'R,. (3.13 b) 

This product of parameters, B'R,, was established in $2.2. Essentially its magnitude 
represents which of the inertial contributions dominates. Previous investigators (e.g. 
Saffman 1965, McLaughlin 1991) have expressed this product as the ratio of the square 
of the particle Reynolds number based on slip velocity to the particle Reynolds number 
based on velocity gradient. We now pose outer expansions for the pressure and velocity 
fields, 

(3.14) 

Therefore the governing equations for this first term in the outer expansion, after 
linearizing, neglecting the time derivatives and including the matching condition to the 
inner solution by means of a point forcing, are 

6nSU,* 6(X)  

W ( X )  = W,(X) + O(R,/a), P ( X )  = SP,(X) + O(R,/a). 

U**VWO+ W,-VU* (1 9 R,B2) 
(1 < R, B2), 

(3.15 a)  
v. w, = 0, (3.15b) 

v2W,-v4+{ 

together with outer boundary conditions on the channel boundaries, 

w, = 0, z = - (d/r) S /a ,  (1 - d/r) S/a. (3.1 5 c) 

At this stage of the analysis, we recall that O( q) = B and O(€)  = ay. 

3.3. Matching 
Having established the outer-region flow, it is necessary to match back to the inner field 
and it is the result of this further matching which allows the calculation of the inertial 
migration velocity. Noting that the outer-region momentum equation is driven by the 
point forcings (3.10), we find that the outer-field velocity has the scalings 

BS if a2/B < 1, 
K-{ as2 if a2/B>> 1, 

(3.16) 

with the scalings of S given by (3.13). Hence, this implies that the inner velocity field 
proceeds as 

w = w,, + {f:2} w, + BR, wg + o(R,), (3.17) 

where w1 results from matching the first-order outer field back to the inner field and 
w2 results from the regular perturbation expansion of (2.7) (see Appendix C). The first- 
order inner velocity field, w,, exerts an additional drag on the particle, modifying 
its motion and leading to a migration velocity. This velocity is given by evaluating 
wl(r = 1). However, making a Taylor series expansion, we note that 

wl(r = 1) = w,(R = S )  = w,(R = 0) + O(S),  (3.18) 

and w,(R = 0) is just the regular part of the outer velocity field at the origin. Hence, 
the migration velocity, denoted by Wmigration is given by 

(3.19) 
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Non-neutrally buoyant Neutrally buoyant 
a 2 / B +  1 a z / B +  1 

Shear flow inertia S2 = R ,  S2 = R ,  
R,B2 + 1 O(W,,,,,,,,,) = BR: O(Wmigration) = cjR, 

See 94 
Particle motion inertia S = R, Bla 
R,B2 + 1 O( Wmt9TatL"7L) = B2Rpla Higher-order effects only 

See 5 5 ,  Vasseur & Cox (1977) 
TABLE 2. A summary of the scalings for the various parameter regimes in this study. Shear flow 
inertia denotes the regime in which the far-field balance is between viscous forces and the inertial 
forces arising from the undisturbed shear flow. Conversely particle motion inertia denotes the regime 
in which the far-field balance is between viscous forces and inertial forces arising from the flow 
associated with the motion of the particle. 

Schonberg & Hinch (1989) 
No migration at this order 

Higher-order matchings are possible, but this paper focuses on attaining the lowest- 
order corrections only. 

Therefore, we identify four separate cases, because there are two scaling possibilities 
for both the governing equations and the matching conditions; the values of the non- 
dimensional parameters ratios B'R, and a 2 / B  determine which case is appropriate. 
Furthermore, we consider two alignments of the channel: a vertical channel and an 
horizontal channel, with gravity acting parallel or perpendicular to the boundaries, 
respectively. We denote the case a'/B % 1 as 'neutrality buoyant particles' and a'/B -g 
1 as 'non-neutrality buoyant particles'. Also, for R,B2 4 1, we denote the problem 
as a 'shear flow' problem, because the far-field balance is between viscous forces and 
inertial forces, arising from the undisturbed shear flow. Conversely if R, B2 % 1, the 
problem is one of a 'quiescent fluid' and the far-field balance is between viscous forces 
and inertial forces associated with the flow field arising from the buoyancy-induced 
motion of the particle. We present a summary of the different scalings for each case in 
table 2. We examine each case in turn, although the neutrally buoyant problems are 
only briefly discussed below since they have been studied before or are trivially soluble. 

3.4. Neutrally buoyant particles 
The regime in which the strainlet velocity is dominant (a2/B + 1) describes the 
migration of neutrally buoyant particles. If, in the outer region, viscous forces are 
balanced by advective terms due to the undisturbed flow (R, B2 3 l), then this regime 
corresponds to the case of neutrally buoyant particles ( B  = 0), studied by Schonberg 
& Hinch (1989). Their results indicate that the particles migrate across the channel to 
an equilibrium distance from the plane boundaries. This analysis models the 
experiments of Segre & Silberberg (1962b), which observe just this migration 
phenomenon. 

If, however, the dominant force balance in the outer region is between viscous forces 
and inertial forces arising from particle motion (Re B2 + l ) ,  then we find that there is 
no migration at this leading-order expansion. This regime requires that cx2 + B % R;;, 
which is not compatible with maintaining a 4 1 and Re = O(1). It turns out that the 
equations are trivially satisfied and hence there is no lateral motion. Instead, at higher- 
order corrections we recover the migration effects described above and in $94 and 5.  
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4. Non-neutrally buoyant particles in a shear flow: 1 + R, B2, a2/B < 1 
This regime corresponds to the case of the particles having sufficient buoyancy to 

dominate the far field of the velocity field, but insufficient to affect the outer-region 
balance of viscous forces with the shear advection term. (This parameter regime is 
better expressed by the requirement that R;: % B 9 a'.) In essence, the regime 
corresponds to that first studied by Saffman (1965), although here we generalize his 
study to include a parabolic velocity profile and the influence of the channel 
boundaries. Writing W, = (U,, V,, W,) and noting the scaling S' = R,, we find that the 
governing equations and boundary conditions are 

422 aw, V"-VP,= ( y2----i- R ; ) a x  --++, ( y-- z)', (4.1 a)  

v .  w, = 0, (4.1 b) 

(4.1 c) 

% = O ,  Z=-Rid/l ,Ri(l-d/l) .  (4.1 d)  

To enable the calculation of the migration velocity, we consider the regular part of the 
velocity field at the origin arising from these equations, as discussed in 5 3 . 3 .  Thus 

We define % and 8 to be the two-dimensional Fourier transforms of the disturbance 
velocity and pressure fields, respectively, in the plane parallel to the channel 
boundaries, 

We then recast the matching condition (4.1 c) into the momentum equation by the 
introduction of a delta-function forcing. The equations for the transformed velocity 
and pressure fields are then 

ik, 
__- a 2 4  (k;+k2,)Po = -2ikl(y-8R;t2) @,+-R$ 3 U z - (  ik, )&(Z), (4.4b) 

a/az a 2 2  2n ' =0 ,  Z=-R!d/l,R!(l-d/l). (4.4c) 

We focus attention on the lateral component of velocity and the pressure field. This 
gives two coupled differential equations, in which the remaining delta-function forcing 
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may be replaced by appropriate jump conditions on the velocity and pressure fields at 
the origin (2 = 0). These two governing equations and jump conditions take different 
forms depending on the alignment of the channel, since this determines the direction 
of the zeroth-order particle motion U,*. We discuss the cases of a vertically and an 
horizontally aligned channel in the next two subsections. Also, we use the continuity 
equation (4.1 b) and the no-slip criterion (4.1 d) to provide two boundary conditions for 
the lateral component of the transformed velocity field on each of the channel 
boundaries. 

4.1. Horizontally aligned channel 
In this case, the gravitational acceleration is perpendicular to the boundaries and leads 
to significant zeroth-order lateral motion of the particle. Hence the inertial correction, 
arising from a consideration of the inertial outer region, will be small. We proceed by 
setting U,* = B Z  and so the system of equations is 

(4.54 

- 3 1  [Po]gItT = - R; B, 
27c 

(4.5 c) 

- a % -  
O -  az W ---O, Z = - R ~ d / l , R ~ ( l - d / ~ .  (4.5d) 

This system of equations is integrated numerically to calculate R ( k , ,  k,, 0). The 
correction to the lateral velocity at the origin is obtained by subtracting the two- 
dimensional Fourier transform of the Stokeslet solution (Appendix B) and inverting, 

In this expression Re denotes the real part and we note that Wmigration is an O(BR$) 
correction to the particle velocity. 

As k l ,k z+oo ,  we expect that the solution of (4.5) should recover the Stokeslet 
velocity field, simply because large Fourier modes correspond to short lengthscales 
which are not influenced by the presence of the plane boundaries. The system of 
equations (4.5) may be examined in this limit (Appendix D) and it is found that 

This result guarantees the convergence of (4.6), although it is possible that @(k,,  k,, 0) 
must be evaluated for large values of (k:+k$. The numerical evaluation of the 
inversion integral (4.6) was carried out in the (k, ,  k,)-plane using plane polar 
coordinates, restricting attention to the first quadrant, owing to a symmetry of Re (R). 

NAG routines (D02RAF, COSNBF, DO 1 DAF) were used to solve finite-difference 
versions of the system of differential equations and to evaluate the Fourier inversion 
integral. Some difficulty was experienced in obtaining convergence for large values of 
(k: + k;). Equations (4.5) admit both exponentially growing and decaying solutions 
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FIGURE 2. The correction to the sedimentation velocity versus lateral position, for a non-neutrally 
buoyant particle in an horizontal shear flow for R, = 0.01 (---), R, = 1.0 (+-) and R, = 100 
(- .- .-), 

whereas the boundary conditions require the decaying solution. It becomes hard to 
resolve the decaying solution as the Fourier mode number increases and the 
exponentially growing solution starts to dominate and interfere with the relaxation 
techniques of the finite-difference grid. Hence the asymptotic expression for the 
velocity field was used for large Fourier modes. 

The correction to the sedimentation velocity ( Wmigration) is calculated across the 
channel for R, = 0.01, 1.0, 100 and it is observed to always reduce the velocity of the 
particles towards the boundaries. The results are shown in figure 2 and for the purposes 
of displaying these results, we plot the migration velocity on an axis scaled with aB. It 
is noted that the three curves take similar values with this scaling; only when R, = 100 
does the migration velocity show a slightly different variation across the channel width. 
The correction is not calculated within 0 < d / l <  0.04 and 0.96 < d / l <  1: these 
correspond to locations near the plane boundaries and convergence difficulties arise. 
Furthermore, within these regions close to the boundaries it is unlikely that the analysis 
presented here is valid because the boundary is not sufficiently distant from the particle. 
The inertial contribution to the migration velocity across the streamlines is not 
dependent upon the direction of the undisturbed channel flow or whether the buoyancy 
induces upward or downward motion. Instead the inertial effect, at first-order, is 
always to reduce the migration velocity by increasing the drag on the particle. 

4.2. Vertically aligned channel 
In this case the gravitational acceleration is parallel to the streamlines of the 
undisturbed flow and so there is no zeroth-order lateral motion of the particle arising 
from the Stokesian region. Hence the inertial correction, although of small magnitude, 
dominates the lateral motion. We set U,* = BX and find that the system of equations 
is given by (4.5~2, b, d ) ,  but with the jump condition replaced. In this regime, the jump 
condition is 

3 1  
= ik, - BR;. 

27c 

As in 54.1, we numerically integrate this system of equations to calculate R ( k , ,  k,, 0). 
The lateral velocity is given by inverting this expression because there is no 
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FIGURE 3. Migration velocity versus lateral position of a non-neutrally buoyant particle in a 
vertical shear flow for R, = 1.0 (-), R, = 10 (---), R, = 100 (--. . .). 

contribution from the Fourier transform of the Stokeslet solution, as demonstrated in 
Appendix B. Hence 

Wmigration = Re { s" JYm %(k,, k,, 0) dk, dk,}. (4.9) 
-m 

As before, we note that WmigratZon is O(BRi). An asymptotic analysis of (4.6a, b, d ) ,  
(4.8) for large Fourier mode number (Appendix D) shows that 

(4.10) 

This guarantees the convergence of (4.9) and is used to evaluate the integral and to 
avoid convergence problems of integrating the finite-difference equations at large 
Fourier mode number. We use a similar numerical scheme to that described in $4.1, 
again restricting attention to the first quadrant of the (kl, k,)-plane. The lateral 
migration was calculated for R, = 1.0, 10, 100 and the velocities across the channel 
width are shown in figure 3. We find that these curves have the same generic form, with 
the migration velocity being single, but differently signed in each half of the channel. 
There is a maximum migration velocity at d/Z z 0.15 (0.85) and zero migration velocity 
at the channel centre. Once again, we did not evaluate the migration velocity near to 
the channel boundaries, owing to difficulties in achieving convergence of the numerical 
scheme. 

We note that reversing the buoyancy of the particle (B+-B), or reversing the 
direction of the undisturbed channel flow (n* + - n*) leads to a reversal of the direction 
of migration. These symmetries imply that if the buoyancy of the particle leads to 
motion in the same direction as the undisturbed flow, then the lateral migration is 
outward, towards the boundaries. Conversely, if the buoyancy leads to motion 
opposed to the direction of the undisturbed flow, then the migration is towards the 
channel centre. This behaviour is in accord with the analysis of Saffman (1965), but is 
in contrast to that of a neutrally buoyant particle, for which there exists an equilibrium 
position away from the channel centreline and towards which the particles migrate. 
This observation will be further discussed in $6, where all the results are reviewed. 
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5. Non-neutrally buoyant particles in quiescent fluid: 1 -+ R,B2, u 2 / B  -+ 1 
In this regime, the buoyancy of the particle is sufficient to dominate motion as it 

sediments through the shear flow and to dominate the outer-region balance between 
viscous and advective terms. This analysis is similar to that of Oseen, which describes 
the motion of a sphere through an unbounded quiescent fluid. Here, although the shear 
rate of the undisturbed flow is sufficiently small so that to leading order the fluid may 
be treated as quiescent, it is not unbounded and so the channel boundaries influence 
the motion. 

We may solve the quasi-steady-state equations for only the case of a vertically 
aligned channel. For an horizontally aligned channel, the gravitational acceleration 
leads to significant motion across the streamlines. We have derived the constraint 
(3.12) to permit the time variation to be neglected which is not consistent with requiring 
R, B2 9 1 and R, = O( 1). In other words, the particle moves towards the boundary 
before the disturbance velocity field has been fully established across the channel. 
Hence a quasi-steady approximation is inappropriate and the momentum equation 
must include the time-derivative term. 

The vertically aligned channel in the absence of an undisturbed flow was analysed 
by Vasseur & Cox (1977), using a method similar to the one presented here. The 
undisturbed shear flow is present but is dominated by the particle's sedimentation. 
There is the possibility, though, that the weak shear may influence the lateral 
migration, which is elucidated through the scalings developed here. Using the outer 
coordinate scaling S = R, B/a  and identifying U,* = BX+ O(u2), we find that the 
system of equations is 

V ~ W , - V P ,  =-up*.vwo, 
v.  w, = 0, 

(5.1 a)  
(5.1 b) 

( 5 . 1 ~ )  

W, = 0, Z = - BR, d / l ,  BR,( 1 - d/l) .  (5.1 d )  

Once again, we are interested in the regular part of the velocity field at the origin arising 
from these equations. This is given by 

This drives an O(R, B2/a) term in the inner velocity field which leads to lateral 
migration. However, the calculations of Appendix C demonstrate that there is also a 
regular perturbation term. This is of O(R, B) and also leads to particle migration. This 
regular perturbation term can only dominate the singular perturbation correction if 
B/a 4 1 and within the strict parameter regime imposed here this is not a possibility. 
However, it may have a contribution with intermediate parameter regimes, which fall 
between those analysed in 994 and 5.  

We recalculate the results of Vasseur & Cox (1977) using the method of Fourier 
transforms in the plane parallel to the channel. The system of equations is linear with 
constant coefficients and so is easily integrated. Typical results are shown in figure 4. 
There are two noteworthy features of these results. Firstly, as pointed out by Vasseur 
& Cox (1977), the migration velocity tends to the asymptotic value of &R, B2/a as the 
particle approaches the boundary. This result is in accord with that calculated by Cox 
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FIGURE 4. Migration velocity versus lateral position for a non-neutrally buoyant particle within a 
channel with quiescent fluid, for R, = 1.0. 

& Hsu (1977) in which they assumed that a single boundary fell within the inner 
Stokesian layer, and may be reproduced from this analysis by integration of (5.1) in the 
limit d/l+ 0. Also, and somewhat trivially, the migration is always directed towards the 
channel centreline, irrespective of the sign of the particle’s buoyancy, which is in 
contrast to the study of $4.2. 

6. Discussion 
This paper has studied the inertial correction to the motion of a small spherical 

particle in the direction perpendicular to the streamlines of the undisturbed flow. The 
sphere is non-neutrally buoyant and we have considered the cases where the buoyancy- 
induced zeroth-order motion is parallel or perpendicular to the undisturbed 
streamlines, corresponding to the alignment of the channel being vertical or horizontal. 
The major new results of this paper correspond to the parameter regime R, 8’ << 1, 
a2/B < 1 and are presented in $4. 

When the channel is aligned horizontally and the particle moves perpendicularly 
across the flow towards the boundaries, the inertial correction to the Stokes’ settling 
velocity is small, as calculated in $4.1. The analysis shows that the correction is of 
O(BRi).  This scaling is identical to that calculated by Harper & Chang (1968) in their 
extension to the analysis of Saffman (1965). Whereas Saffman (1965) considered the lift 
on a particle moving parallel to the streamlines of an unbounded linear shear flow, 
Harper & Chang (1968) calculated the lift and drag on a body moving in an arbitrary 
direction through the same unbounded shear flow. Their results may be derived from 
this study by taking the limit I+ co, while Re, = aBR, and r = U J l  remain finite. 
However, this study also includes the influence of the boundaries on the particle 
motion. We have also shown that the drag on the particle is increased, irrespective of 
the sign of the velocity gradient. This feature is unlike the ‘Saffman lift’, the direction 
of which reverses with differing signs of shear. (Appendix E revises the Harper & 
Chang calculation to include the dependence on the direction of increasing velocity.) 
This increase of particle drag is expected, since we deduce from the minimum- 
dissipation theorem for creeping flow that the introduction of any inertial terms must 
indeed lead to an increased drag (Happel & Brenner 1965). 

Several studies (e.g. Brenner 1961; Ho & Leal 1974) have demonstrated that a 
particle moving perpendicularly towards a boundary experiences an additional drag, 
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FIGURE 5 .  Comparison of the correction to the sedimentation velocity of a non-neutrally buoyant 
particle in an horizontal shear flow, between the results of Ganatos et al. (1980) (--0 --) and the 
results for R, = 0.01 (-). 

which reduces the particle’s velocity. This effect arises both in creeping flow and when 
inertia is taken into account. It implies that for the problem studied in $4.1 there are 
two means by which the velocity of the particle towards the boundary is reduced - one 
resulting from the viscous interaction with the boundary and the other from the 
introduction of inertia. 

Using the scalings developed in $ 3  for a non-neutrally buoyant particle with an 
outer-region balance of the viscous and shear inertial terms, we find that the 
dimensional distance from the boundary at which inertia becomes significant is given 
by 

A a / S  = E / R ~ .  

Thus for R, < 1, the particle wake fills the entire width of the channel and the 
boundaries, which fall within the Stokesian region, dominate the motion. Conversely, 
for R, > 1, the central regions of the channel are dominated by the shear inertial 
correction and the boundary influence is limited to distances O(l/Rt). This qualitative 
feature is observed in figure 2, for R, = 100. Here the wall effect is significant for 
{ d / l <  0.1, d / l >  0.9}, with the remainder dominated by an inertial correction 
comparable to that calculated by Harper & Chang (1968) with a non-dimensional 
shear rate of order unity. 

The results for R, = 0.01 show an increased particle drag which is dominated by 
viscous-boundary interactions. This calculation may be compared to other creeping- 
flow evaluations of the boundaries’ influence. Brenner (1961) presented an ‘exact’ one- 
boundary solution, while both Ganatos et al. (1980) and Ho & Leal (1974) studied the 
problem of a particle moving perpendicularly between two boundaries. There is good 
agreement between the results calculated here and those of Ganatos et al. (1980) (see 
figure 5) ,  while those of Ho & Leal (1974), using a method of reflections, tend to 
underestimate the additional drag. (Ganatos et al. suggest that this underestimation 
indicates a need to take additional terms in the reflection series.) 

When the particle’s buoyancy leads to motion parallel with the boundaries, the 
inertial correction will produce the leading-order lateral motion. The results of $4.2, 
which are calculated for the regime of R, B2 g 1, a2 /B  << 1 ,  demonstrate that a particle 
whose buoyancy enhances motion in the direction of the undisturbed flow will migrate 
towards the boundaries, whereas a particle whose buoyancy is in opposition to the 
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direction of the undisturbed flow will migrate towards the channel centreline. (For 
example, the former condition is fulfilled by a light particle in an upward flow, whereas 
the latter by a heavy particle in an upward flow.) This migration velocity is O(BaRi) 
and the variation across the channel width is shown in figure 3 .  We find a similar 
variation of migration velocity across the width of the channel in the experimental 
study of Jeffrey & Pearson (1965) and discuss their results below. 

The direction of the inertial migration is in accord with that predicted by Saffman 
(1965). A particle moving faster than the background shear flow will migrate in the 
direction of slower flow (i.e. in the direction of decreasing velocity), and vice versa. A 
simple physical argument to account for the direction of this migration is that as the 
particle translates parallel to the boundaries it displaces fluid laterally. At sufficiently 
large distances this displacement becomes irreversible, owing to the effect of inertia. If 
the particle lags the fluid, the difference between the velocity of the displaced fluid and 
the background flow is greater in the direction of increasing velocity. Hence a lateral 
pressure gradient is set up in this direction which exerts a force on the particle that 
leads to migration. (A reverse argument applies for a particle translating with velocity 
in excess of the background fluid and so it migrates in the direction of decreasing 
velocity.) 

If the undisturbed shear flow is weak (R, B2 % l), we find that the lateral migration 
is O(aB2R,) and is always directed towards the channel centreline. This effect was first 
calculated by Vasseur & Cox (1977) and a simple physical explanation of this migration 
given by McLaughlin (1993). As the particle translates through the fluid, between the 
boundaries, it displaces fluid laterally and inertial effects imply that this is irreversible 
at sufficiently large distances from the particle. The boundaries encounter and resist 
this displacement of fluid and exert a force on the particle, which leads to migration 
towards the centreline. It is vital that the boundaries are sufficiently distant to lie within 
the outer region in which inertia terms are important, as this adds irreversibility to fluid 
displacement. We note that the magnitude of these migration velocities decrease with 
decreasing channel Reynolds numbers, which is in accord with this reasoning. 

Schonberg & Hinch (1989) note that the migration of neutrally buoyant particles 
arises from the competition of two effects : one is linked to inertial interaction with the 
wall, which produces inward drift, and the other is linked to the shear and curvature 
of the velocity profile, which leads to migration towards the boundaries. The simple 
physical arguments presented above explain both of these effects. To zeroth-order, a 
neutrally buoyant particle does not lag behind the channel flow and so if there is a 
linear shear flow no lateral pressure gradient arises and so there is no migration. 
However, there is curvature in the velocity profile across the channel and so, at large 
distances from the particle, the difference between the velocity of displaced and 
background fluid is greater towards the boundary than towards the channel centre. 
This induces a pressure gradient and leads to migration towards the boundary. 
Conversely, the boundary encounters and resists irreversibly displaced fluid and exerts 
a force on the particle, which leads to migration away from it. 

A number of questions arising from the experiments of Jeffrey & Person (1965) may 
be answered by this theoretical study of inertial migration effects. Firstly, when 
studying the migration of non-neutrally buoyant particles, Jeffrey & Pearson scale the 
migration velocity with a2BR,, although they note the empirical result that improved 
correlation arises from scaling with (aBR,);. The analysis of $4.2 suggests that if the 
particles are in the parameter regime a2/B d 1, R,B2 d 1, the scaling should be aBR!. 
Furthermore, the scaling for the migration velocity of neutrally buoyant particles 
should be a3Rc, as suggested by Segre & Silberberg (1962 a, b), rather than a2RRf which 
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FIGURE 6. Comparison of the migration velocity versus lateral position between theoretical 
predictions and experimental results of Jeffrey & Pearson (1965). Two data sets are shown: R, B2 = 
0.07, B/a2 = 9.60 (O,-), R,B2 = 0.14, B/a2 = 18.80 (A,--). 

arises from Jeffrey & Pearson’s correlation analysis. If we compute the ratios a 2 / B  
and R, B2 for the data set of Jeffrey & Pearson (1969, it turns out that the experiments 
were conducted in a parameter regime which does not strictly satisfy the criterion 
a2/B 4 1, R, B2 < 1, although generally a2/B < 1 and R, B2 < 1. Hence, although the 
dominant behaviour may be predicted by the analysis in the regime of 54.2, it is also 
necessary to include ‘intermediate ’ effects from other limiting regimes. Their 
experiments with non-neutrally buoyant particles were performed using dense particles 
in upward and downward flow. In the upward flow, there is migration towards the tube 
axis, whereas in downward flow there is migration towards the boundaries. However, 
the magnitude of these migration velocities for the upward and downward flows does 
not exhibit the same distribution across the tube, which the theory of 54.2 predicts. A 
possible reason for this discrepancy could be related to the migration effects described 
in § 5 .  In the regime of R, B2 $- 1, which corresponds to a regime of quiescent fluid, all 
particles migrate inwards to the channel centreline. In these experiments, R, B2 = O(1) 
and so behaviour from the quiescent fluid and shear flow regimes will be observed. 
Hence, the inward migration of dense particles in an upward flow will be enhanced, 
while in a downward flow the outward migration is diminished. This effect would 
explain the observed discrepancy in the tube velocity profiles for heavy and light 
particles observed by Jeffrey & Pearson. 

We compare the theoretical predictions of 54 with some of the experimental results 
presented by Jeffrey & Pearson (1965). The governing equations are integrated with 
appropriate values of the non-dimensional parameters, to give the migration velocity 
across the channel (figure 6). We find general qualitative agreement between the 
experimental and theoretical velocity profiles, although there is not quantitative 
agreement across the entire width of the channel. This may arise from the difference 
between the planar symmetry of the channel in the theoretical calculation and the 
cylindrical tube used for the experiments. Furthermore, the experiments were 
performed in the regime R J a  = O( l), which is not strictly in accord with the analysis 
developed here. Nevertheless, we do find at least some experimental verification of the 
theoretical predictions. 

We conclude this discussion of the analysis of particle migration by considering 
regimes in which there is an equilibrium position across the channel width at which the 
lateral migration velocity vanishes. The observations of SegrC & Silberberg (1962a, b) 
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FIGURE 7. The variation of equilibrium position with B/a2 for a particle in a vertical 
shear flow with R, = 1.0. 

that such an equilibrium position exists away from the channel centreline initiated 
much of the work on inertial migration effects. Schonberg & Hinch (1989) calculate 
the equilibrium position for a neutrally buoyant particle and their analysis finds 
it to be at d/ l  = 0.185 for R, = 1.0. This value is in accord with experimentally 
determined equilibrium positions. Their calculations are in the parameter regime 
a2 /B  9 1, R, B2 4 1. 

Vasseur & Cox (1 977) study the case of a non-neutrally buoyant particle in quiescent 
fluid, with a channel Reynolds number of order unity. This corresponds to the 
parameter regime a2/B < 1, R, B2 $ 1. They find that the particles migrate towards the 
channel centreline. The work presented in this paper has studied non-neutrally buoyant 
particles in a shear flow and we find that migration can be towards either the channel 
boundaries or centreline, depending on the buoyancy and the direction of flow. The 
parameter regime of $4 is a2/B < 1, R, B2 4 1 and so it is possible to consider 
intermediate effects with the inertial migrations described by Schonberg & Hinch 
(1989) and Vasseur & Cox (1977). 

Firstly, we describe a regime in which shear flow dominates, but in which the particle 
is only slightly non-neutrally buoyant (a2/B = 0(1), R,B2 4 1). For definiteness, we 
consider a vertically aligned channel with an upward flow. Hence light particles migrate 
outwards and heavy particles inwards, according to the theory of $4.2. Thus combining 
these migration effects with those of Schonberg & Hinch (1989), we find that for light 
particles the equilibrium position is moved towards the channel boundaries, whereas 
for heavy particles the equilibrium position gradually moves inwards to the centreline 
with increasing B/a2. The location of this equilibrium position is calculated for a range 
of B/a2 and is shown in figure 7. For extremely light particles, the equilibrium position 
is close to the boundary; since the analysis is not entirely valid with the particle 
adjacent to the boundary, we should include additional effects to study possible 
equilibrium positions here. 

An equilibrium is also possible in the regime of non-neutrally buoyant particles with 
weak shear flows (a2/B 4 1, R,B2 = O(1)). Here the inward migration predicted by 
Vasseur & Cox (1977) is balanced by the outward migration predicted by $4.2. We 
discuss a vertically aligned channel with upward flow and light particles ( B  < 0), which 
implies that the particles migrate outwards according to the $4.2. We consider the 
variation of the equilibrium position with the ratio of the two migration velocity scales, 
BaR!/B2aR, (figure 8). We calculate the equilibrium position by solving the system of 
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FIGURE 8. The variation of equilibrium position with BRi for a non-neutrally buoyant particle in 

a vertical channel with R, = 1.0. 
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equations for the lateral velocity field at each value of BR: and finding the position at 
which the migration velocity vanishes. We find that for large values of BR!, the 
centreline of the channel is the equilibrium position since the 'quiescent fluid' solution 
dominates. However, the position moves towards the boundaries at BR! x 0.50 and 
therefore gradually approaches the boundary with decreasing BR!. Here the 'shear 
flow' solution begins to dominate. We find that there are equilibrium positions between 
0.2 d d / l  < 0.5, for only a very limited range of values for BR!. This result is in accord 
with the findings of Vasseur & Cox (1976) at low channel Reynolds number and may 
account for the lack of experimental observations of equilibrium at these channel 
widths. 

Finally, we return to an horizontally aligned channel and consider a slightly non- 
neutrally buoyant particle. The lateral motion is O(B) with inertial corrections O(BR$) 
arising from the Stokeslet term and O(aR,) from the strainlet term. It is feasible that 
B - aRp, in which case there is an equilibrium position at some distance from the 
channel centreline, but nearer the boundary than for a neutrally buoyant particle. The 
location of this equilibrium position may be extracted directly from the results of 
Schonberg & Hinch (1989), again with the caveat that close to the boundary the 
analysis is not likely to be entirely valid. 

7. Application 
The geometry and flow of the problem of an horizontally aligned channel are 

identical to that encountered in the technique of field-flow fractionation (FFF) 
(Giddings et al. 1991). This technique is used to separate particles of differing sizes and 
densities and is generally carried out in a channel which is relatively thin and long. The 
channel Reynolds number is small and the flow has a Poiseulle profile. The essence of 
FFF is to apply a field perpendicular to the flow which induces particle motion and 
drives some of the particles closer to the boundaries than others. Those close to the 
boundaries are now transported more slowly by the flow, which allows separation to 
be effected. A sedimentation field is commonly used for FFF. However, while gravity 
has been successfully used for particles with diameters in excess of 1 pm, it is usual to 
generate sedimentation forces for smaller particles by using a centrifuge (Giddings 
et al. 1991). 
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The analysis here is relevant to the technique of sedimentation fluid flow 
fractionation, as we have studied a motion-inducing field applied perpendicular to the 
channel flow. The analysis demonstrates that particles that sediment towards a 
boundary across the shear flow experience an increased drag force, which slows their 
rate of sedimentation. For the purposes of predicting particle motions within FFF, this 
means that it may not be adequate to assume that the particle sediments with the 
Stokes’ settling velocity. Instead there are inertial corrections O(BRa) and O(aR,). 
Hence, we conclude that for particles which differ in size alone, the difference between 
their sedimentation velocities is reduced. 

A second application of this work may be in connection with particle motions near 
to an erodible bottom boundary in open channel flow. Abbott & Francis (1977) note 
that the grains they tracked seemed to sediment more slowly than predicted by the 
Stokes’ settling velocity. This indicates an additional upward force which may be 
ascribed to a shear-inertial lift. Their experiments were carried out at a moderate 
channel Reynolds number as they wished to study particle motions in the absence of 
turbulence. For modelling their experiments, it may be possible therefore to extend this 
analysis to the appropriate parameter regime, which is an open channel flow at a 
Reynolds number of 400. In turbulent systems, the analysis may not be applied 
directly, as we have assumed that the background flow is steady and laminar and have 
used a simplified equation of motion for the particles, which assumes small inertial 
forces and neglects turbulent fluctuations and particles’ wakes. However, it may be 
possible to apply the principle that the particles experience a ‘lift force’ near to the 
boundary and so their concentration is reduced in this region. 

Finally, we describe how this work may be applied to volcanic conduits, up through 
which molten rock (or magma) is flowing. The flow within such dykes is often laminar 
and we may calculate a typical channel Reynolds number, using data from Lister & 
Kerr (1991). If the magma is basaltic, with viscosity 100 Pa s-l and density 
2600 Kg m-3, flowing through a dyke of width 0.5 m, with a velocity of 1 m s-l, then 
the channel Reynolds number falls in the regime R, = O(10). It is observed that small 
bubbles migrate across the dyke, towards the boundaries (Brousse 1965). The direction 
of this observed migration is in accord with the calculations made here for a vertically 
aligned channel. However, in addition to this inertia-driven migration, it is also 
possible that bubbles migrate due to deformation. The shear deforms the shape of the 
bubbles and leads to migration towards the channel centre. This deformation will be 
significant when the surface tension of the bubble is small compared to the viscous 
forces acting on it, which tends to be the case for larger bubbles. The calculations of 
$4.2 also suggest that crystals in volcanic conduits, which are heavier than the flowing 
magma, should migrate towards the channel centre. This has not been observed, 
possibly because the thermal effects of a lateral temperature gradient are important or 
because the crystals have an irregular shape leading to other mechanisms of lateral 
migration. 
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Appendix A 
In this appendix, we present the solution to the creeping-flow problem with a 

quadratic boundary condition on the sphere, at the origin, which is required to solve 
the inner problem of 0 3.1. We consider the following non-dimensional equations and 
boundary conditions : 

V"-Vp = 0, v * u  = 0, (A 1 a, b) 
u = 4 a 2 z 2 &  r =  1, u+O, r+m, (A lc,  d )  

where r = 1x1. We solve the problem in terms of spherical harmonics and define a 
system of spherical polar coordinates ( r ,  0, $), with the axis 0 = 0 aligned along the 
x-axis of the Cartesian system. Hence, the boundary condition (A 1 c) is given by 

where f,8,$ are unit basis vectors of the spherical coordinate system. Noting the 
harmonics of this boundary condition, we seek a solution for the velocity and pressure 
fields in terms of the following spherical harmonics : 

u = 2a2 sin2 6 (cos 2$ + 1) (cos B i -  sin &), (A 2) 

u/a2 = V$!, + V$!4 + v$!, + X A 

+ r2(vp02 + &Vp04 +&Vp?J + x(4p!, - &,(P!~ + ~ 2 ~ ) ) ,  (A 3 4  
(A 3b) p / a 2  = 2(p02 +PO4 +p24),  

where the decaying spherical harmonics are denoted by 
m m 

{$_m((n+l)? P-(n+l ) ,  X-(n+l)) = r-(n+1)P2(COS 0) eim+, 
and PT(z) are the Legendre polynomials. After some algebra, we pick out the following 
harmonics which solve this problem: 

5cos36-3cos0 - 
+-2 0 3  =-case, $!4 = - 9 $ - 4 - @  cos 0 sin2 ~ c o s  2$, (A 4a-c) 

5r2 4r4 

cos 0 sin2 6 cos 294, (A 4d-f) 35 
4r4 4r4 

p24 = -- 7(5 C O S ~  0 - 3 cos 0) 0 -  1 
r  PO_^ = ,COS 0, p-4 - 

2 
3r3 

~2~ = - sin2 0 sin 2$. 

These give the velocity field u = a2(up, u,, u+) as 

5 7  
u, = cos0sin20cos2$ 

u, = sin38cos2$ ( -- i:+$)+sin~cos2$ ( 2 i 5  --- 2 i 3 )  

15 7 1 2 3  

u+ = sin0cos0sin2$ ( --+- 2 i 5  2 i 3 )  . (A 5 4  

The force and couple exerted on the sphere by this flow, denoted by F and G 
respectively, are simply calculated from these spherical harmonics (Happel & Brenner 
1965) as 

F = -4na2V(2r3p!,) = -8na2i, G = 0. (A 6 4  b) 
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We note that the force and couple may also be calculated using Faxen's formula, which 
yields an exact result in this case as the background flow is quadratic. 

Appendix B. Stokeslet and strainlet velocity fields 
In this appendix, we derive the Stokeslet and strainlet velocity fields and calculate 

their two-dimensional Fourier transforms, evaluated at the origin, in the plane parallel 
to the boundaries of the channel. These expressions are used in the matching procedure 
of 53.3. 

B. 1. Stokeslet 
The Stokeslet velocity field is defined as that resulting from the introduction of a delta- 
function forcing in the momentum equation. It is equivalent to the far-field terms of 
the velocity field for an object translating through quiescent fluid. Its analytical form 
may be derived from the zero-Reynolds-number Navier-Stokes equations, using 
Fourier transforms. For a forcing of magnitude F a t  the origin, we find that the non- 
dimensional Stokeslet velocity and pressure fields are given by 

I ( a]  x;2) 1 F-x 
p(x )  =-&--, U j ( X )  = - 4  6..+- . 87-t 

As part of the asymptotic matching procedure of 53.3, we need to calculate the two- 
dimensional Fourier transform of this Stokeslet velocity field evaluated at z = 0. 
Writing K 2  = k: + k i ,  we find that the two-dimensional Fourier transform of the 
Stokeslet velocity field, in the plane (x , y ) ,  evaluated at the origin is 

where 

tii(kl, k,)  = - (4 - ;A i j I$ ) ,  
8n2K 

k: /K2 k ,  k 2 / K 2  0 

0 

B.2. Strainlet 
The Strainlet velocity field is defined as that resulting from forcing the creeping-flow 
momentum equation with a linear combination of derivatives of the delta function. 
The forcing takes the form ~7-tEij(a/axj)  S(x), where Eij is symmetric and traceless. It 
is equivalent to the far-field term for a stationary object at the origin of a linear shear 
flow. Its analytical form is also derived from the creeping flow equations by Fourier 
transforms and we find that the non-dimensional velocity and pressure fields are given 
by 

Thus we calculate the two-dimensional Fourier transform of this velocity field, 
evaluated at the origin. Denoting K 2  = k: + k i ,  we find 
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Appendix C 
In this appendix, we calculate the second term of the regular perturbation series, 

which comprises part of the solution to (2.7). This gives an O(R, B) correction to the 
Stokesian series. The matched asymptotic expansion presented in $ 3  is based upon 
R,/a + 1 and we show in $3.3 that for first-order matching, in most limits, it is 
unnecessary to calculate this regular perturbation expansion. However, we present the 
details of this calculation to confirm the matching approach of $3.3 and as it is required 
for second-order matching. 

We pose expansion series for the non-dimensional disturbance velocity and pressure 
fields in the inner region as 

R R w = w o + 2 w , +  ...) p =po+$pl+ . . .)  
a 

The solution for wo, po is presented in $ 3 .1  and the governing equations and boundary 
conditions for w, and p, are then given by 

v2w,-vp1 = w,. VW,+P*. vwo+ W0' VP* - u;. vw,, (C 2 4  

(C 2 4  

w, = o ,  1x1 = 1, wl+o, IxI-too. (C 2c, 4 
v. w, = 0, 

We consider this system of equations (C 2) as a creeping-flow problem with a forcing 
denoted by Q = w,~Vw,+~*~Vw,+ w,-Va*- CJ;.Vw0 and follow the approach of 
Saffman (1965) to derive an expression for the force exerted on the sphere at this order. 
If we denote 

xV. Q dS  = b, Rn, 
J r = R  n J r  =R n 

Q d S = x a a , R n  and 

then the expression for the force is 

where C,  B are constants arising from the solution of the homogeneous part of (C 2). 
As demonstrated by Saffman (1 965), these constants are important for asymptotic 
matching as C represents a uniform stream velocity and B is associated with a uniform 
pressure gradient and the resulting parabolic velocity profile. 

The evaluation of the coefficients {a?, b,} involves lengthy algebra, some of which is 
eased by the application of the following result: 

$ni dS  by the divergence theorem, 
d - -- 
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Applying this result, we find that 

313 

(C 5) 

We may now substitute expressions for the velocity field in terms of Lamb's spherical 
harmonics, given by 

(n + 3) r2Vpn - 2nxp, 
n 2(2n + 3) (n + 1) 

wo = C V @ , + X  A vXla+ 

We also note that for any harmonic functionfn(x), x - V  f ,  = r(d/i3r)fn = nf, and so 

For the problem under consideration here, Appendix A lists those spherical 
harmonics appropriate to the boundary condition w = 4a2z2f on r = 1. The other 
harmonics we have are, 

* (C9) 
3 U".x x*E.x x*E*x 

P-2 = -P $+ = -___ , pF3=-5--- r5 
$-2 = 4y3, 2 r3 ' 2r5 

With these expressions for the spherical harmonics appropriate to the problem under 
consideration, it is possible to evaluate integrals of the form (C 5), (C 6) .  For 
simplicity, we ignore the integrals involving the harmonics of O(a2) as they yield 
corrections of O(a2R,), which are certainly smaller than any of the corrections arising 
from the matched-asymptotic expansion analysis. However, in certain limits, the 
corrections of O(BR,) and O(aR,), which arise from using the spherical harmonic 
components of the velocity field (C 9), are larger than the terms arising from the 
asymptotic matching. 

To summarize the calculation then, we find the following: 

(C 10a) 
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So combining these integrals, we find that, 

Hence 

Further 

QdS  = nE- U,* 
/ r  = R 

xU.QdS = nE. 

x * Q  8R2 16 3 128 
x---dS = nE. U,* +XU,* A o(- 1 + R2), 

/ r = R  

Therefore combining these results, we find that 
F1) = ZnE. U,* + ~ X W  A U,*. 

This first-order regular perturbation correction to the velocity is of O(BR,) and we 
note there is no term of O(aR,). We also note that the regular perturbation correction 
involves terms like E -  Up*, o A U,*, which have no lateral component, if U,* = U, 2. 
Hence, in this case, they cannot be matched to the lateral component of the outer 
correction to the velocity field. 

Appendix D 
In this appendix, we consider the coupled differential equations for the transformed 

velocity and pressure fields in the limit of large Fourier mode number and find the 
asymptotic form of the velocity field at the origin. We have a no-slip boundary 
condition on the channel boundaries and consider the pressure-field jump conditions 
at the origin, relevant to $84.1 and 4.2. So writing k ,  = KcosO and k, = KsinO, 
equations (4.4) and no-slip boundary condition are 

K2P" = -2iKcosOm(ya-8a2Z/R~), d2P" 
dZ2 

d2 I? 
dZ d Z  

_-- 

- dP" . K2 W = - + IK cos O FV(yaZ- 4a2Z2/R9,  -- 

(D 3) 
- d m  

d Z  
W=-=O, Z = z ' z - .  9 ,  z ' -z -=Rk C. 

We analyse this system of equations in the limit K+ 00. We introduce E = I/Kand seek 
an asymptotic expression for @ in the regime 0 < E + 1. Equations (D 1) and (D 2) 
admit two asymptotic regions; Z = O(l), 2 = O(E). If Z+,Z- - O(1) then both 
boundaries lie in the 'outer' region (Z  = O(1)). Hence, applying the no-slip boundary 
condition (D 3), we find that the outer velocity and pressure fields vanish at all 
algebraic orders. Thus we are forced to select the exponentially decaying solutions 
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within the inner region. If, however, Z+ = O(e) (or Z- = O(e)), then one of the 
boundaries falls within the 'inner' region ( Z  = O(e)). This means that while on one side 
of the origin we may take the decaying solution, on the other we are forced to include 
both the decaying and growing exponentials. We introduce a rescaled variable 7 = Z/s  
and denote 9(7) = &Z), W(7) = @(Z) .  The equations to be solved are then 

We propose the following series expansions : 

9 = 8 + e q  + € 2 3  + O(E3), w = wo + E"ly; + € 2 3  + O(e3). 

If Z+,  Z- - O(1) then we solve (D 4) and (D 5 )  by finding the appropriate decaying 
solutions which satisfy the prescribed jump conditions at the origin. If, however, 
Z+ = O(s) then we must enforce the boundary condition at 7+ = Z+/e. We find that 
the boundaries lead to contributions of O(exp (- 27+)) and so are only significant when 
7+ = O(1). We present the asymptotic analysis for both the horizontally and vertically 
aligned channels. 

D. 1. Horizontally aligned channel 
The jump condition is on the pressure field at the origin, 

Hence, we find that the transform velocity field at the origin is 

3s 3iycosOs3 3e 
87~ 327~ 87~ W(7 = 0) = -- --exp(-2y+)(27+2+27++ l)+o(iC). (D 7) 

Hence the large Fourier mode number component of the inversion integral (5.9) may 
be evaluated as follows: 

Re{ rfi( @(Z = 

3 
4z+ = -- exp ( -2K,  Z') ((K, Z+)2 + 2Km Z+ +:) + O(K;l). (D 8) 

D.2. Vertically aligned channel 
The jump condition is on the derivative of the pressure field at the origin, 

i3Kcos 0 

Hence, we find that the transform velocity field at the origin is 

3 y cos2 Os3 3 y cos2 8e3 - 
16x 

W(7 = 0)  = - 
167c 
x exp (-27+) ( -+7+4 +$7+3 -$y+z -:7+- 1) + O(s5). (D 10) 
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be evaluated as follows: 
Hence the large Fourier mode number component of the inversion integral (5.9) may 

3y 3yZ+ W(Z = 0)KdKdO = -__-__ (exp (- 2Km z') ( -$(Km z+)' 16Km 16 

+&Km Z+ ++) +;E,(2Km 2') - 2E,(2Km Z')) (D 11) 

where 

Appendix E. The lift on a sphere in unbounded linear shear flow 
In this appendix we study the motion of a small particle with an arbitrary directed 

velocity, moving within an unbounded linear shear flow. This calculation was first 
made by Saffman (1965), to study the lift on a spherical particle moving parallel with 
the undisturbed flow. Subsequently, Harper & Chang (1968) generalized the calculation 
to permit the particle to have an arbitrary directed velocity. This appendix 
demonstrates how Harper & Chang's result may be derived from the analysis presented 
in the main body of this paper. It also shows how the study of McLaughlin (1991) fits 
in with this and previous work. Therefore, we include few details of the calculation as 
they have been published before, but we clarify whether the inertial drag or lift force 
on the particle changes direction with reversing the sign of the shear coefficient of the 
undisturbed flow. This issue is not made explicit by the previous studies. 

We consider an undisturbed linear shear flow, denoted by u = Tz2, where r 2 0. 
Hence we have the following non-dimensional parameters to characterize the problem : 
the particle Reynolds number, B = 1fla2/v and the buoyancy number B = :aApg/,ulT(. 
Then if we non-dimensionalize velocities with respect to l f la and lengths with respect 
to a, the governing equations and boundary conditions for the disturbance flow are 

B? -+ w.Vw+ii*.Vw- U,*.Vw+w.Vu* = -Vp+V'w, (E 1 4  

(E lb)  
W = u,*+a A X - E " ,  1x1 = 1, W-to, /XI+ CO, (E 1 c, 4 

(: 1 
v - w = o ,  

where the undisturbed flow with respect to this new origin is given by ii* = sgn (r)  z f .  
These equations are solved by means of matched asymptotic expansions, under the 

assumption that the particle Reynolds number is small compared to unity. We 
construct inner and outer regions: the inner region is Stokesian, dominated by viscous 
forces, whereas the outer region exhibits a balance between viscous and inertial forces. 
The inner problem is solved in an identical manner to $3.1, with the simplification that 
there is no O(d)  term. Furthermore, the far-field is dominated by the Stokeslet 
contribution as this decays like O(l/v), whereas the velocity field resulting from the 
shear decays like O(l/r2). This implies that there is only one matching possibility and 
it takes the form of a delta-function forcing in the momentum equation (see 93.3). 

In the outer region, we find that there are two scaling possibilities: 
(i) viscous terms balance inertial advective terms due to undisturbed shear velocity, 

S =  2; if 1 B B ~ ;  
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(ii) viscous terms balance inertial advective terms due to sphere migration 

S =  %B if 1 4 B B 2 .  

Case (ii) is the appropriate limit for a heavy sphere, moving through weak 
background flow. This recovers the governing equations proposed by Oseen for a 
sphere translating through quiescent fluid. Case (i) is the scaling for the problem 
studied by Saffman (1965) and Harper & Chang (1968). The intermediate regime 
BB' - O(1) was studied by McLaughlin (1991) and he presented both numerical and 
asymptotic analysis of the problem. 

To complete this discussion of the small inertial effects in unbounded linear shear 
flow, we focus on the regime %B2 < 1 and recover equations similar to those studied 
by Harper & Chang (1968). As in $3.3, we denote the velocity and pressure fields in the 
outer region by P ( X )  = p(x), W ( X )  = w(x)  and we pose expansion series 

W(X)  = w,(x) + I .  ., P ( x )  = SP,(x) + . . . . 
Thus, we have the following system of equations 

R2 4R 

We take three-dimensional Fourier transforms of these equations and consider 

R-0 

Hence we find that 
Wmigrationi = g'Aij u p j ,  

0.944 0 sgn(o0.620 
0.703 0 

( O  0.326 sgn(n0.343 0 

In the derivation of this result, we assume that there is a small particle Reynolds 
number (B 4 l), the shear flow is dominant (9i?'B2 4 1) and the particle Reynolds 
number based on rotation is small (QP a2 /v  + 1). The second of these conditions may 
alternatively be expressed as the ratio of the square of the particle Reynolds number 
based on slip velocity to the particle Reynolds number based on shear rate (BB2 = 
RLp/9), which corresponds to the expression of this ratio used by previous studies 
(Saffman 1965; Harper & Chang 1968). 

where A , .  = 
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