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Large eddy simulation (LES) is used to investigate the evolution of Boussinesq gravity
currents propagating through a channel of height H containing a staggered array of
identical cylinders of square cross-section and edge length D. The cylinders are
positioned with their axes horizontal and perpendicular to the (streamwise) direction
along which the lock-exchange flow develops. The effects of the volume fraction
of solids, φ, the Reynolds number and geometrical parameters describing the array
of obstacles on the structure of the lock-exchange flow, total drag force acting on
the gravity current, front velocity and global energy budget are analysed. Simulation
results show that the currents rapidly transition to a state in which the extra resistance
provided by the cylinders strongly retards the motion and dominates the dissipative
processes. A shallow layer model is also formulated and similarity solutions for the
motion are found in the regime where the driving buoyancy forces are balanced by
the drag arising from the interaction with the cylinders. The numerical simulations
and this shallow layer model show that low-Reynolds-number currents transition to
a drag-dominated regime in which the resistance is linearly proportional to the flow
speed and, consequently, the front velocity, Uf , is proportional to t−1/2, where t is the
time measured starting at the gate release time. By contrast, high-Reynolds-number
currents, for which the cylinder Reynolds number is sufficiently high that the drag
coefficient for most of the cylinders can be considered constant, transition first to
a quadratic drag-dominated regime in which the front speed determined from the
simulations is given by Uf ∼ t−0.25, before undergoing a subsequent transition to the
aforementioned linear drag regime in which Uf ∼ t−1/2. Meanwhile, away from the
front, the depth-averaged gravity current velocity is proportional to t−1/3, a result that
is in agreement with the shallow water model. It is suggested that the difference
between these two is due to mixing processes, which are shown to be significant
in the numerical simulations, especially close to the front of the motion. Direct
estimation of the drag coefficient CD from the numerical simulations shows that the
combined drag parameter for the porous medium, ΓD = CDφ(H/D)/(1 − φ), is the
key dimensionless grouping of variables that determines the speed of propagation of
the current within arrays with different CD, φ and D/H.
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1. Introduction
The study of gravity currents propagating into a porous medium, such as a channel

containing an array of obstacles, is of practical importance for many geophysical
and environmental applications. The obstacles increase the drag force acting on the
current and provide an additional mechanism for energy dissipation. For example,
snow avalanches are retarded by their interactions with long arrays of barriers, which
reduce the flow speed and partially mitigate the hazard posed to built infrastructure
(Hopfinger 1983; Hákonardóttir et al. 2003). Turbidity currents encounter arrays of
screens that favour local sediment deposition (Oehy & Schleiss 2007). Finally, a case
of considerable importance for environmental applications is when a gravitationally
driven current propagates into a partially or fully vegetated channel (Tanino, Nepf &
Kulis 2005; Zhang & Nepf 2011). Such fluid motions are driven by differences in
the temperature of water masses associated with different solar heating in emergent
and submerged vegetative regions (Coates & Ferris 1994; Chimney, Wenkert & Pietro
2006) or with different concentrations of phytoplankton that alter the penetration of
solar radiation through the water column (Edwards, Wright & Platt 2004). Both effects
lead to horizontal gradients of density, and these drive fluid exchange between the
regions. Among other features, this exchange may be important due to the chemically
distinct composition of the water masses.

In this paper, we investigate gravity currents for which the density of the fluid is
determined by its temperature or salinity or other compositional component, moving
through a channel filled with stationary obstacles that retard the flow. The obstacles
that constitute this porous medium through which the exchange flow occurs are a
staggered array of rigid horizontal cylinders of square cross-section, aligned with their
axes perpendicular to the initial density gradient and the streamwise flow direction
(figure 1). This porous medium is therefore characterized by the volume fraction of
solids, φ, the edge length of the square cylinders, D, the frontal area of the cylinders
per unit volume, a, the orientation of the cylinders and their arrangement. In the
following, the edge length of the square cylinders will be referred to as the cylinder
diameter. The motion is started from ‘lock-exchange’ initial conditions in which one
half of the channel is filled with dense fluid and the other half is filled with less dense
fluid. The channel height is denoted by H. The top and bottom channel boundaries
are no-slip walls. It will be shown that the structure of currents propagating through
the channel differs substantially from lock-exchange flows in an unobstructed channel,
for which there is much smaller dissipation (e.g. see Huppert & Simpson 1980; Shin,
Dalziel & Linden 2004; Ungarish 2009; Meiburg & Kneller 2010).

Detailed measurements of the velocity, vorticity and density fields within a gravity
current are seldom available from laboratory and larger-scale studies. High-resolution
numerical simulations conducted with eddy-resolving techniques, however, can provide
such information (e.g. Härtel, Meiburg & Necker 2000; Necker et al. 2002; Ooi,
Constantinescu & Weber 2009) and additionally offer a way to study the behaviour
of gravity currents at conditions, such as very high Reynolds numbers, that are
closer to those encountered in practical applications in geosciences and engineering
(Ooi et al. 2009). In the present investigation, the evolution of gravity currents
propagating into a channel containing arrays of obstacles is studied based on 3D
large eddy simulations (LES) performed using a non-dissipative Navier–Stokes solver
in which the subgrid-scale terms are calculated dynamically (Pierce & Moin 2001).
The flow past each obstacle is explicitly resolved. There is no need to include
terms in the governing equations to account for the presence of the obstacles in the
momentum equations, to provide a cylinder drag coefficient or to include a model for
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FIGURE 1. Sketch of a lock-exchange flow for the case in which the relatively dense fluid
initially occupies the full depth of the channel behind the lock-gate. The channel length
is L= 2x0. The gate is positioned far from the lateral endwalls of the channel (x0/H� 1).
Cylinders (when present) are approximately uniformly distributed within the whole volume
of the channel, with their axes parallel to the spanwise (z) direction. Uf denotes the front
velocity of the bottom and top gravity currents.

obstacle-scale generation of turbulence, as is the case for numerical models that do
not resolve the flow past individual obstacles (e.g. see Jamali, Zhang & Nepf 2008;
King, Tinoco & Cowen 2012). Instead our computations resolve the velocity field
around each of the obstacles to reveal the unsteady evolution of the exchange flow.
In addition to numerical simulations of the unsteady, 3D velocity and density fields,
we also construct a shallow layer model of the motion (cf. Hatcher, Hogg & Woods
2000). This expresses mass conservation and the balance of momentum in terms of
dependent variables averaged over the flow depth. We show that when the exchange
flow has become dominated by the drag exerted by the cylinders, and inertial effects
have become negligible, there exists a similarity solution for the motion (cf. Tanino
et al. 2005).

When analysing the flow dynamics, it is important to recall that the cylinders are
positioned with their axes horizontal and perpendicular to the axis of the channel
in which the exchange flow occurs. In this configuration the results are of direct
application to some arrays of barriers used to retard powder snow avalanches
(Naaim-Bouvet et al. 2002) and turbidity currents at the bottom of reservoirs (Oehy &
Schleiss 2007). There may, however, be differences in some of the flow structures that
would emerge with vertically aligned cylinders, because the predominant orientation
of the vortices shed by the obstacles is different. However, as we investigate below,
the major effect of the obstacles is to retard the flow, and this depends strongly on
the ‘bulk’ descriptors of the porous medium, such as the volume fraction of solids,
φ, and the frontal area of cylinders per unit volume, a. Indeed, shallow layer models
do not feature explicitly any notation of the orientation or shape of the obstacles, but
instead parameterize the drag through the ‘bulk’ variables – and, as with the studies
of Hatcher et al. (2000) and Tanino et al. (2005), it will be shown that they capture
much of the flow dynamics.

On release from lock-exchange initial conditions, the current accelerates relatively
rapidly to reach a slumping phase in which the front velocity, Uf , is constant. When
no obstacles are present, these gravity currents continue to move with constant front
velocity, provided that the hydraulic resistance associated with the boundary remains
negligible, until the motion is affected by reflections from the end walls of the channel
(cf. Rottman & Simpson 1983; Hogg 2006). For flow through a porous medium with a
sufficiently high volume fraction of solids, the additional drag induced by the cylinders
induces deceleration long before any influence of the reflected bore on the front region
is felt. The progressive action of drag initiates a transition to the self-similar drag-
dominated regime in which the main forces acting on the current are due to buoyancy
gradients and drag induced by the obstacles.
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A first important question relates to what determines the front velocity, Uf , during
the drag-dominated regime for currents generated from lock-release initial conditions.
Tanino et al. (2005) conducted experiments with an array of vertically aligned
cylinders in the regime of relatively low values of the cylinder Reynolds number,
ReD� 1, where ReD is defined with the mean front velocity and the cylinder diameter.
In this regime where the drag developed by the cylinders is linearly proportional to
the mean flow speed, they found that the front velocity varies as t−1/2, where t is
the time measured from the moment the lock gate is removed. Furthermore, they
found that the height of the interface between the dense and less dense fluids varies
approximately linearly with downstream distance between the front where the height
vanishes and the lock gate. Constantinescu (2014) reported some preliminary results
and analysis of numerical simulations of these obstructed flows with the cylinders
aligned horizontally as in the current study. He confirmed that when the cylinder
Reynolds number is sufficiently small that the motion is viscously controlled, the
front speed varies with t−1/2. However, when the cylinder Reynolds number is larger,
the front speed Uf ∼ t−1/4 and the shape of the interface between the two fluids are
different. It is this latter regime that is the focus of this paper, in which the behaviour
of gravity currents in the quadratic drag-dominated regime is investigated over a wide
range of conditions.

In the present paper we extend the analysis of Constantinescu (2014) by presenting
a detailed investigation of the evolution and structure of the current and its dependence
upon geometrical and flow parameters based on numerical simulations. We also
examine ‘bulk’ properties such as the position of the front as a function of time, the
energy budget and the total streamwise drag force. We directly estimate the mean
drag coefficient of the obstacles, CD, during the linear and quadratic drag-dominated
regimes based on the resolved flow fields around the cylinders. This is a significant
advantage that arises from our numerical simulations, given that accurate experimental
estimations of CD for gravity currents are difficult to obtain. We also develop a new
shallow layer of this density-driven motion. This reduced model is based upon the
assumption that the motion is predominantly horizontal and it admits predictions that
compare favourably with numerical simulations. It will be shown that the assessment
of the drag force exerted by the cylinders and the associated drag coefficients are
particularly important for characterizing the ensuing dynamics and for representing
the motion in the ‘simplified’ shallow layer description.

The main research questions we address in this paper are as follows. (a) To what
extent do the results predicted by the shallow water theory models for currents
propagating into a porous channel reproduce those predicted by the 3D numerical
computations? (b) How does the increase of the volume fraction of cylinders, φ,
change the structure and evolution of gravity currents? (c) To what extent do other
non-dimensional geometrical parameters describing the array, such as the size of
the cylinders or the frontal area per unit volume, affect the evolution of the current
and the temporal evolution of the total drag force induced by the cylinders? (d)
Are Reynolds-number-induced scale effects important between the typical range
of channel Reynolds numbers at which laboratory experiments are conducted and
field-scale applications? (e) How does the drag force produced by the cylinders vary
with the flow parameters? Additionally, how do these values compare with those for
isolated cylinders placed in uniform incoming flow?

The paper is structured as follows. Section 2 presents the governing equations,
discusses the numerical method and boundary conditions and introduces the flow and
geometrical parameters of the numerical simulations. Section 3 develops a two-layer
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shallow model of the flow for currents that are initiated from lock-release initial
conditions and derives similarity solutions for the motion in the regimes for which
the cylinder Reynolds numbers are either very small or very large. Section 4 discusses
how the structure of the current changes as a function of the main non-dimensional
geometrical and flow parameters. Section 5 analyses how the temporal evolution of
the total streamwise drag force induced by the cylinders depends on the flow and
geometrical parameters that characterize the array of cylinders. Section 6 provides an
estimation of the mean drag coefficient of the cylinders during the drag-dominated
regime, analyses the temporal variation of the front velocity and analyses agreement
with predictions based on shallow water flow theory. Section 7 discusses the temporal
evolution of the energy balance. Finally, the main findings are summarized in § 8.

2. Description of the numerical model and simulations

The filtered dimensionless Navier–Stokes equations are solved along with the
advection–diffusion equation for the non-dimensional scalar concentration on a
non-uniform Cartesian mesh (Ooi, Constantinescu & Weber 2007). The dimensionless
filtered concentration is C= (C′ − C′min)/(C

′
max − C′min), where C′ is the concentration,

and C′max and C′min represent the maximum and minimum initial concentrations in the
domain. The concentrations C and C′ are linearly related to the density of the fluid.
The reduced gravity is denoted by g′ = g(ρmax − ρmin)/ρmax, where ρmax ≡ ρ + 1ρ
and ρmin ≡ ρ are the initial maximum (lock fluid) and minimum (ambient fluid)
densities in the domain, and g denotes gravitational acceleration. The channel height,
H, and the buoyancy velocity, ub = √g′H, are used as the characteristic length and
velocity scales respectively, with which the variables are non-dimensionalized and
times are rendered dimensionless in terms of t0=H/ub. It is assumed that the density
differences are sufficiently small (1ρ/ρ� 1) that the Boussinesq approximation may
be invoked and they are only significant in the gravitational terms of the momentum
equations. The subgrid-scale viscosity, νt, and subgrid-scale diffusivity, κt, in the
filtered momentum equations and in the advection–diffusion equation for C are
calculated using a dynamic Smagorinsky model. The equations used to evaluate νt

and κt are given in Pierce & Moin (2001). The use of a dynamic model eliminates the
need to specify any stratification correction in the subgrid-scale model (Kirkpatrick
et al. 2006; Rodi, Constantinescu & Stoesser 2013). The dynamic model was found
to be very successful in predicting scalar transport and mixing in turbulent flows,
especially for cases where the resolved scales drive the mixing process (Rodi et al.
2013). The two parameters in the non-dimensional governing equations are the
channel Reynolds number, Re= ubH/ν, and the molecular Schmidt number, Sc= ν/κ ,
where ν is the kinematic viscosity of the fluid and κ is the molecular diffusivity of
the dissolved species that gives rise to the density field. The coordinates in the three
directions are denoted either (x1, x2, x3) in index notation or (x, y, z). The vertical
axis is y, aligned with gravitational acceleration, while the x-axis is aligned along the
channel axis and the z-axis is spanwise.

The finite-volume LES code (Pierce & Moin 2001; Chang & Constantinescu 2013)
advances the governing equations in time using a semi-implicit iterative method that
employs a staggered conservative space–time second-order-accurate discretization.
A Poisson equation is solved for the pressure using a multigrid approach. All
operators are discretized using central discretizations, except the convective term in
the advection–diffusion equation for the concentration of the dissolved species, for
which the quadratic upwind interpolation for convective kinematics (QUICK) scheme
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(Leonard 1979) is used. Despite the non-monotonic properties of the scheme that
allow potentially non-physical values of the scalar to be generated in the simulation,
the present code was found to predict accurately scalar transport in turbulent flow
applications involving both passive and non-passive scalars (see, for example, the
detailed validation for combustion applications discussed by Pierce & Moin (2001,
2004)). Although the QUICK scheme is dissipative, for high-Reynolds-number flows
the dissipation introduced by the subgrid-scale model is significant. This is the main
reason why the numerical diffusion associated with the QUICK scheme in LES of
scalar transport does not have a very adverse effect on the quality of the solution.
Chang, Constantinescu & Park (2006, 2007) discussed validation of the numerical
method to predict ejection of non-buoyant and buoyant contaminants from bottom
channel cavities. Ooi et al. (2007, 2009) performed LES of lock-exchange intrusion
currents and gravity currents propagating over a smooth flat surface. Comparison
with laboratory experimental realizations showed that 3D LES accurately captured
the structure of the current at different stages of its evolution. Large eddy simulation
correctly predicted the change in the front speed, Uf , with Reynolds number, Re,
during the slumping phase for values up to 106 and that Uf ∼ t−1/3 during the
buoyancy-inertia phase, in accord with analytical models of the motion (Hoult 1972).
Gonzalez-Juez, Meiburg & Constantinescu (2009) and Gonzalez-Juez et al. (2010)
used the same numerical model to study the changes in structure of the gravity
current as it interacts with isolated obstacles mounted on a flat bed surface or
situated at a small distance from the channel bed. Large eddy simulation successfully
reproduced the measured time-varying drag and lift coefficients of gravity current
flows impinging circular and rectangular cylinders (Ermanyuk & Gavrilov 2005a,b).
Tokyay, Constantinescu & Meiburg (2011, 2012, 2014) showed that LES predictions
of vertical profiles of mean velocity and turbulent kinetic energy agreed well with
experimental measurements conducted for turbulent lock-exchange gravity currents
over a smooth flat surface and that the front speed variation during the drag-dominated
regime was in close agreement with shallow flow theory for lock-exchange currents
propagating over a rough surface.

All lock-exchange simulations reported in the current study were conducted in a
channel with smooth horizontal top and bottom walls and lateral vertical endwalls.
The channel contained an array of square cross-section cylinders of side length D.
Their location was close to a regular staggered pattern in the x–y planes, but a small
random displacement was applied to the initial regular pattern to reduce the regularity
of the wake-to-wake interactions between neighbouring cylinders. The magnitude of
the random displacement in the vertical and horizontal directions varied between 0.5D
and 1.0D. No-slip boundary conditions were employed on the velocity field at the
channel walls and on the surfaces of the cylinders. The surface-normal concentration
gradient was set to zero at all wall boundaries. The flow was assumed to be periodic
in the spanwise direction. The time step was 0.001t0. The Schmidt number was 600,
which corresponds to saline diffusion in water. Härtel et al. (2000), Necker et al.
(2005) and Cantero et al. (2007) showed that variations in the value of the Schmidt
number did not strongly alter the results in lock-exchange simulations of gravity
currents as long as it was of order unity or larger. This conclusion was confirmed
by Ooi et al. (2009) using the same code as that employed to perform the present
simulations.

The numerical runs were performed with channel Reynolds numbers, Re, in the
range 100–150 000. Since a typical temperature difference between shaded and
unshaded regions is just a few degrees Celsius, in a typical water depth of a few
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metres, it is implied that exchange flows within aquatic canopies are characterized
by a Reynolds number of order 104. Furthermore, this Reynolds number is typical
of many laboratory realizations of these flows. However, in other applications in
which arrays of porous barriers are used to decelerate currents, the Reynolds number
may be rather higher (e.g. Re = 105–108), because the typical length scales and
flow speeds are increased (see Naaim-Bouvet et al. 2002; Oehy & Schleiss 2007).
However, as will be shown below, the motion is retarded by the obstacles and
decelerates, thus promoting the relative magnitude of viscous processes. Eventually
the motion becomes fully controlled by viscous effects, and for this reason we have
also conducted simulations at relatively low Reynolds numbers so that the effects of
fluid turbulence are suppressed and the viscous dynamics may be analysed.

The obstructed channel is geometrically characterized by the following variables.
There are N square cylinders within the domain of volume V , so the volume fraction
of solids is given by

φ = ND2W
V

, (2.1)

where W is the width of the domain. The average spacing between the cylinders, s,
is given by

s=
(

2V
NW

)1/2

=D
(

2
φ

)1/2

. (2.2)

Finally, the frontal area of the cylinders per unit volume, a, is given by

a= NDW
V
= φ

D
. (2.3)

The inverse of this quantity, 1/a, is a length scale characterizing the porous medium.
The simulations were conducted with volume fractions of solids φ between 0

and 25 % (see table 1). Although most vegetated canopies generally have φ < 8 %,
there are practical applications where higher solid volume fractions can occur (Jamali
et al. 2008). For example, in the case of arrays of porous barriers used to decelerate
turbidity currents advancing in reservoirs, φ generally varies between 5 and 20 % and
even in the case of vegetated canopies φ values as high as 45 % have been reported in
mangroves with mean trunk diameters in the range D= 4–9 cm (Furukawa, Wolanski
& Mueller 1997). The range of φ in the experiments of Zhang & Nepf (2008) for
currents propagating in an aquatic canopy was 0–35 %. The range of D/H was
0.032–0.07 in the present simulations. The average value of the cylinder Reynolds
number during the quadratic drag-dominated regime, ReD, was between 60 and 250
for the Re = 15 000 simulation and close to 1700 for the Re = 150 000 simulation
(table 1). These values are within the range considered in the experiments of King
et al. (2012) conducted for steady constant-density flow in a channel containing a
layer of aquatic vegetation.

Apart from the cylinder diameter relative to the channel depth, D/H, the other non-
dimensional length scale is aH. All present simulations were conducted with aH> 0.1
(table 1) and with relative spacing, s/D, greater than 2. As described below, we used
the simulations to estimate the drag coefficient for the array of cylinders. This is
denoted CD and is reported in table 1, along with a combined drag parameter for
the porous medium, ΓD = CDaH/(1 − φ) = CDφ(H/D)/(1 − φ), which was larger
than 0.48 (table 1). This latter parameter represents the ratio of obstacle drag force to
momentum transport and can be also thought of as a global measure of the resistance
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Simulation D/H φ (%) aH Re ReD N CD C′D ΓD

HR_SVF00 — — — 15 000 — — — — —
HR_SVF01_D32 0.032 1.25 0.40 15 000 192 151 1.20 0.68 0.49
HR_SVF05_D32 0.032 5 1.59 15 000 103 597 1.40 0.96 2.35
HR_SVF12_D32 0.032 12 3.75 15 000 63 1405 2.00 1.53 8.50
HR_SVF25_D70 0.070 25 3.48 15 000 123 597 1.80 1.46 8.30
HR_SVF12_D50 0.050 12 2.49 15 000 171 597 1.35 1.03 3.70
HR_SVF12_D70 0.070 12 1.70 15 000 238 297 1.75 1.45 3.50
VHR_SVF12_D50 0.050 12 2.49 150 000 1680 597 1.25 1.01 3.50
LR1_SVF12_D50 0.050 12 2.49 100 <1 597 — — —
LR2_SVF12_D50 0.050 12 2.49 375 <1 597 — — —

TABLE 1. The main parameters of the numerical simulations. As in the text, a is the
frontal area of the cylinders per unit volume, ReD is the cylinder Reynolds number defined
with D and the mean Uf after the transition to the drag-dominated regime has started, N
is the total number of cylinders, CD is the mean total drag coefficient estimated using the
instantaneous velocity fields, C′D is the mean total drag coefficient estimated using Uf (t)
as the velocity scale and ΓD = CDaH/(1 − φ) = CD(φH/D)/(1 − φ) is a dimensionless
combined drag parameter for the region containing the cylinders.

provided by the cylinders; it will be shown to play a key role in the analysis that
follows (§ 3). As discussed by King et al. (2012), flows with ΓD > 0.1 and s/D> 1
correspond to the ‘dense flow regime’ in which the size of the wake eddies and the
turbulent kinetic energy generated by the cylinders scale with D, and vertical gradients
in the flow are fairly negligible. The range of ΓD in our simulations was 0.48–8.52,
which overlaps with the values estimated by Jamali et al. (2008) for field applications.
We note that most experiments were conducted with ΓD < 5, although ΓD values as
high as 70 were recorded in their experiments with φ = 35 %.

The computational mesh containing square cylinders was stretched in the wall-
normal direction of no-slip surfaces (top and bottom walls, lateral endwalls) to
resolve the near-wall flow. The grid resolution was also increased in the vicinity
of the faces of the cylinders. In many of the simulations the grid spacing in these
regions was approximately 0.0035H. Preliminary simulations were conducted for
constant-density uniform flow past isolated cylinders. The grid resolution close to
the isolated cylinder was the same as the one used for the cylinders within the
array in the lock-exchange simulations, and the isolated cylinder simulations were
conducted at comparable cylinder Reynolds numbers. The predictions of the drag
coefficient for the isolated cylinder were found to be in good agreement with data in
the literature (Yoon, Yang & Choi 2010). In most of the lock-exchange simulations,
the grid contained 2400 × 200 × 48 nodes in the streamwise (domain length 12H),
vertical (domain width H) and spanwise (domain height H) directions respectively.
In the simulation conducted with Re = 150 000 (VHR_SVF12_D50), the grid was
finer (4800× 400× 64) because of the need to sufficiently resolve the near-wall flow.
In the simulation with no cylinders (HR_SVF00) in which the current advances much
faster, the number of grid points in the streamwise direction was 9600 to account for
the increase in the channel length to 48H.

Despite the fact that the arrangement of the cylinders was not exactly reflectionally
symmetrical, the temporal evolution of the main variables characterizing the evolution
of the currents along the bottom and top of the domain was found to be close to anti-
symmetrical. This is why only the evolution of the denser bottom-propagating current
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FIGURE 2. (Colour online) (a) The height and (b) the depth-averaged velocity fields as a
function of x/xf (t) for the similarity solution of a drag-dominated lock-exchange flow in
the regime of high Reynolds number (CD= const.). Also plotted with symbols is the mean
streamwise velocity determined from the numerical solution. (c) The scaled concentration
field, C, as a function of downstream distance, x, and height, z, when xf /H = 4.6, from
the simulation with Re= 15 000, φ= 12 % and D/H= 0.05. The dashed (blue online) and
dash-dotted (red online) lines in panel (c) show the interface shape given by the analytical
model, h/H, and from the numerical simulation, hn/H, respectively. (d) The dimensionless
position of the front, xf /H, as a function of dimensionless time t/t0, showing the similarity
solution (dashed black line) and the results from the numerical simulation (solid pink line).

forming on the right side of the lock gate in figure 1 is analysed. Typical numerical
results are shown in figures 2(c) and 3. These are discussed in detail below, but first
we present a shallow layer model of the motion.

3. Shallow water theory model

We analyse the density-driven motion to calculate the evolution of the interface
between the dense and less dense fluids. We assume that mixing processes are
negligible, so that the fluid density is ρ + 1ρ if it lies below the interface (y = h)
or ρ if above, and the interface evolves according to a kinematic condition. In
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FIGURE 3. Sketch of the front position, xf , as a function of time, t, and the transitions
between the various dynamical regimes for currents propagating into an obstructed channel
predicted by shallow flow theory. The exponents are predicted by theory within different
regimes (slumping phase, quadratic drag-dominated regime, linear drag-dominated regime).
The transition times (t1, t2) and locations where transition is expected to occur (x1, x2) are
defined in § 3. In frame (b) the current transitions directly from the slumping phase to the
linear drag-dominated regime, and this corresponds to low-Reynolds-number lock-exchange
flows.

dimensional form, mass conservation in each layer is then given by

∂h
∂t
+ ∂

∂x
(hu1)= 0, (3.1)

∂

∂t
(H − h)+ ∂

∂x
((H − h)u2)= 0, (3.2)

where u1 and u2 are the depth-averaged velocities of the fluid phase in the lower and
upper layers respectively, and y= 0 and y=H are the lower and upper boundaries of
the channel (see figure 1). We note that since there is no imposed external flux along
the channel, there is volume flux balance given by

hu1 + (H − h)u2 = 0. (3.3)

The motion is analysed in a regime where the velocity is predominantly horizontal;
vertical fluid accelerations are negligible and so the pressure, p, adopts a locally
hydrostatic balance given by

p=
{

pT + ρg(H − y), h< y<H,
pT + ρg(H − h)+ (ρ +1ρ)g(h− y), 0< y< h,

(3.4)

where pT(x) denotes the as yet undetermined pressure along the upper boundary
y = H. Horizontal gradients of the pressure distribution drive the motion, while
hydraulic resistance is provided by the array of cylinders through which the fluid
flows. The drag at the boundaries of the porous domain is assumed to be much
smaller than the drag due to the dispersed cylinders. The momentum balances for
each layer in the Boussinesq regime are given by

(1− φ)
(
∂u1

∂t
+ u1

∂u1

∂x
+ 1
ρ

∂pT

∂x
+ g′

∂h
∂x

)
=−CDφ

2D
u1|u1|, (3.5)
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(1− φ)
(
∂u2

∂t
+ u2

∂u2

∂x
+ 1
ρ

∂pT

∂x

)
=−CDφ

2D
u2|u2| (3.6)

(cf. Hatcher et al. 2000; Nepf 2012), where the drag is parameterized via the
introduction of a drag coefficient CD. In a regime for which the cylinder Reynolds
number is large (ReD� 1), the drag coefficient becomes independent of the Reynolds
number, although it could still be a function of the other geometrical parameters
specifying the porous domain (φ and D/H). We note that if the Reynolds number is
sufficiently small (ReD� 1), then CD ∼ 1/ReD and the hydraulic resistance becomes
linearly proportional to the velocity. In this situation, the flow is analogous to motion
through a porous medium modelled by Darcy’s law (Huppert & Woods 1995).

Following initiation from full-depth lock-release conditions, namely h = H when
x < 0 and h = 0 when x > 0, the dynamics governed by (3.5) and (3.6) is
dominated by inertia, and the effects of drag induced by the cylinders have little
effect on the motion. However, progressively the drag induced by the cylinders
and the buoyancy force become the dominant terms in (3.5) and (3.6), while
the inertial terms become negligible. It is insightful to employ scaling analysis
to determine the temporal dependence of the velocity within the bottom layer,
u1, and extent of the flow, xf , noting that the height of the interface h ∼ H for
the lock-release flows considered here. Thus, when drag is negligible, we find
u1 ∼ (g′H)1/2 and xf ∼ (g′H)1/2t. With these dependences, we may estimate the
magnitude of the inertial terms in (3.5) as (1 − φ)∂u1/∂t ∼ (1 − φ)(g′H)1/2/t,
while the drag CDφu1|u1|/2D ∼ CDφg′H/2D. They are thus comparable when
t ∼ t1 = 2(1 − φ)D/[CDφ(g′H)1/2] and xf ∼ x1 = 2(1 − φ)D/(CDφ). When t � t1,
drag is negligible, but when t� t1, drag becomes a dominant force and changes the
momentum balance. Importantly, we note that the dimensional dependences of these
transition length and time scales may be written as

x1

H
∼ 2(1− φ)D

CDφH
≡ 2
ΓD
,

t1

t0
∼ 2(1− φ)D

CDφ (g′H)1/2
ub

H
≡ 2
ΓD
. (3.7a,b)

These expressions therefore reveal ΓD = CDφD/[(1 − φ)H] as the key dimensionless
group of parameters that determines the onset of drag effects and their subsequent
magnitude.

We now examine the regime in which buoyancy and drag forces balance, noting that
the momentum equations for each layer simplify to balance between the streamwise
pressure gradient and the hydraulic resistance due to the cylinder (see Hatcher et al.
2000):

(1− φ)
(

1
ρ

∂pT

∂x
+ g′

∂h
∂x

)
=−CDφ

2D
u1|u1|, (3.8)

(1− φ)
(

1
ρ

∂pT

∂x

)
=−CDφ

2D
u2|u2|. (3.9)

We may then eliminate the drag forces using the flux balance (3.3) to deduce

1
ρ

∂pT

∂x
=− h2

h2 + (H − h)2
g′
∂h
∂x
. (3.10)

Then we find that the momentum balance in the lower layer may be written as

(H − h)2

h2 + (H − h)2
g′
∂h
∂x
=− CDφ

2D(1− φ)u1|u1|. (3.11)
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This leads to the governing equation for the interface h(x, t),

∂h
∂t
+ ∂

∂x

((
−K

∂h
∂x

)1/2
(H − h)h[

h2 + (H − h)2
]1/2

)
= 0, (3.12)

where K = 2g′D(1− φ)/[CDφ] = 2u2
b/ΓD, a constant of dimensions L2T−2 that

characterizes the mobility of the density-driven flow. We seek a similarity solution to
(3.12), by writing h=HF(η), with the similarity variable defined by

η= x
B(KHt2)1/3

, (3.13)

where B is a dimensionless constant chosen such the interface reaches the lower
boundary at η= 1; this implies that xf (t)= B(KHt2)1/3. Substitution of this form into
the governing equation (3.12) leads to an ordinary differential equation (ODE) for
F(η), given by

−2
3
η
∂F
∂η
+ 1

B3/2

∂

∂η

((
−∂F
∂η

)1/2
(1− F)F

[F2 + (1− F)2]1/2
)
= 0, (3.14)

subject to boundary conditions F(0)= 1/2,F(1)= 0 and F′(1)=−4B3/9. The first of
these boundary conditions demands that the intrusions of dense and less dense fluid
are symmetric; the second defines the front to occur at η = 1; the third is forced
by the singular nature of the governing equations at η = 1. This system is therefore
a differential eigenvalue problem, which is solved straightforwardly using numerical
techniques to evaluate the constant B = 1.162 and to find the interface shape, h/H
(figure 2a). Also plotted (figure 2b) is the dimensionless velocity field in the lower
layer, given by

u1(η)

ẋf
=
(
− 9

4B3

(1− F)2

F2 + (1− F)2
∂F
∂η

)1/2

. (3.15)

Figure 2(c) shows the interface shape given by the analytical model superimposed
on the concentration field predicted in a simulation with φ = 12 %, D/H = 0.05
and Re = 15 000. Also shown is the interface shape, hn/H, calculated based on the
concentration field predicted by the numerical solution, where hn=

∫ H
0 Cdy. The overall

agreement between the two curves in figure 2(c) is good, with the analytical solution
predicting slightly lower values of the interface height, h, over the downstream parts
of the current. A similar level of agreement is observed in figure 2(b) between the
numerical solution and the analytical model for the distribution of the non-dimensional
mean streamwise velocity, u1/Uf . The agreement is satisfactory given that mixing
is not accounted for in the analytical model. The agreement is worst close to the
front of the current where mixing is especially strong. We also plot in figure 2(d) a
comparison between the position of the front measured in the numerical simulations
and the similarity solution (xf /H = B(2/ΓD)

1/3(t/t0)
2/3), noting that there is fair

agreement between the two. In order to make this comparison and to estimate ΓD,
we have determined the drag coefficient for the array from the simulation data using
the mean velocity within the bottom current as the velocity scale (more details are
given in § 6).

This solution is based upon the assumption that the drag exerted by the cylinders
may be represented by a constant drag coefficient. Since the velocity is progressively
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slowing, this implies that there is a time scale, t2, at which the motion is no longer
adequately modelled by the high-Reynolds-number representation of the drag from
each cylinder. This occurs when ReD ∼ 1, which is given when

t∼ t2 = u2
bHD3

ν3ΓD
and x∼ x2 = u2

bHD2

ν2ΓD
. (3.16a,b)

The model of the motion developed above is appropriate then for t1� t� t2, but
for t2 � t the governing equations are modified so that the drag is now linearly
proportional to the flow speed. In this scenario the dominant balance between the
hydrostatic pressure gradient and the drag is given by

(1− φ)
(

1
ρ

∂pT

∂x
+ g′

∂h
∂x

)
=−γ νφ

D2
u1, (3.17)

(1− φ)
(

1
ρ

∂pT

∂x

)
=−γ νφ

D2
u2, (3.18)

where γ is a dimensionless constant and the drag coefficient CD = γ /ReD. The
governing system is analogous to flow within a porous medium governed by Darcy’s
law. In this situation Huppert & Woods (1995) establish similarity solutions for the
motion given by

h= H
2

(
1− x

xf (t)

)
and u= ẋf

2

(
1+ x

xf (t)

)
, (3.19a,b)

where xf (t)= (g′H(1− φ)D2t/[γ νφ])1/2.
To summarize, for these gravity currents initiated from full-depth lock-release

conditions and propagating in an obstructed channel with a sufficiently high volume
fraction of solids, the self-similar solution obtained based on shallow flow theory
predicts (a) Uf ∼ t−1/3 and xf ∼ t2/3 at sufficiently high Reynolds numbers for which
one can assume CD to be constant, and (b) Uf ∼ t−1/2 and xf ∼ t1/2 at sufficiently
low Reynolds numbers where one can consider that a linear drag law (CD ∼ 1/ReD)
applies (cf. Huppert & Woods 1995; Tanino et al. 2005). Furthermore, one expects
currents to undergo transitions between behaviours. At very early times (t � t1),
the motion is inertia dominated, before becoming drag dominated but with the drag
proportional to the square of the velocity (t1 � t� t2), before entering a regime in
which the drag is linearly proportional to the velocity (t2� t). This is illustrated in
figure 3(a). It is possible that the intermediate regime of quadratic drag would not be
observed (figure 3b). This would occur if t2� t1, which corresponds to the cylinder
Reynolds number being small (ReD� 1).

4. Structure of the gravity current
4.1. High-Reynolds-number currents

4.1.1. Effects of the solid volume fraction
This subsection analyses simulations conducted with channel Reynolds number

Re = 15 000 and relative cylinder diameter D/H = 0.032. The Reynolds number is
large enough that the lock-exchange flow remains turbulent, at least close to the front
of the current, until the front of the current reaches the end of the computational
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FIGURE 4. Distribution of concentration, C, within a high-Reynolds-number (Re= 15 000)
bottom current propagating in a channel with (a) φ = 0 %; (b) φ = 1.25 %, D/H = 0.032;
(c) φ=5 %, D/H=0.032; (d) φ=12 %, D/H=0.032. Results are compared when xf /H=
5. The solid line shows the C= 0.01 isocontour.

domain. The presence of cylinders in the channel has a large influence on mixing,
especially inside the interfacial layer and in the regions close to the front.

Even for channels with relatively small volume fractions of cylinders, for which
the additional drag is not sufficient to trigger transition to the drag-dominated regime
within the computational domain (see, for example, the simulation with φ = 125 %,
figure 4b), the cylinders induce notable changes in the structure of the flow. For
example, comparison of the concentration distributions in figures 4(a) (φ = 0 %)
and 4(b) (φ = 1.25 %) during the slumping phase shows that the interaction of the
flow with the cylinders reduces the size and coherence of the large-scale interfacial
Kelvin–Helmholtz (KH) billows, which continue to form due to the presence of
velocity shear over a density-stratified region. However, because of the cylinders, the
thickness of the interfacial layer containing mixed fluid becomes more uniform, at
least at large distances from the front. Relative to the unobstructed case (φ = 0 %),
the width of the interfacial layer is smaller when the cylinders are present.

In the simulation without cylinders (φ = 0 %), most of the energetic large-scale
eddies are situated within the interfacial layer (figure 5a). Most of the mixing is
driven by these eddies. The tail of the current beneath the interfacial layer contains
a very small number of large-scale eddies. In contrast, for the case with φ = 1.25 %
(figure 5b) the cylinders act as a main source of large-scale turbulence within the
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FIGURE 5. Distribution of dimensionless vorticity magnitude, ωz(H/ub), within a high-
Reynolds-number (Re = 15 000) current propagating in a channel with (a) φ = 0 %; (b)
φ= 1.25 %, D/H= 0.032; (c) φ= 5 %, D/H= 0.032; (d) φ= 12 %, D/H= 0.032. Results
are compared when xf /H= 5. The solid line shows the C= 0.01 isocontour. The rectangle
in frame (d) shows the region visualized in figure 7.

current. Their spacing is sufficiently large that the dynamics of the separated shear
layers is fairly similar to that expected for isolated cylinders in a flow that is started
from rest, accelerates rapidly and then decelerates fairly slowly. Highly energetic
eddies detach from the downstream ends of these shear layers and the interactions of
the shear layers on the two sides of the cylinder result in the formation and shedding
of larger-scale billow vortices during the time in which the incoming flow velocity
is relatively large. These eddies are the main mechanism that is responsible for the
increased mixing observed in the simulation with φ = 1.25 % relative to that found
in the simulation with φ = 0 %. The presence of cylinders also significantly increases
mixing near the front of the current. The additional mixing induced by the cylinders
explains the aforementioned differences in the distribution of the concentration/density
between the φ= 0 % and φ= 1.25 % cases (e.g. see the concentration distributions in
figure 4a,b).

As the solid fraction was increased to over 3 %, the current transitioned to a
drag-dominated regime within the computational domain and consequently the front
speed Uf decreased with time. A clear decrease in the level of turbulence generated
by the bottom no-slip boundary and by the cylinders with an increase in the solid
volume fraction, φ, was observed during the later stages of the simulations. This
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is illustrated in figure 5 which visualizes the vortical structure of the current when
xf /H ∼= 5. Hardly any detachment of large-scale eddies from the separated shear
layers is observed in the simulation with φ = 12 % for the cylinders situated away
from the front (figure 5d). As the cylinder density increases, with D/H = const., the
interactions between the separated shear layers on the two sides of each cylinder
become weaker and these interactions are different from the case of an isolated
cylinder. For example, in the simulation with φ= 5 % (figure 5c) the shear layers from
one cylinder extend and interact with the cylinder situated behind it. The shedding
of large-scale billows is impeded. In the simulation with φ = 12 % (figure 5d) no
significant interactions between the separated shear layers are observed when xf /H>5,
except for the first few cylinders behind the front. This is similar to what is observed
for low-Reynolds-number currents discussed below in § 4.2. In terms of mixing, the
main effect of the decrease in the energy of the eddies shed from the cylinder with
increasing volume fraction φ (figures 4b–d and 5b–d) is that mixing decreases with
φ for constant D/H, once φ becomes larger than 3 %.

The capacity of the cylinders to generate flow unsteadiness and detachment of large-
scale energetic eddies from the separated shear layers correlates with their capacity to
enhance mixing. Comparison of the concentration distributions in figure 4 shows that
for φ > 3 %, no large-scale KH billows can be detected inside the interfacial layer and
there is a significant decay of the size of the region containing mixed fluid behind
the front with increase in the solid volume fraction. The interactions between the
large-scale eddies shed from the cylinders situated in the vicinity of the bed and the
bottom boundary layer become stronger as φ increases. Analysis of the instantaneous
bed friction velocity and vorticity fields shows that some of these eddies can more
than double the instantaneous bed shear stress when they approach the channel bottom.
However, past a certain threshold value of the solid fraction (φ ∼= 10 % for the series
of simulations presented in figure 5), the passage of these high-vorticity eddies to the
bed becomes inhibited by the presence of the cylinders.

In terms of the flow structure at the front, increase of the solid fraction strongly
diminishes the size of the lobes and clefts of the basal current. For example, in the
simulation with φ = 1.25 %, the average size of the lobes is similar to that for the
lobes forming in the case of a non-porous channel. Analysis of the results has shown
that the average size of the lobes decreases by a factor larger than two as φ increases
from 1.25 to 5 %. For φ > 5 %, the rate of decrease of the mean size of the lobes is
much smaller than that observed between φ = 1.25 and 5 %.

4.1.2. Effect of cylinder size, D/H, and frontal area, aH
Up to this point we have examined the evolution and structure of the current in

terms of the two parameters Re, the Reynolds number, and φ, the solid volume
fraction. However, one can modify the structure of the current while keeping these
two parameters constant. One way to achieve this is to increase D/H and, at the
same time, increase the distance between the cylinders, s/H. The effect of this
variation can be inferred by comparing two simulations conducted with the same φ
and Re (φ= 12 % and Re= 15 000) but with different values of the cylinder diameter
(D/H = 0.032, see figures 4d, 5d, and D/H = 0.07, see figure 6). As φ remains
the same and D/H increases, the frontal area aH decreases (table 1), which, in
turn, affects the combined drag parameter ΓD = CDφ(H/D)/(1− φ)= CDaH/(1− φ).
As s/H and D/H increase, the separated shear layers become longer, the degree
of interaction between them increases and their dynamics becomes closer to that
observed for isolated cylinders (e.g. contrast figures 4d and 6b) This is the main
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FIGURE 6. Distribution of concentration C (a) and dimensionless vorticity magnitude
ωz(H/ub) (b) within a high-Reynolds-number (Re = 15 000) bottom current propagating
in a channel with φ= 12 % containing large cylinders (D/H= 0.07). The solid line shows
the C= 0.01 isocontour.

reason why the effect of increasing the cylinder size, D/H, while keeping φ the same
is to increase the mixing. Most of the increase of the volume of mixed fluid with
D/H is due to mixing in the region situated just behind the front. The extent of this
region is much smaller in the simulations with small D/H (e.g. see the concentration
distributions in figure 4d for D/H = 0.032 and figure 6a for D/H = 0.07), where the
shape of the current close to the front approaches the triangular shape characteristic
for low-Reynolds-number currents.

One can also examine the effects of varying the cylinder size, but keeping constant
the frontal area, aH. Comparison of the simulations with φ = 5 %, D/H = 0.032
(figures 4c and 5c) and φ = 12 %, D/H = 0.07 (figure 6) shows that increasing D/H
while keeping the frontal area close to constant (aH ∼= 1.6) increases the coherence
of the KH billows and the amount of mixing in the front region. A similar effect
is observed when the simulations with φ = 12 %, D/H = 0.032 and φ = 25 %,
D/H = 0.07 are compared, for which aH ∼= 3.6. This explains why, for constant aH,
mixing increases with φ or, equivalently, with D/H (φ = aH(D/H)).

4.1.3. Effect of the Reynolds number
In the simulation with φ= 12 % and Re= 150 000, Re and ReD are sufficiently high

for the flow within the current to remain strongly turbulent in between the lock gate
and the front during the whole duration of the simulation (e.g. see figure 7). The
conditions in the Re= 150 000 simulation correspond closely to the regime for which
the drag coefficient is constant, which was used to model the effect of drag force for
high-Reynolds-number currents propagating into a porous medium in shallow water
theory models (see Hatcher et al. 2000; Tanino et al. 2005, and § 3) and in models
that resolve the flow within the channel and model the effect of the obstacles on the
flow by adding a distributed drag-force term in the governing Navier–Stokes equations
(e.g. see Jamali et al. 2008).

Figure 7 visualizes the vortical structure in the Re = 15 000 to Re = 150 000
simulations inside a region situated around the interface, at approximately half
distance between the front and the lock-gate position (see figure 4d). As Re increases,
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FIGURE 7. (Colour online) Distribution of the dimensionless vorticity magnitude ωz(H/ub)
within a high-Reynolds-number basal current propagating in a channel with φ= 12 % and
D/H=0.05: (a) Re=15 000; (b) Re=150 000. The dashed (red online) and the solid (blue
online) lines show the C = 0.05 and C = 0.95 isocontours respectively. The distributions
are shown in the region situated within the rectangle in figure 5(d).

the fluctuations of the separated shear layers become less regular and the importance
of the wake to cylinder interactions increases. The degree of three-dimensionality of
the flow field and the energy of the large-scale turbulent eddies shed by the cylinders
increase too. Even at large distances behind the front, the flow within the bottom
current contains highly energetic turbulent eddies at Re = 150 000. In contrast, the
vorticity fields in the Re = 15 000 case suggest an unsteady laminar flow at large
distances behind the front. This is also consistent with the fact that the values of ReD

during the later stages of the drag-dominated regime in the Re= 15 000 case are low
enough to find a laminar wake for most of the cylinders situated within the bottom
current.

In the Re = 150 000 case, large-scale vortical eddies detaching ‘randomly’ from
the separated shear layers or being shed from the wake of one cylinder can directly
interact and strongly disturb the flow around other cylinders situated in the vicinity
of their trajectories. Although such interactions were also observed in the Re= 15 000
case, they were, for most cases, limited to the cylinders situated in the immediate
vicinity of the cylinder where the detaching eddy originated and the disturbances were
predominantly two-dimensional. In the Re = 150 000 simulation, the strong energy
increase due to the 3D eddies generated by the cylinders increases the amount of
mixed fluid in the region situated close to the front and over the downstream part
of the interfacial layer relative to the Re = 15 000 simulation. As Re is increased
from 15 000 to 150 000, the thickness of the mixing interface, defined as the average
distance between the C= 0.05 and C= 0.95 isocontours, increases by close to 30 %.

4.2. Low-Reynolds-number currents
Important differences are observed in the structure of the gravity currents between low-
Reynolds-number cases (e.g. Re<500) and high-Reynolds-number cases (Re>10 000).
While in the former cases the flow past the cylinders remains laminar, in the latter
cases the flow within the gravity current is turbulent, at least around cylinders situated
close to the front.
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FIGURE 8. Distribution of concentration C (a) and dimensionless vorticity magnitude
ωz(H/ub) (b) within a low-Reynolds-number (Re= 375) bottom current propagating in a
channel with φ = 12 % and D/H = 0.032. The solid line shows the C= 0.01 isocontour.

In the simulations with Re = 100 and 375, the interface height defined by the
C = 0.5 contour varies approximately linearly with the streamwise distance from
the lock gate to the front (e.g. see figure 8). As the current advances, the interface
rotates slowly around the midpoint (y/H = 0.5) at x/H = 0. This behaviour is
in agreement with lock-exchange experiments (Tanino et al. 2005) conducted for
low-Reynolds-number currents propagating into a channel containing vertical circular
cylinders. The thickness of the interfacial layer containing mixed fluid is almost
independent of the streamwise location x/H (figure 8a).

Except for the cylinders situated in the immediate vicinity of the interfacial layer,
most of the amplification of the vorticity inside the bottom-propagating current is due
to the flow acceleration on the sides of the cylinders (figure 8b). Although the flow
separates behind the cylinders situated close to the front, no detachment of eddies
from the shear layers and no large-scale vortex shedding are observed. As a result,
for low-Reynolds-number currents, the cylinders play a much less significant role in
the mechanisms of mixing.

5. Total streamwise drag force
The streamwise drag force on an individual cylinder is calculated by adding the

streamwise components of the pressure and viscously derived forces, and then the total
drag force on the cylinders FD is the sum of the magnitude of these forces throughout
the entire computational domain. It should be noted that because the current evolves
symmetrically (to a close approximation), FD/2 is the magnitude of the force in each
layer. The effects of the parameters φ, D/H, aH and Re on the total dimensionless
streamwise drag force on the cylinders, FD/(ρu2

bHW), are discussed next.
The evolution of the streamwise drag FD for high-Reynolds-number currents

(figure 9a,b) is characterized by an initial regime in which FD increases sharply,
followed by a transient regime which is characterized by a more gradual increase of
FD and larger fluctuations about the mean value. The channel in the high-Reynolds-
number simulations was not long enough to establish unequivocally that the flow
reaches a regime in which FD fluctuates around a constant value, although the data
are suggestive of this behaviour.
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FIGURE 9. (Colour online) The total drag force acting on the cylinders, FD/(ρu2
bHW). (a)

The effect of the solid volume fraction in the Re= 15 000 simulations with φ = 1.25 %,
D/H = 0.032 (light blue line L3), φ = 5 %, D/H = 0.032 (blue line L2) and φ = 12 %,
D/H= 0.032 (dark grey line L1); (b) the effect of the relative cylinder size, D/H, in the
simulations with Re = 15 000 and φ = 12 % and with D/H = 0.032 (dark grey line L1),
D/H = 0.05 (pink line L4) and D/H = 0.07 (dark blue line L5); (c) the effects of Re
in the φ = 12 % simulations with Re = 375, D/H = 0.05 (orange line L9), Re = 15 000,
D/H = 0.05 (pink line L4) and Re= 150 000, D/H = 0.05 (green line L6).

Simulations conducted with Re = 15 000 and D/H = 0.032 show that as the
solid fraction increases, the distance the front propagates before the start of the
transient regime for FD becomes larger. At the same time, the magnitude of the
fluctuations of FD increases with φ. This is because, as the distance between the
cylinders increases, the coherence of the eddies detaching from the separated shear
layers and of the eddies shed in the wake of the cylinders increases (figure 5b–d).
The increased coherence of such eddies increases the amplitude of the larger-scale
fluctuations of the forces on the cylinder from which the eddy originated and also on
the cylinders situated along its path. As all simulations in figure 9(a) were conducted
with identically sized cylinders, the monotonic increase of FD with φ is due to the
increase of the number of cylinders per unit area. Finally, the results in figure 9(a)
for the simulation with φ= 12 % suggest that the constant-FD regime is reached when
xf /H ∼= 4.5.
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The effect of increasing the cylinder size, D/H, or equivalently the frontal area,
aH = φ/(D/H), while maintaining φ constant is to reduce FD, at least until the later
stages of the transient regime when FD appears to approach the same constant value in
the simulations conducted with D/H= 0.032 and D/H= 0.05 (figure 9b). By contrast,
the effect of increasing φ and D/H while maintaining aH constant does not result in
significant changes in the levels of FD when plotted as a function of xf (e.g. compare
the Re= 15 000 cases with φ= 5 %, D/H= 0.032 and with φ= 12 %, D/H= 0.07 in
figure 9).

In the simulation conducted with Re = 375, the total drag force reaches a regime
where FD is approximately constant after t/t0

∼= 40 when xf /H ∼= 3 (figure 9c). The
drag force also becomes approximately constant in the simulation with Re= 175 (not
shown). As no eddies separate behind the cylinders and the degree of unsteadiness of
the separated shear layers is very small (figure 8b), the amplitude of the large-scale
fluctuations of FD in the simulation with Re= 375 is very small compared with those
observed in the simulations with Re = 15 000 and 150 000 conducted with the same
values of φ (12 %) and D/H (0.05). The increase of the Reynolds number from Re=
15 000 to Re= 150 000 does not result in significant differences in the mean variation
of FD with xf /H.

The shallow water theory of § 3 predicts that FD/(ρu2
bHW) should become constant

once a balance between drag and buoyancy develops in the later stages of the motion.
If fD is the drag force per unit volume due to the cylinders then

FD = 2W
∫ xf

−xf

h fDdx= 2W(1− φ)
∫ xf

−xf

h
(

1
ρ

∂pT

∂x
+ g′

∂h
∂x

)
dx. (5.1)

This equation holds for both high- and low-Reynolds-number currents in which CD=
constant and CD∼ 1/ReD respectively. We first proceed by assuming that ReD� 1 and
so

FD

ρu2
bHW

= 2(1− φ)
∫ 1

0

F(1− F)2

F2 + (1− F)2
dF= (1− φ)

4
(π− 2). (5.2)

Conversely, when ReD� 1, we find that

FD

ρu2
bHW

= 2(1− φ)
∫ 1

0
F(1− F)dF= (1− φ)

3
. (5.3)

In the regime of large Reynolds number, we find that this prediction for FD is closely
borne out by the numerical simulations in which FD reaches a constant regime (e.g.
the asymptotic value of FD/(ρu2

bHW) was 0.24 in the Re=15 000 simulation with φ=
12 % and D/H= 0.032, which is close to the theoretical value of 0.25). The distance
travelled by the current before the constant regime is reached is expected to increase
with decreasing φ (see (3.7)). For example, the Re= 15 000 simulations with φ < 10 %
are still far from reaching the constant-FD regime by the time the current approaches
the end of the channel (x= 6H). In the regime of small Reynolds numbers, ReD� 1,
we find that the measured force is rather smaller than predicted (e.g. FD/(ρu2

bHW)
predicted in the Re= 100 and Re= 375 simulations with φ = 12 % is 0.22, while the
theoretical value is 0.29).
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6. Front velocity
In this section we analyse the unsteady propagation of the front position and

its parametric dependence upon the volume fraction of cylinders, φ, the channel
Reynolds number Re, and the combined drag coefficient for the porous medium,
ΓD = CDaH/(1 − φ). These were identified as the key parameters in the shallow
layer modelling of § 3 and in Jamali et al. (2008). However, before examining these
dependences, we first use the FD estimated from the numerical simulations to deduce
the drag coefficients of the cylinders.

6.1. Drag coefficient
Although it is widely acknowledged that the values of the mean drag coefficient for an
array of cylinders can be different from the values for isolated cylinders of identical
shape, a comprehensive description of CD in an array has not yet been developed
(Tanino et al. 2005). The problem is even more complex for gravity current flows
in which the approaching velocity around individual cylinders is not constant in time
or in space, as is the case for constant-density flow in a channel of uniform porosity.

The mean drag coefficient in the high-Reynolds-number simulations was estimated
in several ways in table 1. The values of C′D were estimated assuming that the front
velocity Uf is a good approximation of the mean incoming flow velocity, Ui, in
the expression for the average streamwise total (pressure and friction) drag force
acting on the cylinders within the bottom current at a given moment in time (e.g.
FD/Nc = 0.5ρC′DU2

f DW, where Nc(xf ) is the number of cylinders within the top and
bottom currents and FD(xf ) is the total drag force on these cylinders). The main
reason for computing C′D is that this is the definition used in experiments conducted
for gravity currents advancing in a vegetated canopy, given that the only velocity
easily measurable is Uf (Tanino et al. 2005; Zhang & Nepf 2008). One can also try
to define the drag coefficient using a physically more relevant velocity scale, similar
to what is done for isolated cylinders placed in a constant-density uniform flow field.
In table 1, CD was estimated using the mean streamwise velocity within the body of
the gravity current, directly calculated from the instantaneous velocity flow fields at
a given time. The wake regions were eliminated when estimating the mean incoming
flow velocity Ui at a given time. This is because Ui should be representative of
‘an average’ incoming flow velocity for the cylinders. One can see that C′D < CD,
which is expected given that the incoming flow velocity around cylinders situated far
from the front and inside the bottom current is smaller compared with that of the
cylinders situated close to the front. Finally, one should note that in figure 2(d) Ui was
estimated as the mean streamwise velocity over the whole current (including the wake
regions) to make possible a direct comparison with the analytical solution. For the
Re= 15 000 simulation with φ= 12 % and D/H= 0.05, the drag coefficient estimated
using this velocity scale was approximately 3.7 times larger than CD estimated using
the aforementioned procedure.

One important result is that for all high-Reynolds-number simulations containing
cylinders, the values of CD during the quadratic drag-law regime at a given front
position varied by less than 10 % for xf /H > 1. This is why only the time averaged
values are quoted in table 1. The cylinder Reynolds number defined with D and the
mean Uf after the transition to the drag-dominated regime has started (ReD in table 1)
is between 60 and 1700. The experiments of Lindsey (1987) for an isolated square
cylinder predict a mean drag coefficient between 1.4 and 1.5. On average, the values
of CD in table 1 (1.2<CD < 2) are closer to the experimental values for an isolated
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FIGURE 10. (Colour online) Temporal evolution of the front position, xf /H, of the bottom
current. (a) Effect of solid volume fraction on xf /H(t/t0) in the Re= 15 000 simulations
with φ= 1.25 %, D/H= 0.032 (light blue line L2, ΓD= 0.49), φ= 5 %, D/H= 0.032 (blue
line L3, ΓD = 2.35), φ = 12 %, D/H= 0.032 (dark grey line L1, ΓD = 8.5) and φ = 25 %,
D/H = 0.07 (green line L6, ΓD = 8.3). Also shown is the case with Re = 15 000 and
φ= 0 % (red line L7). (b) Effect of the relative size of the cylinders, D/H, on xf /H(t/t0)
in the Re = 15 000, φ = 12 % simulations with D/H = 0.032 (dark grey line L1, ΓD =
8.5), D/H= 0.05 (pink line L4, ΓD= 3.7) and D/H= 0.07 (dark blue line L5, ΓD= 3.5).

square cylinder compared with the values of C′D. In the following, we will conduct
our analysis based on the values of CD.

No value is quoted for CD in table 1 for the simulations with Re < 1 because
in those cases CD increases monotonically with xf /H. This result is not surprising
given that for these cases, as will be discussed later, the current transitions to the
linear drag-dominated regime where one expects CD ∼ 1/ReD. The present results
obtained for Re = 100 and Re = 375 show that CDReD = γ for xf /H > 1.5 with
γ = 22.5± 0.95 and ReD defined with Uf . However, this quoted value for γ is based
on only the results from two simulations and is not a universal constant; indeed, one
expects that it will vary with D/H, aH and φ for low-Reynolds-number currents. The
value of γ is within the range of γ value inferred from CD = f (ReD) plots obtained
from numerical simulations and experiments performed for isolated square cylinders
for 5< ReD < 30 (see figure 2 in Yoon et al., 2010).

6.2. Effects of φ, D/H and aH on the front velocity for high-Reynolds-number
currents

The position of the front at each time step was determined by the spanwise-averaged
location of the most downstream point situated on the C= 0.01 isosurface. Consistent
with theory and experimental observations (e.g. Shin et al. 2004), the temporal
evolution of the front trajectory in figure 10(a) shows that in the simulation with no
cylinders (φ = 0 %, Re = 15 000) the current reaches the slumping phase in which
the front velocity, Uf , is constant a short time after the removal of the lock gate
(t ∼= 1.5t0). The predicted value of the front velocity (Uf /ub = 0.43) is in excellent
agreement with values inferred from experiments conducted for full-depth currents
at similar Re (e.g. see Keulegan 1957; Rottman & Simpson 1983). Figure 10(a)
also shows that the evolution of the current in the simulation with φ = 1.25 % is
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qualitatively similar to the unobstructed case, the main difference being the somewhat
smaller value of the front velocity (Uf /ub = 0.39) during the slumping phase, due to
the drag of the cylinders. It is possible that transition to a drag-dominated regime
will be observed for φ = 1.25 %, but that transition is not evident by the time the
front approaches the end of the channel in the simulation. Once φ becomes larger
than 3 %, Uf starts to decay with time. The currents transition relatively quickly
and relatively early on in their evolution (t/t0 = 2–5) to the drag-dominated regime.
Empirically, we find a power-law dependence of the front position on time given
by xf /H ∼ (t/t0)

3/4 (figure 10), or equivalently Uf /ub ∼ (t/t0)
−1/4. This is not of the

similarity form established above and will be discussed below.
If the relative cylinder size, D/H, is kept the same, the results in figure 10(a) (e.g.

compare the results for φ = 5 % and φ = 12 % with D/H = 0.032) show that, at any
given time, xf decreases with the increase in φ. This result is anticipated, because
the drag force, FD, is roughly proportional to the number of cylinders per unit area
situated inside the bottom current. Furthermore, this result is consistent with the
shallow layer model, which indicates that the effects of drag are encompassed in the
parameter, ΓD, which is an increasing function of φ and aH.

Figure 10(b) shows the front position as a function of time for the simulations
conducted with Re= 15 000 and φ= 12 %. Although all simulations exhibit transition
to a drag-dominated regime with xf /H∼ (t/t0)

3/4, the position of the front at a given
time remains a function of the cylinder size. The results show that xf /H at a given
time does not increase monotonically with D/H. For example, the temporal variation
of xf /H is approximately the same in the simulations with D/H = 0.05 and 0.07.
This means that for a given solid fraction, many small cylinders are more effective
in decelerating the current than fewer larger cylinders, a result that is consistent with
the shallow layer model (3.5) and (3.6). However, to justify why the evolution of the
front position, xf /H, is approximately the same in the simulations with the cylinder
sizes D/H= 0.05 and 0.07 one has to consider the variation in CD with D/H between
these two cases. The increase in CD with D/H (table 1) compensates the decrease in
ΓD with D/H, such that the two cases have a very close value of ΓD (∼=3.5). This is
a good example that shows the limitations of the common assumption that CD is only
a function of ReD.

The results in figure 10 clearly show that the relative speed of the current in the
simulations with Re = 15 000 is mainly a function of ΓD. This is also confirmed
by the results in figure 11. The temporal variation of xf /H with t/t0 is replotted
in figure 11(a) for the cases for which transition to the quadratic drag-dominated
regime was observed in figure 10. A large spread of the curves is observed given
the wide range of ΓD. The similarity solution in § 3 suggests that xf /H is a function
of the rescaled time, (D(1 − φ)/CDφH)1/2t/t0. When the same data are replotted
in figure 11(b) using the new scaling, the difference among the curves is reduced
significantly. This result suggests that the motion is drag dominated and that the
scalings developed in § 3 capture the dominant physical processes in the currents.
Further confirmation of the transition from inertia- to drag-dominated behaviour can
be deduced from figure 10(a,b). For example, in figure 10(b), the gravity current
appears to undergo a transition in behaviour at t/t0

∼= 1 and xf /H ∼= 0.3 for ΓD = 8.5
and at t/t0

∼= 1.8 and xf /H ∼= 0.7 for ΓD = 3.5. Our analysis indicated that these
transitions should be inversely proportional to ΓD (see (3.7)), and the estimates from
the numerical simulations are broadly consistent with this scaling.
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FIGURE 11. (Colour online) Temporal evolution of the front position, xf /H, of the bottom
current in the Re = 15 000 simulations with φ = 5 %, D/H = 0.032 (blue line L3), φ =
12 %, D/H = 0.032 (dark grey line L1), φ = 12 %, D/H = 0.05 (pink line L4), φ = 12 %,
D/H = 0.07 (dark blue line L5) and φ = 25 %, D/H = 0.07 (green line L6). (a) Plotted
against t/t0; (b) plotted against (2D(1− φ)/φH)1/2t/t0.

6.3. Effect of the Reynolds number on the front velocity
The front trajectories in the low-Reynolds-number simulations conducted with Re =
100 and Re = 375 (φ = 12 %, D/H = 0.05) show that the bottom current reaches a
regime where Uf decays with time. However, the increase of xf with time is slower,
such that xf /H ∼ (t/t0)

1/2 (figure 12a). By the time the drag-dominated regime is
reached (t>100t0) in the Re=100 and Re=375 simulations, ReD<1 for the cylinders
situated within the body of the current. This means that the flow is within the regime
for which the drag is linearly proportional to the flow speed and the drag coefficient
is inversely proportional to the Reynolds number, ReD. The evolution of the front
measured in the numerical simulations of this regime of low Reynolds numbers is
consistent with the shallow layer model of § 3.

A further test of whether the numerical simulations are adequately represented by
the similarity solutions of the shallow layer model is to evaluate the total discharge
(the volume flux of fluid) at the origin, q(x = 0, t), in the lower layer. We note
from figure 12(b) that for both low-Reynolds-number simulations this flux decays in
proportion to t−1/2, which is again consistent with the shallow layer model. From the
shallow layer model, we find that

q(0, t)t
WHxf (t)

= ẋf t
4xf
= 1

8
. (6.1)

Importantly, this ratio is independent of the parameters and equal to (1/8). We
note that this is reasonably well satisfied by the data from the numerical simulations
(figure 12c), thus further confirming the applicability of the similarity solution (3.19).

The high-Reynolds-number currents do not appear to be in complete similarity
form. In the simulations, the position of the front is proportional to t3/4, rather
than t2/3, as given by the analytical solution. On examining the flux at the origin
in the lower layer, q(x = 0, t) (figure 12b), we find that this decays in proportion
to t−1/3. Interestingly, this latter result is consistent with the analytical solution and
perhaps indicates that the different (non-similarity) behaviour of the front position is
associated with fluid dynamical features close to the front that are not represented in
the current shallow layer model, whereas the similarity balance is found within the
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FIGURE 12. (Colour online) Effect of the Reynolds number on the temporal evolution
of (a) the front position, xf /H and (b) the discharge of the bottom current at the lock
gate (x/H = 0), q, scaled by q0 = ubWH/2, in the φ = 12 % simulations with Re = 100,
D/H = 0.05 (black line L8), Re = 370, D/H = 0.05 (orange line L9) and Re = 15 000,
D/H = 0.032 (dark grey line L1). Also shown is the case with Re= 15 000 and φ = 0 %
(red line L7). In panel (c) q(0, t)t/[WHxf (t)] is plotted as a function of time with the
asymptotes predicted by the similarity solution in the regimes of high (dash–dotted blue
line) and low (dashed red line) Reynolds numbers.

bulk. We may also examine q(0, t)t/[WHxf (t)] (figure 12c) for these currents, which
is found in the shallow layer model to be given by

q(0, t)t
WHxf (t)

= u1(0, t)t
2xf

=
(
−F′(0)

8B3

)1/2

= 0.182. (6.2)

This ratio is a constant according to the theoretical model and there is reasonable
agreement with this value in the simulations (see figure 12c). A possible explanation
for the divergence of the high-Reynolds-number cases from the similarity balance
anticipated in the shallow layer model in § 3 is the neglect of mixing. We have
seen that mixing is not important for low-Reynolds-number cases where most of the
mixed fluid is confined to a relatively thin interfacial layer (figure 8a). However, in
the high-Reynolds-number simulations with a large solid fraction, the thickness of the
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interfacial layer increases significantly in the vicinity of the front (figure 4c,d) and
appreciable dilution occurs.

7. Global energy budget
For compositional gravity currents, it is convenient to form the following differential

equation to relate the rates of change of the potential and kinetic energies (Necker
et al. 2005; Ooi et al. 2009):

dEk

dt
+ dEp

dt
=−ε, where Ek =

∫
Ω

1
2
ρ|u|2dV and Ep =

∫
Ω

1ρgCx2dV. (7.1)

In these expressions, the total kinetic energy and excess potential energy within the
flow domain Ω are denoted by Ek and Ep respectively and ε is the total dissipation
rate. An integral balance equation for the mechanical energy can be obtained by
integrating (7.1) with time,

Ek + Ep + Ed = Ep0, (7.2)

where Ep0 is the total initial excess potential energy. The initial kinetic energy is equal
to zero because the simulations are started from rest. The term Ed =

∫ t
0 ε(τ )dτ is the

time integral of the total dissipation rate. In all simulations, mechanical energy over
the computational domain, expressed through (7.2), was conserved with an error of
less than 0.5 % at all times.

In the simulations for obstructed channels (with φ > 3 %), after transition to
the drag-dominated regime is completed, the energy budget reduces in a good
approximation to a balance between Ep and Ed (i.e. Ek � Ep, Ed), which is
consistent with the assumption that drag and buoyancy forces dominate during
the drag-dominated regime. For a given channel Reynolds number, Re, and size of
cylinder, D/H (e.g. for Re= 15 000 and D/H= 0.032), the temporal variations of the
global energy budget terms in (7.2) show that at any given time Ek decreases and
Ep increases with an increase in φ (figure 13a). The number of cylinders per unit
surface area increases with φ, and as the total drag force and the total dissipation
induced by the cylinders are proportional to the number of cylinders per unit area,
the current slows down and the rate of dissipation increases.

Consistent with the results of Ooi et al. (2009) for full-depth currents, the variations
of the excess potential energy with time and with the front position are also close to
linear during the later stages of the slumping phase in the simulation with φ = 0 %.
The decay of the excess potential energy with time is no longer linear in the
simulations with φ > 1.25 %. However, when the energy budget terms are plotted as
a function of the front position, the variation of Ep with xf /H is close to linear and
independent of φ, provided that the drag induced by the cylinders dominates the basal
drag, a regime that is very common for the obstructed flows under consideration. At
the end of this section, we use the shallow water model to justify this dependence.

The temporal variation of the dissipation, Ed, in the simulations with φ = 12 %
and Re = 15 000 (figure 14a) shows that, at any given time, Ed is about the same
in the simulations with D/H = 0.05 and 0.07. During the drag-dominated regime,
the value of Ed is approximately 20 % smaller in the simulation with D/H = 0.032
compared with the other two simulations. The main reason why at a given time Ed(t)
is smaller in the simulations with D/H = 0.032 is because xf is smaller (figure 10b),
so a smaller number of cylinders are situated within the body of the current. However,
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FIGURE 13. (Colour online) The effect of solid volume fraction on the variation of the
excess potential energy, Ep (dash–dot–dotted line), kinetic energy, Ek (solid line), and
integral of the total dissipation, Ed (dashed line), in the Re = 15 000 simulations with
φ=0 % (red line L8), φ=1.25 %, D/H=0.032 (light blue line L2), φ=5 %, D/H=0.032
(blue line L3) and φ= 12 %, D/H= 0.032 (dark grey line L1). Panel (a) shows the energy
variation with time, t/t0, while panel (b) shows the variation of the energy with the front
position, xf /H.
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FIGURE 14. (Colour online) Temporal variation of the excess potential energy, Ep (dash–
dot–dotted line), kinetic energy, Ek (solid line), and integral of the total dissipation, Ed
(dashed line): (a) effect of D/H in the Re = 15 000, φ = 12 % simulations with D/H =
0.032 (dark grey line L1), D/H = 0.05 (pink line L4) and D/H = 0.07 (dark blue line
L5); (b) effect of Re in the φ= 12 % simulations with Re= 375, D/H= 0.05 (orange line
L9), Re= 15 000, D/H = 0.05 (pink line L4) and Re= 150 000, D/H = 0.05 (dark green
line L10).

the variations of Ed and Ep as a function of xf /H are approximately independent of
D/H.

In the case of high-Reynolds-number currents advancing in a channel with no
obstacles, the front velocity increases monotonically with Re and approaches the
theoretical inviscid limit, Uf /ub = 0.5, at very high Reynolds numbers (see Ooi et al.
2009; Tokyay et al. 2011). In contrast, in the case of high-Reynolds-number currents
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propagating in channels containing cylinders, the non-dimensional front velocity at
a given time is not a function of Re, provided that the current has undergone a
transition to the drag-dominated regime and that the transition to this regime has
completed at approximately the same non-dimensional time. For example, this is the
case for the simulations (φ = 15 %, D/H = 0.05) with Re= 150 000 and Re= 15 000.
The weak influence of Re is because the drag arises mainly from the cylinders and
this is close to independent of the Reynolds number, Re, when the cylinder Reynolds
number, ReD, is sufficiently high that the drag coefficient, CD, becomes independent
of ReD for most of the array.

A justification for the observed nearly linear variation with the front position of
Ep/Ep0 (figure 13b) can be given in terms of the shallow layer formulation

Ep

Ep0
= 1

Ep0

(∫ −xf

−L/2

1
2
1ρgH2dx+

∫ xf

−xf

1
2
1ρgh2dx

)
= 1− 2xf

L

(
1−

∫ 1

−1

(
h
H

)2

dη

)
,

(7.3)
where L is the length of the domain. This implies that Ep/Ep0 must vary linearly with
xf /H. Moreover, if h varies linearly with x (h/H= (1− x/H)/2, which is a very good
approximation at least for the low-Reynolds-number cases), then Ep/Ep0= 1− xf /18H.
This variation of Ep is very close to the numerical result in figure 13(b) for φ>1.25 %.
In the high-Reynolds-number cases, although not exactly linear, h(x)/H remains close
to linear (e.g. figure 2b,c). This is why the variation of Ep/Ep0 with xf /H remains
close to linear and varies only weakly with φ and Re for the high-Reynolds-number
cases with φ > 1.25 %.

8. Summary and conclusions
In this paper, Boussinesq gravity currents initiated from lock-release conditions to

propagate though an array of rectangular horizontal cylinders have been investigated
using 3D eddy-resolving simulations that compute the flow around individual obstacles
and through a two-layer shallow water model. The simulations calculate the evolution
of the dependent variables through the current; in particular, this allows the structure
of the current, the drag forces and the mixing properties to be evaluated as functions
of the non-dimensional parameters describing the array of cylinders. The shallow
water description is a simplification of the complete dynamics, but nevertheless it is
shown that the bulk dynamics of the currents may be predicted from this framework
and that it is often able to reproduce the results of the simulations.

We have discussed the ways in which the size, volume fraction of the cylinders,
φ, and frontal area of the cylinders per unit volume, a, impact the properties of the
flows. Naturally, our detailed analysis only strictly pertains to an array of horizontally
aligned square cross-section cylinders that span the flow. However, some of the main
trends should be expected to carry over to when the axes of the cylinders are vertical.
For example, we anticipate that the coherence of the KH billows will be reduced as φ
and aH increase, because this depends mainly on the shear stress across the interface,
which in turn is dependent upon the magnitude of the drag measured through the
combined parameter ΓD. One might expect that the development of the interfacial
layer will be similar for different orientations of the cylinders, provided that they
remain perpendicular to the streamwise direction.

The use of LES has allowed investigation of scale effects for large-Reynolds-number
currents. This is an important contribution, given the scarcity of detailed experimental
data on gravity currents propagating in a porous medium at field conditions. That
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the temporal evolution of the bulk properties of the currents appears to be largely
independent of the Reynolds number when Re > 104 implies that experimental and
numerical studies conducted at moderate scales may accurately represent the behaviour
at much larger field scales, even if the details of the vortical structure of the current
remain somewhat different.

A main advantage of eddy-resolving simulations that resolve flow past the individual
obstacles is that the mean drag coefficient can be directly evaluated once an
appropriate definition for the mean velocity within the array has been adopted.
The results in the present work showed that if the velocity scale is chosen as the
mean velocity within the current from which the wake regions are eliminated, then
the predicted values of CD over the quadratic drag-law regime (1.2 < CD < 2) are
fairly comparable with those measured for isolated square cylinders in constant-density
uniform flow. Still, for high-Reynolds-number currents these values were found to vary
by up to 80 % with the geometrical characteristics of the array (φ, D/H, s/D, aH).
Using the approach advocated in the present paper, the drag coefficient can be
estimated. This eliminates the need to calibrate simpler numerical models that do not
resolve the flow around individual cylinders. Moreover, the predictions of the shallow
flow theory model for the temporal evolution of the front position were found to be
in good agreement with the simulation results once the drag coefficient was redefined
with the mean streamwise velocity within the current. Consistent with shallow water
theory, the numerical simulation results confirmed that the combined drag parameter
for the porous medium, ΓD, is the key grouping of parameters that determines how
fast high-Reynolds-number currents propagate through arrays of obstacles.

An important finding of the present work was that high-Reynolds-number currents
propagating through a porous medium are not exactly self-similar; that is, the
velocity fields at the front and centre of the flow do not appear to exhibit the same
dependences on time. We suggest that a possible explanation for this discrepancy is
that the shallow layer model neglects mixing between the dense and less dense fluids.
The simulations reveal that the interface is not particularly thick, but that there is
significant mixing at the front of the current. Such a process is omitted from the
shallow layer framework of § 3 and its inclusion remains an important outstanding
challenge.
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