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Sustained gravity currents in a channel
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Gravitationally driven motion arising from a sustained constant source of dense
fluid in a horizontal channel is investigated theoretically using shallow-layer models
and direct numerical simulations of the Navier–Stokes equations, coupled to an
advection–diffusion model of the density field. The influxed dense fluid forms a
flowing layer underneath the less dense fluid, which initially filled the channel, and
in this study its speed of propagation is calculated; the outflux is at the end of the
channel. The motion, under the assumption of hydrostatic balance, is modelled using
a two-layer shallow-water model to account for the flow of both the dense and the
overlying less dense fluids. When the relative density difference between the fluids
is small (the Boussinesq regime), the governing shallow-layer equations are solved
using analytical techniques. It is demonstrated that a variety of flow-field patterns are
feasible, including those with constant height along the length of the current and those
where the height varies continuously and discontinuously. The type of solution realised
in any scenario is determined by the magnitude of the dimensionless flux issuing
from the source and the source Froude number. Two important phenomena may occur:
the flow may be choked, whereby the excess velocity due to the density difference
is bounded and the height of the current may not exceed a determined maximum
value, and it is also possible for the dense fluid to completely displace all of the less
dense fluid originally in the channel in an expanding region close to the source. The
onset and subsequent evolution of these types of motions are also calculated using
analytical techniques. The same range of phenomena occurs for non-Boussinesq flows;
in this scenario, the solutions of the model are calculated numerically. The results
of direct numerical simulations of the Navier–Stokes equations are also reported for
unsteady two-dimensional flows in which there is an inflow of dense fluid at one end
of the channel and an outflow at the other end. These simulations reveal the detailed
mechanics of the motion and the bulk properties are compared with the predictions of
the shallow-layer model to demonstrate good agreement between the two modelling
strategies.
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1. Introduction
Sustained inflows of dense fluid into less dense environments generate gravitationally

driven motions, termed gravity currents, which propagate along the boundary at the
bottom of the domain. These types of flows are common in geophysical and industrial
settings, with examples ranging from the continuous discharge of dense gas into the
atmosphere, the release of relatively dense industrial waste into waterways and the
displacement of one fluid by another of a different density within confined pipes and
channels. Gravity currents have been studied for several decades in the laboratory
and natural settings (Simpson 1997), through integral and shallow-layer models
(Ungarish 2009) and by direct numerical simulation of the Navier–Stokes equations
for fluid flow, coupled to an advection–diffusion equation for a dissolved species that
determines the local fluid density (Härtel, Meiburg & Necker 2000). Each approach
has provided valuable understanding into the complex ways in which the relatively
dense fluid is transported and drives the motion due to gravitational effects. Much
of our insight comes from the investigation of flows generated from ‘lock release’
initial conditions, whereby relatively dense fluid initially at rest behind a lock gate
is instantaneously released into a horizontal channel containing less dense fluid.
Experiments, numerical simulations and shallow-layer models, which are built upon
the assumption of hydrostatic balance, reveal that, provided the effects of viscosity
are negligible, the fluid slumps at an initially constant rate of propagation before
progressively slowing as the finite volume of released material is spread out along
the boundary underlying the fluid domain (Huppert & Simpson 1980; Rottman &
Simpson 1983; Hogg 2006). Subsequently, the motion is retarded by the action of
drag (Huppert 1982; Hogg & Woods 2001) and mixing processes between the two
fluids (Johnson & Hogg 2013). Of particular importance for applications is that it
is possible to identify time scales and length scales at which these transitions in
behaviour occur in terms of the properties of the fluid and its initial conditions (see,
for example, Huppert & Simpson 1980).

Motion due to sustained sources has received less attention and this is the subject
of our current investigation. In particular, we investigate the time-dependent motion
that occurs as the flow is initiated from a source with the aim of calculating the speed
of the front of the flow (i.e. the leading edge of the relatively dense fluid within the
less dense ambient fluid). Laboratory experiments have been performed by several
investigators including Simpson & Britter (1979), Bühler, Wright & Kim (1991) and
Hogg, Hallworth & Huppert (2005), with the latter two studies including situations
with an externally driven motion in the ambient fluid. These experimental studies,
among others, have measured how the speed of the front is related to the density
difference between the fluids, and expressed in terms of the reduced gravity and
the volume flux per unit width of fluid entering the two-dimensional channel from
the source. Modelling studies have sought to capture these motions theoretically; for
instance Kranenburg (1993) formulated a two-layer hydraulic model to represent the
motion both of the dense fluid and the overlying less dense fluid, while Hogg et al.
(2005) introduced a three layer model to account for the motion of the influxed dense
fluid and the less dense ambient, as well as a layer of intermediate density formed
by mixing processes that occur as the flow evolves. The creation and dynamics of
this third, intermediate density layer play a crucial role for modelling aspects of
density-driven motion in the presence of adverse ambient flow; the dense currents
in these scenarios can be arrested and the layer of intermediate density provides
a model for the recirculation of relatively dense fluid. Recently, Shringapure et al.
(2013) have performed computational simulations of the motion and interpreted the
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results using integral models of the steady dynamics. The latter study was among the
first to extend direct numerical simulations of the Navier–Stokes equations of gravity
currents to ‘open’ flows in which there is a sustained in- and outflow. As opposed
to simulations within closed or periodic geometries, such as the lock-exchange
configuration, open flows are somewhat more challenging because attention has to be
paid to minimising any numerical contamination of the flow by upstream propagation
of the outflow boundary conditions. For a broader discussion of the computational
challenges associated with modelling gravity currents, we refer the reader to Meiburg,
Radhakrishnan & Nasr-Azadani (2015).

In this paper we investigate gravity currents due to a sustained constant influx
within a horizontal channel when the motion is such that the height of the layers of
dense and less dense fluids are comparable. This means that the motion of the upper
less dense fluid cannot be neglected, at least provided the density difference between
the two fluids is not large. Importantly then, the motion of the overlying, less dense
layer affects the streamwise pressure gradient and because the flow is generated by
a sustained source, it does not become increasingly shallow in time, which would
allow the motion of the upper layer to be neglected after a sufficient time. Thus this
flow configuration is not amenable to study using a single-layer hydrostatic model,
in which Hoult (1972), Gratton & Vigo (1994) and Hogg et al. (2005), amongst
others, have calculated the flow speed as a function of the governing parameters. We
also note that the flows driven by a sustained influx differ from those arising from
lock-release initial conditions, because they do exhibit the same progressive thinning,
which ultimately enhances the effects of hydraulic resistance. Our approach extends
the two-layer shallow-water models of Kranenburg (1993) and identifies solutions
with bores in addition to those that are spatially continuous. Our model neglects
mixing between the two fluid layers and drag from either the underlying boundary or
the interfacial processes. Such processes may become important, or even dominant,
after sufficiently long times and distances of propagation (see, for example, Hogg &
Woods 2001 and Johnson & Hogg 2013).

Our methods for calculating the solutions are quasi-analytical: since the motion is
due to sustained boundary conditions and the governing equations are hyperbolic, the
method of characteristics may be applied to compute the evolution of the dependent
variables. In the Boussinesq regime, the governing equations admit analytical
expressions for the Riemann invariants that are conserved along characteristics and it
will be shown that the velocity and height fields of these currents can be found by
the solution of purely algebraic equations. For the non-Boussinesq regime, we could
not find analytical expressions for the Riemann invariants and the construction of
these solutions entails the numerical integration of a first-order differential equation
along characteristics (Rotunno et al. 2011; Ungarish 2011b). However, it will be
shown that the same range of solution types exist for the non-Boussinesq regime.
Equivalently, these flows may be thought of as similarity solutions to the governing
equations because there is a simple gearing between spatial and temporal scales
(Kranenburg 1993; Gratton & Vigo 1994). The type of solution depends upon the
values of three dimensionless parameters that measure the magnitude of the volume
flux per unit width delivered in the channel at the source, the source Froude number
and the relative excess density. Importantly, we find that not all source conditions
are consistent with the establishment of the two-layer motion. For some situations,
typically when the flux is large, the dense fluid undergoes a near-source transition
and fills the channel, with a subsequent further transition downstream as the two-layer
motion is re-established.
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The paper is structured as follows. First we formulate the governing equations
and boundary conditions for the two-layer shallow-water model and identify its
characteristic structure (§ 2). Here we treat the front of the motion as a moving
discontinuity in which its velocity and height are related according to the model
proposed by Benjamin (1968). Other theoretical models for the non-hydrostatic
motion that occurs at the front have been proposed (Borden & Meiburg 2013a), as
well as empirical relationships between the speed of the front and the relative depth
(Huppert & Simpson 1980). We show that if alternative models are adopted then
the same types of solutions emerge but that the boundaries between the parameter
values at which solutions change are different (see appendix A). We then analyse the
types of motion for Boussinesq currents (§ 3). In this regime the Riemann invariants
on the characteristics of the two-layer motion are available analytically and so the
determination of the solutions is straightforward. We report results of numerical
simulations of the Navier–Stokes equations and compare the ‘bulk’ properties with
the predictions from the idealised shallow-layer models (§ 4). We also extend the
shallow-layer theory to non-Boussinesq currents in § 5 and show that, although
the same types of solutions may be found, the parameter values that demark the
transitions between regimes change.

Dambreak flow, in which fluid is set in motion from the collapse of a lock of
infinite extent, shares many similarities with the motion due to a sustained inflow,
because the unsteady flow that develops exhibits the identical gearing between spatial
and temporal scales. Dambreak flow, modelled using the single-layer shallow-water
equations, has become an important paradigm in which to investigate unsteady and
spatially evolving flow. Here, in appendix B, we apply our methodology to dambreak
flow of Boussinesq fluids (see Ungarish 2009). We extend the earlier works to show
that many of the results are available analytically and thus this study provides the
analogous results for Boussinesq two-layer dambreak flow to those derived for the
single-layer shallow-water equations (Ritter 1892; Whitham 1974).

2. Shallow-layer formulation

We analyse the motion of a sustained current of relatively dense fluid through a
less dense environment within a horizontal channel of height H. The motion is driven
from a source that delivers fluid of density ρ1 at a volume flux per unit width Q,
while the environmental fluid is of density ρ2. The thickness of the flowing dense
layer is denoted by h1 and its depth-averaged velocity is given by u1. The thickness
of the overlying layer of less dense fluid, flowing above the dense layer is h2 and its
depth-averaged velocity is denoted by u2 (see figure 1). Conservation of mass in each
layer is then given by

∂h1

∂t
+ ∂

∂x
(u1h1)= 0, (2.1)

∂h2

∂t
+ ∂

∂x
(u2h2)= 0, (2.2)

where the coordinate axes are aligned so that x is horizontal and z is vertical. In
this formulation, we have neglected mixing processes between the two layers which
would generate a zone of intermediate density and which could become dynamically
important sufficiently far downstream from the source when the mixed layer has grown
sufficiently thick. The motion is assumed to evolve so that horizontal length scales
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FIGURE 1. Configuration of the two-layer gravity current driven by a sustained source of
dense fluid in a horizontal channel. In this sketch, the layer of dense fluid includes a bore
connecting two regions within one of which the interface is of constant height and within
the other it is thinning towards the front.

far exceed vertical length scales and thus the pressure is hydrostatic to leading order.
Denoting the gravitational acceleration by g, we find that

p= pT(x, t)+
{
ρ2g(H − z), h1 < z<H,

ρ2gh2 + ρ1g(h1 − z), 0< z< h1,
(2.3)

where pT(x, t) is the as yet unknown pressure at z=H. Then following Long (1955),
Rottman & Simpson (1983) and others, we may write the inviscid momentum balance
in each layer as

ρ1

(
∂u1

∂t
+ u1

∂u1

∂x

)
+ ∂pT

∂x
+ ρ1g

∂h1

∂x
+ ρ2g

∂h2

∂x
= 0, (2.4)

ρ2

(
∂u2

∂t
+ u2

∂u2

∂x

)
+ ∂pT

∂x
= 0. (2.5)

Here we have neglected drag at the channel boundaries, noting that it could become a
dynamically significant process sufficiently far from the source (Hogg & Woods 2001).
The sustained source of dense fluid leads to the boundary conditions

u1h1 =Q and u2h2 = 0 at x= 0. (2.6a,b)

Since h1 + h2 =H, we deduce from (2.1) and (2.2) that

u1h1 + u2h2 =Q. (2.7)

We may then eliminate the unknown pressure pT(x) by subtracting (2.4) and (2.5)
and further use (2.7) to eliminate u2. Writing ρ1 = ρ2(1 + S) with S > 0, we find
that momentum balance in the lower layer is expressed by (cf. Rotunno et al. 2011,
Ungarish 2011b)

∂u1

∂t
+
(

u1 − 2h1(Hu1 −Q)
(H + S(H − h1))(H − h1)

)
∂u1

∂x

+
(

H − h1

H + S(H − h1)

)(
gS− (u1H −Q)2

(H − h1)3

)
∂h1

∂x
= 0. (2.8)

At this point it is convenient to introduce dimensionless variables. We non-
dimensionalise using the length scale H and the velocity scale (gSH)1/2 and replace x
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and t by their dimensionless counterparts, while we define the dimensionless velocity
and height of the lower flowing layer by

u= u1(gSH)−1/2 and h= h1/H. (2.9a,b)

This choice of scales introduces a dimensionless parameter, Q̂, which measures the
magnitude of the flux per unit width in the channel, given by

Q̂= Q
(gSH3)1/2

. (2.10)

Henceforth, unless stated otherwise, we deal with dimensionless variables.
We now treat dimensionless versions of (2.1) and (2.8) as the coupled governing

equations for the system, from which the other dependent variables may be deduced.
Potentially they form a hyperbolic system with characteristics dx/dt= λ±, where

λ± = u− α ±
√
α2 + h(1− β), (2.11)

and where it is convenient to define

α = h(u− Q̂)
(1− h)(1+ S(1− h))

and β = 1− 1− h
1+ S(1− h)

(
1− (u− Q̂)2

(1− h)3

)
. (2.12a,b)

Real-valued characteristics exist and the system is strictly hyperbolic provided α2 +
h(1− β) > 0, which corresponds to

h(1− h)
(1+ S(1− h))2

1+ S(1− h)− (1+ S)

(
u− Q̂
1− h

)2
> 0. (2.13)

As observed by Boonkasame & Milewski (2011), this condition of hyperbolicity may
be compactly written in terms of dimensional variables by

Sρ2g
(u2 − u1)2

(
h2

ρ2
+ h1

ρ1

)
> 1. (2.14)

The loss of hyperbolicity in this two-layer system will be shown to introduce
an important constraint on the possible types of gravity current motion. Loss of
hyperbolicity may be interpreted as an instability of the two-layer motion in the
form of Kelvin–Helmholtz instability at a sufficiently long wavelength so that it is
not filtered out by the assumption of hydrostatic balance (Boonkasame & Milewski
2011).

Riemann invariants may be evaluated along each family of characteristics (Long
1955). On the characteristic dx/dt= λ±, they satisfy

du
dh
=−1

h

(
α ±

√
α2 + (1− β)h

)
. (2.15)

In the Boussinesq regime (S � 1), this differential equation may be integrated
analytically to yield

R± = sin−1

(
u− Q̂
1− h

)
∓ sin−1(1− 2h), (2.16)
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and the system evolves such that R± is constant on the characteristic dx/dt=λ± (Long
1955).

A second source condition may be applied to the system provided both characteri-
stics propagate into the domain x> 0, a condition given by λ± > 0. We note that for
two-layer flow, the condition of criticality (λ− = 0) corresponds in general to

(Q̂− hu)2

(1− h)2
+ (1+ S)

u2

h
= 1. (2.17)

Thus for the source condition analysed in this study, we write

u= F0

√
h at x= 0, (2.18)

and this corresponds to a supercritical source if F0 > (1 + S)−1/2. It is noteworthy
that for the boundary condition studied here, this condition is identical to the criterion
of supercriticality in a single-layer shallow-water model. If the source is subcritical
(F0 < (1 + S)−1/2) then only one boundary condition (2.6) may be imposed at the
source. Finally we need a dynamic condition at the front of the gravity current, which
encompasses the non-hydrostatic behaviour there. Applying the model of Benjamin
(1968) as a jump condition in a frame of reference moving with the front, we find

(uN − Q̂)2 = hN
(2− hN)(1− hN)

1+ hN
at x= xN(t), (2.19)

where hN = h(xN, t) and uN = u(xN, t). This dynamic condition at the front (2.19) may
only be applied provided the speed of propagation that it demands is less than the
largest, local characteristic speed (uN < λ+(uN, hN)). If this criterion is not satisfied,
then the flow is ‘choked’ and the motion cannot deliver fluid rapidly enough to match
the required front speed (Ungarish 2009, 2011a). The onset of ‘choking’ corresponds
to the time at which the fastest speed of a characteristic first equals the dynamic front
speed given by (2.19), uN = λ±(uN, hN), which implies that

(uN − Q̂)2 = (1− hN)
3. (2.20)

The onset of ‘choked’ flow therefore occurs at

(1− hN)
3 = hN(2− hN)(1− hN)

1+ hN
, (2.21)

which has solution hN = hc≡ 2 sin(π/18)= 0.3473 and importantly from (2.20), uN =
Q̂+ 0.5273. The consequence of choking is that the fluid motion satisfies (2.19) when
the height of the front is sufficiently shallow (hN < hc) and that the height of the front
cannot exceed hc. We may therefore combine these conditions to write the condition
at the front as

hN 6 hc and (uN − Q̂)2 =F (hN)≡ hN(2− hN)(1− hN)

1+ hN
. (2.22a,b)

It is important to calculate the energy fluxes transported across the front to ensure that
there is net dissipation. This is most conveniently evaluated in a frame moving with
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the front. Then the difference between the dimensionless energy fluxes transported
away from and towards the front is given by

Ḋ =
[
(Q̂− uN)

2

2(1− hN)2hN
− 1

]
(Q̂− uN)hN . (2.23)

Substituting for the combined dynamic condition at the front, (2.19), we see that there
is always dissipation (Ḋ > 0). We emphasise that the results (2.20)–(2.23) are valid
for both Boussinesq and non-Boussinesq regimes.

In what follows we examine the unsteady solutions that develop for different
values of the three dimensionless parameters that characterise the system, namely the
dimensionless volume flux per unit width, Q̂, the Froude number at the source, F0
and the dimensionless excess density, S. The height and velocity of the lower layer
at the source is then given by u= u0≡ (Q̂F2

0)
1/3 and h= h0≡ (Q̂/F0)

2/3 (provided the
source is supercritical). Furthermore the condition that the source must correspond
to a strictly hyperbolic system of equations demands that (2.13) is satisfied. This in
turn implies that for hyperbolicity,

Q̂ 6
F0(

F2
0 +

S
1+ S

)3/2 . (2.24)

In what follows we first analyse Boussinesq flows (S� 1) in detail (§ 3), drawing
out the different flow types that may occur for different values of the dimensionless
parameters (Q̂, F0). This analysis is straightforward due to the existence of the
Riemann invariants (2.16) and so many of the results are available as simple analytical
expressions. We then analyse non-Boussinesq flows (S = O(1)) and show that the
possible types of solutions are identical to the Boussinesq case, but that the boundaries
between the different regimes change (§ 5). Our analysis employs Benjamin’s formula
for the dynamic condition at the front of the gravity current (2.19); we note that
for Boussinesq currents Borden & Meiburg (2013a) have developed an alternative
condition, while Huppert & Simpson (1980) propose an empirical front condition.
The consequences of adopting their condition for the sustained flows studied in the
paper are examined in § A.1.

3. Boussinesq currents (S� 1)

3.1. Uniform solutions and choked-uniform solutions
Uniform solutions have no spatial variations in their velocity and height fields between
the source and the front. Thus they exist when the source and frontal Froude numbers
are identical. In terms of the dimensionless variables, by substituting hN = h0 and
uN = u0, this condition demands

Q̂2(1− h0)
2 = h2

0F . (3.1)

This expression may be viewed as a relationship between F0 and Q̂ for which uniform
conditions exists; it is plotted in figure 2 and is denoted by F0 = FU(Q̂). Notably, a
uniform current in a deep ambient (Q̂�1) occurs when F0=

√
2 and this recovers the

result from a single-layer model of gravity current motion. Example solutions for the
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FIGURE 2. Regimes of Boussinesq solutions, classified in terms of the dimensionless flux
per unit width, Q̂, and the source Froude number, F0. Uniform solutions are only found
along F0 = FU and choked-uniform solutions exist for F0 = FUf . When F0 < FU ∪ FUf the
solutions feature rarefactions, whereas for F0>FU ∪FUf the solutions feature shocks. Both
rarefaction and shock solutions can form choked flows; the boundary between choked and
unchoked flows is given by CR and CS, respectively. Additionally the curve Ch is plotted;
this curve gives the parameter values for which hyperbolicity is lost. Also plotted are the
points (Q̂c, F0c) and (Q̂h, F0h), which are the parameter values for which uniform flows
first become choked and for which two-layer choked-uniform flows lose their hyperbolic
nature and transition to a channel-filling motion.

height and velocity fields are plotted in figure 3. Choked flow occurs when hN = hc

and uN=uc≡Q+ (1−hc)
3/2 and this condition corresponds to Q̂= Q̂c≡hc(1−hc)

1/2=
0.2806, F0 = F0c ≡ h−1/2

c (1− hc)
1/2 = 1.3709. This point is plotted in figure 2.

Beyond these parameter values at which choked flow first occurs, we may no longer
find flow solutions that are spatially uniform between source and front. Instead, the
flows must thin and accelerate to meet the requirement that the height at the front
is given by the critical height, hc. In this subsection we also construct flow solutions
that are uniform within a region attached to the source and then adjust to the front
conditions throughout a region attached to the front. These two parts of the solution
correspond to a uniform region 0 < x/t < yc within which the velocity and height
fields are given by u0 and h0, respectively, and a rarefaction for yc < x/t< yN , which
encompasses an expansion fan of λ+ characteristics. Thus the trailing characteristic of
this fan is given by yc = x/t, where

yc = u0 − α0 +
√
α2

0 + h0(1− β0), (3.2)

and where α0 and β0 correspond to α and β in (2.12) evaluated at u= u0 and h= h0.
At the front of the current hN = hc and uN = uc (and so yN = uc) and the Riemann
invariant corresponding to the λ− characteristics is given by R−(uc, hc). Throughout
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FIGURE 3. The height, h, and velocity, u, as functions of x/t for flows that are
uniform or are uniform and choked with a rarefaction at the front. The profiles
corresponds to parameter values (Q̂,F0): (i) (0.1, 1.372); (ii) (0.2, 1.366); (iii) (Q̂c,F0c)≡
(0.2806, 1.3709); (iv) (0.4, 1.363); (v) (0.5, 1.333); and (vi) (0.6, 1.279).

the expansion fan, this Riemann invariant takes the same constant value and so

R−(u, h)≡ sin−1

(
u− Q̂
1− h

)
+ sin−1(1− 2h)= R−(uc, hc) (3.3)

for yc< x/t< yN . Then since the λ+ characteristics are straight lines in the (x, t) plane,
we deduce that x

t
= u− α +

√
α2 + h(1− β), (3.4)

and together (3.3) and (3.4) provide an implicit solution for the height and velocity
fields within the expansion fan. This form of solution may only be constructed along
a curve of parameter values in the (Q̂, F0) plane given by

R−(u0, h0)= R−(uc, hc). (3.5)

This curve is denoted F0 = FUf (Q̂) and is plotted in figure 2. It intersects with the
curve corresponding to the loss of hyperbolicity at

Q̂= Q̂h ≡ 1
2(1+ (4hc − 1)(1− hc)

1/2), (3.6)

and F0=F0h≡ Q̂−1/2
h ; these evaluate to (Q̂h,F0h)= (0.6572, 1.2335). We plot this point

in figure 2 and solutions at various points along the curve FU ∪ FUf in figure 3.

3.2. Rarefactions
When the source Froude number is less than the Froude number for which a uniform
state would occur (F0 < FU ∪ FUf ), the flow must accelerate to match the frontal
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boundary condition. The form of the solution depends upon whether the flow is
choked.

First we examine unchoked flows (hN < hc) and in this case, the solution is
continuous and comprises three portions. In the ranges 0< x/t< ya and yb < x/t< yN ,
where ya, yb and yN are to be determined, the flow is uniform and exhibits no spatial
variations. However between these regions there is a rarefaction, corresponding to
an expansion fan of λ− characteristics. The uniform region attached to the source is
given by

u= u0, h= h0, for 0< x/t< ya, (3.7a,b)

where the extent of the region, ya, is given by

ya = λ−(u0, h0). (3.8)

Within the rarefaction (ya < x/t< yb), the Riemann invariant, R+, is constant and so

R+(u, h)= R+(u0, h0). (3.9)

For yb < x/t< yN , there is a uniform region attached to the front of the flow and here

u= uN, h= hN and (uN − Q̂)2 =F (hN). (3.10a−c)

Thus using (3.9), evaluated at u = uN and h = hN , and (3.10), we have coupled
algebraic equations for the height and velocity at the front of the current. These
solutions then determine the edge of the expansion x/t= yb, where

yb = λ−(uN, hN). (3.11)

To complete the solution we calculate the variation of the velocity and height fields
within the expansion fan and this corresponds to coupling (3.9) with the characteristic
equation

y≡ x
t
= λ−(u, h). (3.12)

Typical profiles are plotted in figure 4. Importantly we may evaluate when this form
of solution becomes affected by the ‘choked’ flow constraint, namely that the fastest
characteristic speed is less than the required front speed. The onset of choked flow
occurs for parameters Q̂ and F0 such that

R+(uc, hc)= R+(u0, h0). (3.13)

This curve, denoted by CR, is plotted in figure 2.
When the flow is choked, the construction of rarefaction solutions becomes more

complicated because there are now two expansion fans within which the current
adjusts to match the critical height, hc, and velocity, uc, at the front. The solution
thus comprises a uniform region attached to the source, (u = u0 and h = h0) for
0< x/t< ya; an expansion fan of λ− characteristics for ya< x/t< yb; a uniform region
(u= um and h= hm, where um and hm are yet to be determined) for yb < x/t< yc; and
an expansion fan of λ+ characteristics attached to the front of the flow yc < x/t< yN .
The construction of the solutions proceeds as follows: ya is given by (3.8) and within
the λ− fan, the Riemann invariant is given by

R+(u, h)= R+(u0, h0). (3.14)
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FIGURE 4. The height, h, and velocity, u, as functions of x/t for dimensionless fluxes
Q̂ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and (a,b) F0 = 1.2, (c,d) F0 = 1. Increasing values of Q̂
produce successively deeper and faster flowing currents in both (a,b) and (c,d).

Within the λ+ fan of characteristics at the front of the current (yc < x/t < yN), the
Riemann invariant R− is constant and given by

R−(u, h)= R−(uc, hc). (3.15)

Then in the uniform region between the two expansion fans, setting u= um and h= hm,
we deduce from (3.14) and (3.15) that

1− 2hm = sin
(

1
2(R−(uc, hc)− R+(u0, h0))

)
(3.16)
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and

um − Q̂= (1− hm) sin
(

1
2(R−(uc, hc)+ R+(u0, h0))

)
. (3.17)

These expressions allow the transition locations, yb and yc to be determined by

yb = λ−(um, hm) and yc = λ+(um, hm). (3.18a,b)

Finally, profiles are determined by simultaneously solving (3.14) with

y= λ−(u, h) within ya < y< yb, (3.19)

and (3.15) with
y= λ+(u, h) within yc < y< yN, (3.20)

where y = x/t. Example solutions are plotted in figure 4 for F0 = 1.2 and F0 = 1.
Note that when the source is critical (F0 = 1), there is no uniform region before the
expansion of λ− characteristics (i.e. ya = 0).

The flow fields in this regime are quite similar to those generated by the motion
that follows the instantaneous removal of a lock gate separating fluids of differing
densities. For such dambreak flows, provided the height of the reservoir is less than
half of the height of the channel, the dense flowing layer produces a rarefaction wave
that propagates into the initially undisturbed reservoir, in addition to regions within
which the depth of the layer is constant and regions close to the front where the flow
is choked (see appendix B).

3.3. Shocks
When the source Froude number is greater than the Froude number for which a
uniform state would occur (F0 > FU ∪ FUf ), the flow consists of a uniform state
connected by a bore, which moves downstream at dimensionless speed V , to a
state that may be uniform if the flow is not choked or may feature a rarefaction
attached to the front if the flow is choked. The specification of the change of flow
conditions across the bore requires a model of the mass and momentum fluxes beyond
that embodied in the governing partial differential equations. Here we conserve the
mass and momentum fluxes and assume that energy is conserved in the upper layer
(Ungarish 2009).

Upstream of the bore, the height of the dense fluid is h0 and the flow speed in the
lower layer is u0; the flow speed in the upper layer vanishes. Downstream of the bore
we denote the dimensionless height of the layer by h1 and the dimensionless velocities
in the lower and upper layers are u1 and u2, respectively. Conservation of fluid mass
in the upper layer yields

u2 = V
(h0 − h1)

(1− h1)
, (3.21)

while conservation of mass in the lower layer yields

u1 = Q̂
h1
+ V − V

h0

h1
. (3.22)

The excess pressure fields, rendered dimensionless by ρ2gSH, are assumed to be
hydrostatic on either side of the bore. Thus upstream of the bore

pL =
{

PL, h0 < z< 1,
PL + (h0 − z), 0< z< h0,

(3.23)
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and downstream of the bore

pR =
{

PR, h1 < z< 1,
PR + (h1 − z), 0< z< h1,

(3.24)

where PR and PL are the reduced pressures at the surface z = 1, downstream and
upstream of the bore, respectively. Finally energy conservation in the upper layer is
enforced by applying the Bernoulli equation along a streamline at the upper boundary
and this gives

PL − PR = 1
2((u2 − V)2 − V2). (3.25)

Balancing the momentum flux across a control volume enclosing the bore and
simplifying using (3.21) and (3.22) then yields the following condition for the bore
speed,

V2 (h0 + h1 − 2h0h1)

(1− h1)2
+ 2(1+ S)

(
Q̂
h0
− V

)2
h0

h1
= h1 + h0, (3.26)

provided h1 6= h0. In the Boussinesq regime, (3.26) may be simplified by neglecting
terms of order S. This approximation is made in this subsection, but in § 5, we analyse
flows with relatively large density differences between the two fluids and in such cases,
the full expression (3.26) must be used.

We may now couple this condition that connects the flow states on either side of
a bore with conditions at the front to establish the height and velocity of the flowing
layer. If the flow is not choked then the front condition is given by (2.22), which
yields

(Q̂(1− h1)+ V(h1 − h0))
2 = h2

1F (h1). (3.27)

Solving (3.26) and (3.27), we find V and h1, given the dimensionless volume flux, Q̂,
and the source Froude number, F0. Example solutions are plotted in figure 5. This
construction remains valid provided the characteristic speed upstream of the shock is
greater than the shock speed (λ+(u0, h0) > V) and that the flow height downstream
of the bore is less than the critical height at which the flow becomes choked (i.e.
h1 < hc). In the (Q̂, F0) plane, the regime for which these solutions exist is bounded
by the uniform flow condition, F0 > FU and by a constraint deduced by substituting
h1 = hc and simultaneously solving (3.26) and (3.27); this latter condition represents
a curve that we denote CS (see figure 2).

It is also possible for the gravity current to feature a choked region at its front
(see figure 2). In this case there is a rarefaction attached to the front through which
the current thins to match the choked condition. This rarefaction is a fan of λ+
characteristics and the Riemann invariant, R− is constant throughout the region. Thus
we have

R−(u, h)= R−(uc, hc), (3.28)
and in particular, at the upstream edge of the rarefaction, where it meets with the
solution downstream of the bore, we find

u1 − Q̂= (1− h1) sin(R−(uc, hc)− sin−1(1− 2h1)). (3.29)

Thus matching with the bore conditions, we find

(Q̂(1− h1)+ V(h1 − h0))
2 = h2

1(1− h1)
2 sin2(R−(uc, hc)− sin−1(1− 2h1)). (3.30)

The shock speed, V , and interface height downstream of the bore are then found
by solving (3.26) and (3.30). Finally the variation of height and velocity within the
rarefaction are given by (3.20) and (3.28). Example solutions are plotted in figure 5.
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FIGURE 5. The height, h, and velocity, u, as functions of x/t for F0 = 1.6 and
dimensionless flux Q̂ = 0.1, 0.2, 0.2562, 0.3, 0.35, 0.3906. Note that Q̂ ≡ Q̂1 = 0.2562
corresponds to the maximum flux with source Froude number F0= 1.6 for which the flow
is not choked, while Q̂= 1.6−2 = 0.3906 is the maximum dimensionless flux with source
Froude number F0= 1.6 for which a two-layer flow attached to the source may be found.
Increasing values of Q̂ produce successively deeper and faster currents.

3.4. Transition to a channel-filling or critical flow

When F2
0Q̂> 1, the two-layer model of motion in this problem is no longer hyperbolic.

Instead, as demonstrated by Long (1955) and Boonkasame & Milewski (2011)
amongst others, the flows are unstable. In this case, they expand rapidly and fill
the channel in regions close to the source. Here we model this effect by treating
the transition as instantaneous, localised to the source and occurring without mixing;
these assumptions will be examined in the numerical solutions of § 4. There are then
two possibilities for the configuration of the flow. Either there will be an expanding
region attached to the source (0 < x/t < yr) within which the dense fluid fills the
channel, accompanied by a region further downstream from the source within which
the two-layer current is re-established, or there is an immediate transition at the source
to a two-layer flow state in which critical conditions are attained at the source.

First we construct the solutions for the former case in which there is a channel-
filling transition attached to the source. At the rearward transition back to a two-layer
flow, there is a jump in the height of the interface between the fluid from h = 1 to
h = hr. The motion close to this location is governed by a ‘front’ condition akin to
that applied at the leading downstream edge of the gravity current (2.19), but here it
is applied to the velocity field of the less dense fluid. This ‘front’ is choked since if it
were not the fluid could adjust to find a state with a larger backward velocity relative
to the mean flow in the channel. Thus hr = 1− hc and the velocity of the less dense
fluid is ut = Q̂− h3/2

r . Immediately, therefore, we may deduce the criterion for when
this type of flow exists. It requires the velocity of the less dense fluid to be positive
and thus Q̂>Qm≡ (1− hc)

3/2= 0.5273. Using mass conservation (urhr + ut(1− hr)=
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Q̂), we find that the velocity in the dense fluid at the jump is

ur = Q̂+ h1/2
r (1− hr), (3.31)

and this jump occurs at x/t= yr = λ−(ur, hr)= Q̂− h3/2
r .

The flow solution is then straightforward. For yr< x/t< yb, there is a rarefaction fan
of λ− characteristics within which the Riemann invariant R+ is constant. Thus within
this domain

R+(u, h)= R+(ur, hr)≡ sin−1(h1/2
c (4hc − 3)) (3.32)

and y = x/t = λ−(u, h). Downstream of this rarefaction is a uniform region within
which u=um and h=hm for yb< x/t< yc and further downstream there is a rarefaction
of λ+ characteristics attached to the choked front of the flow, (yc< x/t< yN), such that

R−(u, h)= R−(uc, hc)≡ sin−1(h1/2
c (4hc − 3)), (3.33)

and yN = uc. Thus we deduce that R+(um, hm)=R−(um, hm) and so hm= 1/2 and um=
Q̂+ h1/2

c (3− 4hc)/2. Also we find that

yb = Q̂− 1
2(1− hc)

1/2(4hc − 1) and yc = Q̂+ 1
2(1− hc)

1/2(4hc − 1). (3.34a,b)

Flow profiles are plotted in figure 6; we note that they are identical, merely being
offset by the mean flow Q̂.

When F−2
0 < Q̂ < Qm, the flow can no longer transition to a state with the dense

fluid filling the channel. Instead it transitions to a critical state at the origin (λ−= 0),
with vanishing fluid velocity in the less dense layer. Thus at the origin we have

u0 = Q̂1/3 and h0 = Q̂2/3. (3.35a,b)

The flow now features a rarefaction fan of λ− characteristics, attached to the origin,
a uniform region and potentially a fan of λ+ characteristics if the flow is choked at
the front. It may be constructed as follows. First for 0< x/t< yb,

R+(u, h)= R+(Q̂1/3, Q̂2/3), (3.36)

and x/t= λ−(u, h). For yb < x/t< yc, there is a uniform region u= um, h= hm and

yb = λ−(um, hm) and yc = λ+(um, hm). (3.37a,b)

Finally if the flow is choked at the front (hm > hc) then within yc < x/t < yN = Q̂+
(1− hc)

3/2,
R−(u, h)= R−(uc, hc), (3.38)

and x/t = λ+(u, h). The limiting condition for choking at the front occurs when the
flow adjusts to h = hc and u = uc within the rarefaction attached to the source. It
is given by R+(uc, hc) = R+(Q̂1/2, Q̂2/3) and this occurs as Q̂ = Qmc ≡ 0.3001. Then
for Q̂m > Q̂>Qmc the flow is choked and there is a rarefaction fan of characteristics
attached to the front, whereas for Q̂ < Qmc, the flow is not choked and there is no
frontal fan. Some typical profiles are plotted in figure 6.
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FIGURE 6. The height, h, and velocity, u as functions of x/t for two-layer currents that
have lost their hyperbolic structure and transition to either channel-filling flows or to flows
with critical control at the origin. In this plot, Q̂= 0.2,Qmc≡ 0.3001, 0.4,Qm= 0.5273, 1.1.

4. Simulations

We now proceed to analyse the flow by means of two-dimensional direct
numerical simulation (DNS) in the Boussinesq regime, based on our code TURBINS
(Nasr-Azadani & Meiburg 2011), which employs a finite-difference discretization
combined with a fractional projection method and TVD-RK3 time integration.
Numerical details and validation results of the code are provided in Nasr-Azadani &
Meiburg (2011) and Nasr-Azadani, Hall & Meiburg (2013), so that we provide only
a brief review here.

The fluid motion is modelled using the dimensionless incompressible Navier–Stokes
equations in the Boussinesq regime, given by

∇ · u= 0, (4.1)
∂u
∂t
+ u · ∇u=−∇p+ 1

Re
∇2u− ρ̂ ẑ, (4.2)

where u, p and ρ̂ are the dimensionless, two-dimensional velocity field, pressure and
excess density (0 6 ρ̂ 6 1), respectively, and where ẑ and Re denote a unit vector
aligned with the direction of gravity and the Reynolds number, respectively. For
the purposes of the numerical simulations, it is convenient to non-dimensionalise
the variables differently from the shallow-layer analysis of § 2: in the governing
equations (4.1) and (4.2), we scale all lengths with respect to the height of the inflow,
h∗0 ≡ (Q2/(gSF2

0))
1/3, and time with respect to t∗0 ≡ (h∗0/(gS))1/2. The Reynolds number

thus is obtained as

Re= h∗20

t∗0ν
, (4.3)
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and the dimensionless height of the channel by Ĥ =H/h∗0. Under these scalings, and
keeping the height of the source constant, the rescaled inflow velocity is F0 and
variations in the dimensionless flux parameter, Q̂, are obtained by altering the height
of the computational channel, because Q̂ = F0Ĥ−3/2. Although the computations
are performed with these new dimensionless variables, we analyse the motion
quantitatively in terms of the variables defined in § 2, to enable immediate comparison
between the shallow-layer theory and the computations.

To model the evolution of the dimensionless excess density field ρ̂(x, t), we employ
a continuum description and evolve the density field in an Eulerian manner via

∂ρ̂

∂t
+ u · ∇ρ̂ = 1

ReSc
∇2ρ̂. (4.4)

Here, Sc denotes the Schmidt number associated with the diffusion of the density field
ρ̂. In most applications Sc�1, although test simulations indicate that the precise value
of Sc influences the results only weakly as long as Sc > O(1) (Härtel et al. 2000).
With this in mind, we employ Sc= 14 in all of our simulations. We remark that in
most simulations Re is kept at 350 to ensure a stable interface between the dense
current and the ambient fluid.

The computational set-up employs a channel of dimensionless size Lx×Lz= 50× Ĥ,
with in/outflow boundaries in the horizontal direction, cf. figure 1. The Cartesian grid
in the x- and z-directions is uniformly spaced with 1x = 0.1 and 1z = 0.016. We
apply free-slip conditions at the top and bottom walls. At the outflow boundary, all
flow variables, q, are convected out of the domain via the outflow boundary condition

∂q
∂t
+ Ū

∂q
∂x
= 0, (4.5)

where Ū represents the maximum u velocity value in the domain. For the density field,
we impose no-flux conditions at the top and bottom walls. At the inlet and for z< 1,
the density and horizontal velocity are set to unity and F0, respectively. These values
decay smoothly over a few grid points to a zero value for z> 1. The computational
domain is initially filled with ambient fluid at rest.

In figure 7 we plot contours of the concentration field at dimensionless times
t = 20Ĥ1/2 for varying values of the flux parameters Q̂, while keeping the source
Froude number constant (F0 = 1.2). To reiterate, here, and in the subsequent
discussion, the variables are non-dimensionalised as described in § 2. It is noteworthy
that the currents maintain a relatively sharp interface between the two fluids in the
channel; turbulence and other diffusive processes are insufficient to cause significant
mixing on these length and time scales. The other noticeable feature is that for the
higher values of the dimensionless flux, Q̂, the dense current has completely filled the
channel depth in an expanding region close to the source, while further downstream
the current re-establishes the two-layer structure.

We calculate the rate at which the current progresses downstream by defining a
scaled current height

Φ = 1

Ĥ

∫ Ĥ

0
ρ̂ dz. (4.6)

based on the vertical integral of the density field. The front of the current, xN(t) is
then determined by finding the maximum value of x for which Φ > ε, where ε is
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FIGURE 7. (Colour online) Contours of the dimensionless excess density field from the
DNS at t = 20Ĥ1/2 for source Froude number, F0 = 1.2, and various values of the
dimensionless flux, Q̂= 0.15, 0.28, 0.42, 0.70, 0.78, 0.94. The ten contours in each panel
correspond to values of ρ̂ from 0.1 to 1 with increments of 0.1.

a prescribed threshold, typically ε = 0.01. We plot xN(t) as a function of time for
each computational run in figure 8(a). We observe that the currents move at constant
speeds dependent on Q̂. By fitting a linear trend line to each set of data we measure
this speed and compare with the prediction of the shallow-layer model in figure 8(b).
The agreement between the model and the simulations is quite good. The Navier–
Stokes currents are seen to move slightly more slowly than predicted by the shallow-
layer model, which is most likely due to their relatively low Reynolds number of
350, implying the weak, but non-vanishing, action of viscous processes that retard the
motion.

We examined the effects of varying the Reynolds number in two ways. First for
F0 = 1.2 and Q̂ = 0.42, we performed simulations with Reynolds numbers ranging
from 100 to 1500 and we measured the speed of the flow. Computing at higher
Reynolds numbers required greater spatial resolution to achieve converged results and
the computational grids were adjusted appropriately. The results are given in table 1,
where we observe that the measured speed systematically increases with increasing
Reynolds number, approaching the shallow-layer value. This supports the view that
the slight mismatch between the simulations and the inviscid shallow-layer prediction
is due to the weak, but non-vanishing, effects of viscosity.
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FIGURE 8. (a) The position of the front of the current, xN(t), as a function of time for
each of the simulations with F0= 1.2; and (b) the measured velocity of the current, uN , as
a function of the dimensionless flux, Q̂ at Re= 350 (E) and Re= 1500 (×). Also plotted
are the predictions from the shallow-layer analysis (solid line) and the asymptotic result
when Q̂� 1 (dotted line) and Q̂= 0.2938 at which value the flow becomes choked.

Contours of the concentration field from each run at different Reynolds number
are plotted in figure 9 at the same instant of time. The increased size and intensity
of vortices on the interface between the two fluids becomes more evident as the
Reynolds number is increased and these vortices lead to zones within which the
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Reynolds number Front speed
Re uN

100 0.855
350 0.887
750 0.898
1000 0.902
1500 0.903

TABLE 1. The dimensionless speed of the front of the current, uN , measured from
simulations conducted at different Reynolds numbers, when the source Froude number,
F0= 1.2 and the dimensionless flux per unit width, Q̂= 0.42. The shallow-layer prediction
for these conditions is uN = 0.952.

density takes intermediate values between the intruding and ambient fluids. However
over the time and length scales of these simulations, the emergence of this mixed
zone does not significantly modify the speed of the current, presumably because the
vertical integral of the excess density field over the depth of the current, (

∫ h
0 ρ̂ dz),

remains approximately constant under mixing and this determines the speed of the
density-driven spreading. Johnson & Hogg (2013) have demonstrated that entrainment
alone modifies the predictions of shallow-layer models, but only at time and length
scales far beyond those computed in these simulations.

We also examine the effects of Reynolds number by performing simulations at Re=
1500 for source Froude number F0 = 1.2 and a range of values of the dimensionless
flux, Q̂. In each case, as for the simulations run with Re= 350, we find the front of
the current moves with constant speed and that this speed compares favourably with
the shallow-layer predictions (see figure 8b). For each case, the simulations at higher
Reynolds number led to slightly higher front speeds, evidencing the reduced effects
of viscosity (table 1).

The shallow-layer predictions always comprise currents with rarefactions, with the
transition to choked flows occurring at Q̂ = 0.2938 and the loss of hyperbolicity,
with the associated transition to channel-filling flows, at Q̂= 0.6944. This latter value
closely agrees with the value observed in the Navier–Stokes simulations. Also plotted
is the asymptotic result for a relatively deep ambient (Q̂ � 1). In this regime, to
leading order, the Riemann invariants are given by R± = u ± 2

√
h on characteristics

dx/dt = u ± √h. For this source condition there is an expansion fan within which
R+ = Q̂1/3(F2/3

0 + 2F−1/3
0 ). The leading edge of the expansion fan corresponds to

uN =
√

2hN and thus

uN =
Q̂1/3

(
F2/3

0 + 2F−1/3
0

)
1+√2

, (4.7)

a result which is quite accurate for Q̂6 0.3 when F0= 1.2 (see figure 8). This implies
that the gravity current motion is relatively unaffected by the motion of the overlying
less dense fluid until the flow becomes choked at Q̂= 0.2938. Notably when Q̂� 1,
the dimensionless rate of propagation is proportional to Q̂1/3, whereas for larger values,
the speed varies linearly with Q̂ and from (2.20) is given by uN = 0.5473+ Q̂.

We may also investigate the motion of the interface between the dense and less
dense fluids at the upper boundary when the flow is channel filling. In this case, we
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FIGURE 9. (Colour online) Contours of the dimensionless excess density field from the
DNS at t= 20Ĥ1/2 for source Froude number, F0= 1.2, and dimensionless flux, Q̂= 0.42,
at various Reynolds numbers. The ten contours in each panel correspond to values of ρ̂
from 0.1 to 1 with increments of 0.1.

define the position xr(t) as the maximum value of x for which Φ > 1− ε1, where ε1

is another prescribed threshold with chosen value ε1 = 0.05. We note from figure 7
that for those flows which undergo the transition to a channel-filling motion, although
the interface at the top boundary is relatively sharp (i.e. the region of intermediate
density is quite narrow), the ρ̂ = 1 contour is somewhat displaced from the upper
boundary. This means that the threshold ε1 cannot be chosen to be arbitrarily small
or else the criterion for determining the position xr(t) would fail. However, we find
that xr(t) depends only very weakly on ε1 for 0.04< ε1 < 0.1. In figure 10 we plot
xr(t) as a function of time for those runs for which the flow becomes channel filling
and we overlay the theoretical prediction. It is evident that there is some temporal
offset before the channel-filling layer becomes established, presumably due to the
development of the interfacial instability. Thereafter, the theoretical model captures
the measured speed quite well until the basal front of the two-layer current leaves
the domain. Beyond that time, the existence of the outflow boundary prevents the



Sustained gravity currents 875

5 10 15 20 25 30 35

2

4

6

8

10

12

14

16

0

t

FIGURE 10. The position of the interface between the dense and less fluids at the upper
boundary of the channel, xr(t) as a function of time for cases in which the gravity current
becomes channel filling close to the source from the DNS results at Re = 350 (solid
lines), at Re = 1500 (dotted lines) and the shallow-layer modelling (dashed lines). The
DNS results are curtailed when the basal front leaves the fluid domain.

flow in the domain from continuing to be influenced by the motion of the current
front. Longer computational domains are expected to produce agreement between the
two sets of data for longer times. We examine the motion of this interface at the top
of the channel for simulations at higher Reynolds number (Re= 1500, see figure 10).
We observe that at higher Reynolds number, the channel-filling part of the flow takes
longer to be fully established and that for the lowest flux considered, Q̂ = 0.70,
it is not completely initiated before the front of the flow leaves the computational
domain. For the other cases in which this channel-filling transition occurs, however,
the measured positions are broadly in accord with the theoretical predictions after
some initial period during which the flow structure is developed.

Gravity currents due to the sustained emission of relatively dense fluid within
a channel have recently been studied by Shringapure et al. (2013). These authors
conducted numerical simulations of the Navier–Stokes equations and compared their
results with a simple analytical model of the motion in which the currents are spatially
uniform. Here we quantitatively investigate their results in terms of the shallow-layer
formulation developed above (§ 3). We note that the source conditions they treated
were subcritical (λ−(u0, h0) < 0). Thus the flows are subject to downstream influences
and adjust close to source to critical conditions (λ−(u0, h0)= 0), which implies F0= 1.
We may then compare the numerically determined speed of propagation and average
height over a small frontal region with the shallow-layer model developed here. We
plot in figure 11 the dimensionless front position and height at the front as a function
of the dimensionless flux, noting that there is very good agreement between the two.
This provides further confidence in the shallow-layer model since it is capable of
accurately reproducing features in an independently developed numerical simulation.
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FIGURE 11. The dimensionless speed, uN , and height, hN , of the front as a function of
the dimensionless flux per unit width, Q̂ calculated from the shallow layer with F0 = 1
(solid lines) and from the numerical simulations of Shringapure et al. (2013) (×). Also
marked is the value of the flux, Q̂c at which the motion first becomes choked (dashed
line).

5. Non-Boussinesq flows (S=O(1))

For non-Boussinesq currents, the same types of flow structures arise, namely,
uniform and choked flows with shocks and rarefactions. However the boundaries
between the different states in the (Q̂, F0) plane vary with S and our method
of constructing them differs from the Boussinesq regime. Instead of analytical
expressions for the Riemann invariants, we must now largely rely on numerically
computed solutions to the differential equation along each family of characteristics
(2.11).

Non-Boussinesq currents with no spatial variations between the source and the front
may be determined through the solutions of coupled algebraic equations; they satisfy
(3.1) for 0 6 Q̂ 6 Qc. This produces a current identical to the Boussinesq case (as
plotted in figure 3). For larger values of the dimensionless flux (Q̂ > Q̂c), the flow
becomes choked at the front and there is a rarefaction of λ+ characteristics as the
dense fluid accelerates to match the front condition. The curve in the (Q̂, F0) plane
is mapped out by integrating

du
dh
=−α

2 +√α2 + (1− β)h
h

, (5.1)

subject to u = uc when h = hc and u = u0 when h = h0, thus providing an implicit
relationship between the parameters Q̂ and F0. The form of this curve is dependent
upon the dimensionless excess density, S, as illustrated in figure 12 for S=1 and S=5.
However it is evident that there always exist some parameter values for which there
is ‘choked’ flow because Q̂c<F0c(F2

0c+ S/(1+ S))−3/2, the condition for hyperbolicity
(2.24) evaluated at Q̂= Q̂c and F0= F0c. As in § 3.1, we denote the curves on which
there is uniform and choked-uniform flow by FU and FUf , respectively.
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FIGURE 12. Regimes of solutions, classified as function of the dimensionless flux, Q̂ and
the source Froude number, F0 for non-Boussinesq flows (a) S = 1 and (b) S = 5. As in
figure 2, uniform flows correspond to F0=FU ∪FUf . Smaller, but still supercritical, values
of F0 yield rarefactions, while larger values lead to shocks. The curve corresponding to
the loss of hyperbolicity is denoted Ch, while the transition between choked and unchoked
flows of rarefactions and shocks are denoted CR and CS, respectively. Critical conditions
are given by F0= 1/

√
2 for S= 1 and F0= 1/

√
6 for S= 5; these values are also plotted.

For F0 < FU ∪ FUf , there are rarefactions close to, or attached to, the source and
potentially close to the front if the motion is ‘choked’. We may compute the boundary
between ‘choked’ and unchoked rarefaction by integration across the rarefaction of λ−
characteristics close to source. Thus we integrate

du
dh
=−α

2 −√α2 + (1− β)h
h

, (5.2)
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from u= u0 and h= h0 to u= uc and h= hc and this provides an implicit relationship
between the dimensionless source flux and source Froude number. The form of this
curve, CR, is dependent on S as shown in figure 12.

When F0 >FU ∪FUf , the flow involves shocks across which the height and velocity
vary discontinuously. As with the Boussinesq currents (§ 3), the jump conditions
feature the conservation of mass and momentum fluxes, together with the assumption
that there is no dissipation in the upper, less dense fluid. Then the currents may either
comprise two uniform segments, joined by a shock, or may be choked at the front, in
which case the current thins and accelerates downstream of the shock. The boundary
between these two possibilities is similar to that deduced above (§ 3.3), although
the momentum equations on either side of the shock are modified to take account
of the potentially non-negligible difference in densities between the two fluids (see
§ 2). We may then compute which type of current exists for different values of the
dimensionless flux, Q̂, and the source Froude number, F0 (see figure 12). We note
that for the extent of values for which choked flow exists diminishes as the density
ratio increases.

In figure 13(a,b), we plot the profiles of height and velocity for non-Boussinesq
currents for different ratios of the densities of the fluids. In particular, we evaluate
the form of the currents when the source is critical, F0= (1+ S)−1/2 and the flux Q̂=
µ(1+ S)−1/2 with 06µ6 1. (In this range of values the source is always hyperbolic.)
We observe that for all of the flows the current immediately transitions from their
source conditions through a rarefaction to a uniform state. Furthermore, for the cases
plotted, the flow is only choked for relatively large dimensionless fluxes with S = 1.
As the density ratio becomes large (S� 1), the motion of the less dense fluid in the
upper layer plays only a negligible role and the motion is modelled by the single-
layer shallow-water equation to leading order. In this regime, we must adopt different
variables, namely t = (1 + S)−1/2t, u = (1 = S)1/2u and Q = (1 + S)1/2Q̂. The front
condition is then given by h = 0 to leading order and the velocity and height fields
satisfy

u= 1
3

(
Q+ 2+ 2x

t

)
and h= 1

9

(
Q+ 2− x

t

)2
. (5.3a,b)

In figure 13(c) we plot the height and velocity fields for Q̂ = F0 = (1 + S)−1/2 for
a range of values of S in terms of these rescaled variables and we note that as S
increases, the single-layer results are progressively attained.

6. Conclusions
We have analysed the unsteady motion that results from the sustained release of

dense fluid into a horizontal channel which initially contains less dense fluid. We have
demonstrated how the ensuing inviscid motion may be analysed using a two-layer
shallow-water model and that there are three independent dimensionless groups that
characterise the motion, which here we have formulated as the dimensionless flux
per unit width, Q̂, the source Froude number, F0 and the relative excess density,
S. Our results, derived from the solutions of simple algebraic equations in the
Boussinesq regime and the integration of a single first-order differential equation in
the non-Boussinesq regime, have demonstrated that various types of flows may arise;
these include uniform flows, those with internal discontinuities (shocks) and those
that vary continuously (rarefactions). Additionally the motion may become choked
when the speed of advance is limited by the rate at which dense fluid can be supplied
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FIGURE 13. The height, h, and velocity, u as function of x/t for non-Boussinesq,
supercritical source conditions F0 = (1 + S)−1/2; (a) S = 1 and (b) S = 5 with Q̂ =
n(1+ S)−1/2/5 (n= 1, 2, 3, 4, 5). Also plotted in (c) are the height and rescaled velocity
fields as a functions of (S+ 1)1/2x/t for F0 = Q̂= (1+ S)−1/2.

to the front. The identification and demarcation of these variations, including their
dependence upon the relative density, S, adds significantly to what has been reported
before and reveals a rich interplay of effects. We also find solutions in which the
two-layer structure with less dense fluid overlying dense fluid cannot be sustained.
In these situations, the dense fluid undergoes a transition at source to fill the entire
depth of the channel before subsequently re-establishing the two-layer form further
downstream.

We have reported results from the direct numerical simulation of the full
Navier–Stokes equations and have demonstrated very good agreement in the prediction
of bulk properties between the idealised shallow models and these more complete
descriptions. The simulations may be probed to reveal the spatial and temporal
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variations of the velocity, pressure and density fields and thus provide much greater
information about the unsteady flow associated with any particular source conditions.
However they require significant computational resource and so it is costly to
determine the parametric dependence that is brought out clearly by the shallow-layer
models. Therefore it is the interplay between the two approaches that has provided
insight into the underlying dynamics and confidence in the modelling approaches.

One important component of shallow-layer modelling is the dynamic condition
that captures the non-hydrostatic motion at the front (Benjamin 1968; Borden &
Meiburg 2013a). Although our shallow-water analysis requires the specification of
this condition, in the Boussinesq regime, there is relatively little difference between
the form of the solutions or the domains in which they exist. Both yield quantitative
results close to the numerical simulations. It would be interesting to compare the
non-Boussinesq predictions produced with the Benjamin front condition with other
formulations and with numerical simulations when they become available.

Our analytical techniques have also been applied to the related problem of
Boussinesq dambreak flows (appendix B). Flows driven by sustained sources and
by the collapse of a dam share many features as drawn out for single-layer flows
by Gratton & Vigo (1994). Here, we have employed the method of characteristics
to construct the height and velocity fields for both partial and full-depth dams; these
solutions are of self-similar form and like those due to a sustained source, yield a
simple (linear) gearing between the spatial and temporal variables. Our analytical
solutions therefore add to the growing literature on dambreak solutions, which as
well as being of interest in their own right, provide a test-bed solution for examining
non-trivial unsteady flows.

Although we have not pursued this here, we comment that our results have direct
application to industrial and environmental problems. In addition to the prediction of
flow speeds, our results have shown that, for certain source conditions, the dense
fluid completely displaces the less dense material, and that in other situations, the
speed of propagation may become choked, increasing linearly with further increases
of the source flux. Our shallow-layer formulation is straightforward to extend to non-
rectangular cross-sections or release conditions that do not demand outflow at the
end of the channel. It would also be interesting to examine how mixing between
the fluids modifies the motion. We finally remark that there is a pressing need for
further laboratory experiments to investigate the motion in both Boussinesq and non-
Boussinesq regimes.
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Appendix A
A.1. Circulation-based models of bores

In this section of the appendix, we compute the solutions for Boussinesq gravity
current motion due to a sustained influx using the dynamic front and bore conditions
for Boussinesq flows proposed by Borden & Meiburg (2013a) and Borden & Meiburg
(2013b), respectively. These are based upon the conservation of mass and circulation
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across the front, the latter balancing the vorticity generated at the interface between
the fluids with the baroclinic torque due to the excess density (see Borden & Meiburg
2013a). Here we identify the regimes of solutions types in terms of the governing
parameters, Q̂ and F0. The solutions developed here are therefore counterparts to
those of § 2 using the Benjamin front condition (2.19).

Adapting the approach of Borden & Meiburg (2013a) to account for a constant flux
along the channel, we find that the front condition is given by

(uN − Q̂)2 = 2hN(1− hN)
2 (A 1)

this formulation differs from the one proposed by Benjamin (1968) and there are some
immediate consequences. First, choked flow arises when λ+(uN, hN) = uN and when
combined with (A 1), this corresponds to hN = hc = 1/3 and u = uN = Q̂ + 0.5443.
This corresponds to flows that are marginally shallower and faster than the choked
flow conditions predicted by the Benjamin front condition ((2.19) and (2.20)).

Uniform flow states occur when hN = h0 = (Q̂/F0)
2/3 and uN = u0 = (Q̂F2

0)
1/3 and

thus we find that they are given by F0 =
√

2, with the proviso that the motion is
not choked, a condition given by Q̂ < Q̂c ≡ (2/27)1/2. Flows that are choked at the
front and uniform up to that point feature a fan of λ+ characteristics, within which
the Riemann invariant, R− is constant. The curve in the (Q̂, F0) plane corresponding
to this type of solution is given by

R−(u0, h0)= R−(uc, hc). (A 2)

As in § 3, we denote the curves along which uniform and choked-uniform solutions
exist by FU and FUf , respectively. It is plotted in figure 14.

For F0<FU ∪FUf , solutions with rarefaction exist. We compute the onset of choked
solution by evaluating the parameter values for which the flow evolves from source
through a rarefaction of λ− characteristics to the choked flow state. This corresponds
to a curve given implicitly by

R+(u0, h0)= R+(uc, hc). (A 3)

This curve is denoted CR and is also plotted in figure 14.
Finally we analyse those solutions with internal bores. To this end, adapting the

formulation developed by Borden & Meiburg (2013b), we enforce mass conservation
in both layers (3.21) and (3.22) and then balance the net flux of vorticity with the
baroclinic torque generated across the bore. This yields

((u2 − V)2 − (u1 − V)2)− (V2 − (u0 − V)2)= 2(h1 − h0). (A 4)

The onset of choked flows for the parameter values with bores can then be deduced
by setting h1 = hc and simultaneously solving (3.21), (3.22), (A 4) and (3.27). This
leads to the curve CS in the (Q̂, F0) plane, which is plotted in figure 14.

A.2. Empirical front conditions
We now examine gravity current motion in the Boussinesq regime as a function of
the source Froude number, F0, and the dimensionless flux, Q̂, when an empirical
model is employed to specify the dynamical condition at the front of the current. Here
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FIGURE 14. Regimes of Boussinesq solutions, classified in terms of the dimensionless
flux per unit width, Q̂, and the source Froude number, F0, when circulation-based models
are used for the conditions at the front and across bores.

we examine the consequences of using the front condition proposed by Huppert &
Simpson (1980), modified to account for the sustained flux in the channel; in terms
of the dimensionless variables defined in this study, this condition is given by

(uN − Q̂)2 =
{

1
4 ĥ−2/3hN, 0< hN < ĥ,
1
4 h1/3

N , ĥ< hN,
(A 5)

where ĥ= 0.075.
We may now construct the forms of solution, replacing the Benjamin front condition

(2.19) with (A 5). First, we note that choked flow arises when λ=(uN, hN)= uN , which
occurs when (1− hN)

3= h1/3
N /4. Thus we find that this occurs when hN = hc= 0.4269

and uN = Q̂ + 0.4339. This implies that choked flows are both deeper and slower
than the counterparts predict using the frontal conditions due to Benjamin (1968) and
Borden & Meiburg (2013a).

Uniform flow states may be found when the velocity and depth of the current do not
vary along its length. They are given by hN = h0 = (Q̂/F0)

2/3 and uN = u0 = (Q̂F2
0)

1/3.
Thus from (A 5), we deduce

hN = 1− ĥ−1/3

2F0
, for 0< hN < ĥ, (A 6)

while

Q̂2 = h7/3
N

4(1− hN)2
, for ĥ< hN < hc. (A 7)
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FIGURE 15. Regimes of Boussinesq solutions, classified in terms of the dimensionless flux
per unit width, Q̂, and the source Froude number, F0, when an empirical model (Huppert
& Simpson 1980) is used for the front condition.

Together, these defined a curve in the (Q̂,F0) plane along which a uniform state may
be found (see figure 15). We denote this curve FU and it is defined for 0< Q̂< Q̂c≡
0.3232; note that FU(Q̂c)=F0c≡ 1.1587 and this is point is plotted in the figure. For
larger values of the dimensionless flux, the currents are choked and feature a uniform
portion attached to the source, joined to the front by a rarefaction of λ+ characteristics
within which the flow thins and accelerates. The curve along which currents of this
type may be found is constructed by using the constancy of the R− Riemann invariant.
Thus R−(u0, h0)=R−(uc, hc) and this defines the curve FUf in the (Q̂,F0) plane (see
figure 15). This type of the current ceases to exist when the source conditions are
no longer compatible with a two-layer flow. This loss of hyperbolicity occurs when
F2

0Q̂= 1 and occurs when Q̂= Q̂h ≡ 0.7678 (see (3.6)).
When the parameters do not lie on the curve FU ∪FUf , there are rarefactions and

shocks. Rarefactions occur when F0 < FU ∪ FUf ; through the rarefaction close to
the source, the currents accelerate and thin. These flows may become choked and we
may compute the transition to choked rarefaction by using the constancy of the R+
Riemann invariant through the fan of λ− characteristics. Thus R+(u0, h0)= R+(uc, hc)

and this defines the curve CR in the (Q̂, F0) plane (figure 15).
Finally, the currents may feature shocks if F0 >FU ∪FUf , over which the current

deepens and slows. It is possible for these flows to become choked also if the
height at their front becomes too large. The transition to ‘choked shocks’ occurs by
simultaneously solving (A 5), together with shock conditions (3.22) and (3.26). This
leads to the curve CS in the (Q̂, F0) plane (figure 15).

The calculations presented in this Appendix demonstrate that our model may be
used with any dynamic front condition, including those that provide smaller Froude
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FIGURE 16. The configuration of dambreak flow. The fluid is initially at rest and of depth
h0 behind a lock gate at x= 0 in an infinitely long channel of dimensionless depth 1. The
flow is initiated by the instantaneous removal of the lock gate at t= 0.

numbers than predicted by Benjamin’s formula. We note, however, that since the
governing equations and balances across internal jumps are based upon inviscid
dynamics and do not include effects such as velocity shear and mixing, that it
may be inconsistent to apply empirical or semi-empirical formulae, which implicitly
incorporate them at the front of the motion. We emphasise that the results presented in
the main body of the paper and in § A.1 are self-contained and are closed rigorously
without any adjustable constants and that the front condition proposed by Benjamin
(2.19) or by circulation conservation (A 1) are self-contained, consistent outgrowths
of the same balances that are used for the equations governing the entire current.

Appendix B. Two-layer, Boussinesq, dambreak flow
In this appendix we consider the related problem of two-layer dambreak flow

in a channel, a problem that was analysed by Rottman & Simpson (1983) and
Ungarish (2009). In this study, using the methods presented in § 3, the solutions
emerge analytically through the solution of algebraic equations. These dambreak
solutions thus form the two-layer counterparts of the dambreak solution derived by
Ritter (1892), which has proven an invaluable prototype for investigating spatially
and temporally varying flows.

In terms of the dimensionless governing equations developed in this study, this
situation corresponds to Q̂ = 0 and the initial conditions within the now infinite
channel are given by u=0 and h=h0 for x<0 and h=0 for x>0 (see figure 16). For
t> 0, the flow evolves so that the dense fluid slumps downstream and a disturbance
propagates upstream into the lock. When the lock depth is much less than the ambient
(h0� 1), the motion is governed to leading order by the single-layer shallow-water
equations and the dambreak solution is simply derived (Rottman & Simpson 1983;
Hogg 2006; Ungarish 2009). When h0 is not negligibly small and the fluid is
Boussinesq (S� 1), complications arise, although the complete solution may still be
constructed using the method of characteristics. This is what we undertake here to
establish analytical expressions for the velocity and height fields.

First, the motion downstream (x > 0) is governed by a front condition and could
potentially be choked as described in § 2. Thus at x= xN(t), hN 6 hc and uN =F (hN).
The lead characteristic propagating upstream (x< 0) into the region u= 0 and h= h0
satisfies

dx
dt
=−

√
h0(1− h0). (B 1)

This expression is monotonically decreasing with h0 up to h0 = 1/2, but if h0 > 1/2
there is no longer a smooth way in which to connect the solution with the lock
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conditions. This problem was identified by Rottman & Simpson (1983) and resolved
by Klemp, Rotunno & Skamarock (1994) and Ungarish (2009), who showed how to
insert a jump that moves upstream as the leading disturbance with velocity, Vs (Vs<0),
across which mass and momentum flux are conserved in each layer and energy is
conserved in the upper (expanding) layer. Ungarish (2009) showed that

V2
s =

h2
0 − h2

1

2h2
0 − h1

h1
+ (1− 2h1)

(
1− h0

1− h1

)2 , (B 2)

where h1 is the depth of the dense fluid immediately downstream of the jump. The
solution is completed by identifying the bore with the leading upstream characteristic
and this provides a second condition for h1 and Vs. Simultaneously (B 2) and Vs =
λ−(u1, h1) where u1 is the velocity of the lower layer just downstream of the bore
yields the following equation for h1 in terms of the lock depth, h0,

h4
1 − 4h0h3

1 + (−3h2
0 + 6h0)h2

1 + (3h2
0 − 2h0)h1 − h2

0 = 0. (B 3)

Note that when h0 = 1/2, h1 = 1/2; thus the jump vanishes precisely when the
continuous solution re-emerges. Furthermore, when h0= 1, h1= 1− hc; for a full-depth
lock, the upstream flow is choked and the fluid evolves asymmetrically about the
origin, such that h(−x)= 1− h(x) and u(−x)= u(x)h(x)/(1− h(x)).

The complete solution then comprises a rarefaction of λ− characteristics centred at
the origin, with a bore propagating upstream if h0>1/2 and potentially choked flow at
the front. First, we construct the continuous solutions (h0<1/2): within the rarefaction
of λ− characteristics, the Riemann invariant R+ is constant determined by the lock
conditions. Thus

−sin−1(1− 2h0)= sin−1

(
u

1− h

)
− sin−1(1− 2h), (B 4)

and this applies at the front so that R+(0, h0) = R+(F (hN), hN). The characteristics
are straight lines in the (x, t) plane, given by

y= x
t
= u− α − (α2 + (1− β)h)1/2 for ya < y< yb, (B 5)

where ya= λ−(0, h0)=−
√

h0(1− h0) and yb= λ−(F (hN), hN) and α and β are given
by (2.12) with Q̂= 0. The solution is completed by a uniform region with h= hN and
u=F (hN) for yb < y< yN ≡ uN .

If h0> 1/2 then the solution includes a discontinuity. Given h0, (B 2) can be solved
to determine h1. Then replacing (B 4), we have

R+(u1, h1)= R+(u, h). (B 6)

The flow first becomes choked when R+(u1, h1) = R+(uc, hc) and this determines a
critical lock depth h0= h0m= 0.7965. Thus if h0m > h0 > 1/2, the flow features a bore
moving upstream with velocity Vs; a rarefaction of λ− characteristics centred at the
origin for Vs < x/t< yb, within which the flow fields satisfy (B 5) and

R+(u1, h1)= R+(F (hN), hN) (B 7)
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FIGURE 17. The height, h and velocity, u as functions of x/t of the lower layer in a
dambreak flow for lock depth h0 = 0.2, 0.4, 0.6, 0.8, 1.0.

and yb=λ+(F (hN), hN); and a uniform region at the front of the current within which
u= uN and h= hN for yb < x/t< yN ≡ uN .

Finally, if 1> h0> h0m then the flow is choked at the front and there is a rarefaction
of λ+ characteristics within which the flow accelerates to match the front condition.
Between the rarefactions at the front and rear of the currents, there is a uniform region
within which the flow field is spatially uniform and given by u= um and h= hm. Thus
we find

R+(u1, h1)= R+(um, hm) and R−(uc, hc)= R−(um, hm). (B 8a,b)

It is then straightforward to simultaneously solve (B 8) to determine um and hm and
then the solution is given by

x/t= λ−(u, h) for Vs < y< yb, (B 9)

and

x/t= λ+(u, h) for yc < y< yN, (B 10)

where yb = λ−(um, hm), yc = λ−(um, hm) and yN = uc.
The case of a full-depth lock release (h0 = 1) is particularly simple. By symmetry

hm = 1/2 and then from (B 8)

sin−1(2um)= sin−1

(
uc

1− hc

)
+ sin−1(1− 2hc). (B 11)

This allows the evaluation of um = h1/2
c (3 − 4hc)/2 = 0.4746. Also, the edge of the

expansion fan may be evaluated as

yc =−yb = λ+(um, 1/2)= ( 1
4 − u2

m

)1/2 = 1
2(4hc − 1)(1− hc)

1/2 = 0.1572. (B 12)
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The solutions for the height and velocity fields are plotted in figure 17 for a range
of lock depths.

It is noteworthy that the jump at the front of the current and the internal bore
(when present) are dissipative and so all dambreak currents are always dissipative. It
is also worth reiterating that these solutions apply to reservoirs of infinite extent; if
the reservoir were finite, the motion would be modified when the leading upstream
characteristic (or bore) reached a back wall and is reflected, ultimately catching
up with and modifying the motion of the front. These is no counterpart of this
phenomenon for gravity currents driven by a sustained source, as analysed in the
main body of this paper.
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