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Bounded dam-break flows with tailwaters
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The gravitationally driven collapse of a reservoir into an initially stationary layer of
fluid, termed the tailwater, is studied using the nonlinear shallow water equations.
The motion is tackled using the hodograph transformation of the governing equation
which allows the solutions for velocity and depth of the shallow flowing layer to
be constructed by analytical techniques. The front of the flow emerges as a bore
across which the depth of the fluid jumps discontinuously to the tailwater depth. The
speed of the front is initially constant, but progressively slows once the finite extent
of the reservoir begins to influence the motion. There then emerges a variety of
phenomena depending upon the depth of the tailwater relative to the initial depth of
the reservoir. Provided that the tailwater is sufficiently deep, a region of quiescent
fluid emerges adjacent to the rear wall of the reservoir, followed by a region within
which the velocity is negative. Also it is shown that for non-vanishing tailwater depths,
continuous solutions for the velocity and height of the flowing layer breakdown after
a sufficient period and develop an interior bore, the location and time of inception of
which are calculated directly from quasi-analytical solutions.

Key words: geophysical and geological flows, hydraulics, shallow water flows, waves/free-
surface flows

1. Introduction
The instantaneous removal of a dam that confines a reservoir of fluid generates an

unsteady and spatially evolving motion as the fluid gravitationally slumps downstream.
This dam-break flow has many direct engineering applications (e.g. Valiani, Caleffi &
Zanni 2002) and has been studied for many years. Ritter (1892) derived an analytical
solution for the dam-break flow of an infinite volume of fluid over a dry bed with
no resistance, and this was extended by Stoker (1957) to flow over a wet horizontal
plane from an unbounded reservoir. More recently, the complete analytical solution for
the inviscid collapse of a bounded reservoir over a dry bed was presented by Hogg
(2006). In this study we develop the analytical solution for a dam-break flow of a
finite reservoir into a tailwater, defined here as the layer of quiescent fluid ahead of the
gravitationally driven collapse of fluid, and we show that the presence of the tailwater
introduces a number of interesting differences to the ensuing motion.

The failure of dams and the resulting flows can cause substantial damage to property
and loss of life; recent disasters include the Big Bay Dam, Mississippi, USA in
March 2004 (Yochum, Goertz & Jones 2008), the Qixianhu Dam, Yunnan, China
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in July 2005 (He, Wang & Huang 2008) and the Kolontár dam failure, Hungary in
October 2010 (Enserink 2010). Predictions for dam-break flows are typically found
using numerical simulations (Shigematsu, Liu & Oda 2004), however computational
models can often struggle to resolve the front of the motion due to steep gradients
and diminishing heights resulting in numerical instabilities or significant errors. Thus,
obtaining complete analytical solutions, as presented here, is important for verification
of these models, particularly those that employ a very shallow tailwater. More
generally, new numerical schemes are often tested with dam-break simulations (e.g.
Macchione & Morelli 2003) due to the aforementioned difficulties that can arise at the
front of the motion and to the availability of analytical solutions (Ritter 1892; Stoker
1957) against which to test them. Here we have found another complete analytical
solution to a dam-break problem that offers a test case for numerical schemes that
integrate the governing equations and that leads to some different phenomena from
what is found in other solutions.

There have been relatively few comprehensive experimental studies of the release of
a finite reservoir of fluid into a tailwater experimentally beyond the time at which the
rear wall begins to influence the motion. Stansby, Chegini & Barnes (1998) performed
experiments to analyse the initial formation of the bore at the front of a dam break
flow with a tailwater and found reasonable agreement to analytical results of Stoker
(1957). However, the length of the channel ahead of the lock was considerably shorter
than the length of the lock and thus only early time analytical solutions for which
the finite length of the lock is immaterial are necessary for comparison. Similarly,
Leal, Ferreira & Cardoso (2006) compared experimental data from a range of sources
for the speed at the front of these flows immediately after the removal of the lock
gate and also found good agreement with Stoker (1957) during this initial phase.
The experiments conducted by Jánosi et al. (2004) were within a channel that was
significantly longer than the length of the lock and were not terminated at the point at
which the finite extent of the lock influenced the motion. Hence, they are suitable for
comparison with the results presented within this study and at the end of this paper
(§ 7) we show reasonable agreement between the new theoretical predictions and these
experimental results.

In this study we model the two-dimensional motion using the nonlinear shallow
water equations on the assumption that resistive and dispersive effects are negligible
(Peregrine 1971). These coupled governing equations are hyperbolic and this permits
the identification of characteristic variables. Subsequent interchange of the dependent
and independent variables (the hodograph transformation) then renders the governing
equations linear and this permits more readily the construction of the flow field
from the initial conditions. This technique has been used by Carrier & Greenspan
(1957) and Carrier, Wu & Yeh (2003) to study the run-up of nonlinear waves on a
beach, by Kerswell (2005) to analyse the frictional collapse of a granular column,
by Dressler (1958) and Ancey et al. (2008) to capture the gravitational slumping
of inviscid fluid on a sloping boundary and by Pritchard, Guard & Baldock (2008),
Antuono & Hogg (2009) and Hogg, Baldock & Pritchard (2010) to reveal aspects of
the dynamics of swash and beach overtopping. However perhaps the closest study to
this one is that of Hogg (2006) in which a dam-break flow of finite extent is modelled
as it gravitationally slumps into an initially dry domain. The general methodology
that underlies all of these studies is to exploit the characteristic structure of the
governing equations and in particular to use the hodograph transformation to assist
in constructing the solutions in regions where both characteristics vary. This relies
upon an invertible relationship between dependent and independent variables and the
absence of discontinuities in the solutions. Of course the nonlinear shallow water
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equations may form discontinuous solutions (‘bores’), see Stoker (1957) for example,
and this requires a more careful application of the hodograph techniques (Hogg 2006;
Antuono & Hogg 2009).

Part of our motivation for employing these quasi-analytical techniques is that the
flow solutions that arise exhibit a rich structure that may be difficult to elucidate
directly from purely numerical integration of the governing equations. Here we
identify three novel dynamical features that arise due to the presence of the tailwater
and which do not occur from dam-break slumps into an initially dry domain. First
we find that the front of the flow, here defined as the foremost downstream location
at which the fluid is in motion, initially moves with constant speed (cf. Stoker 1957)
for some period but then decelerates. Next we establish that after a sufficient time
following release and for flows with tailwater depths in excess of a determined value,
there is a region of motionless fluid adjacent to the rear wall with depths less than
the tailwater. This leads to an evolving region of backwards flow close to the back
wall, while the foremost regions of the motion continue to flow forwards. Finally we
determine that for all tailwater depths the motion develops an interior bore at some
late time following release.

The nonlinear shallow water equations employed in this study neglect dispersive
effects. Peregrine (1966) argued that dispersive terms leading to the formation of an
undular bore are significant when the difference between the depth of fluid within the
dam and within the tailwater is sufficiently small. This is supported by experimental
evidence, performed first by Favre (1935) and more recently by Treske (1994) and
Soares Frazao & Zech (2002), where it was found that for the release of fluid from
behind a lockgate of height h0 into an initially stationary reservoir of height h1 an
undular bore is formed when h1 > 0.72h0 and this indicates that dispersive effects
are non-negligible. Despite this, shock conditions that conserve mass and momentum
across a discontinuous jump in the fluid depth can be employed to link the conditions
at the rear to those at the front of this dispersive region (Whitham 1974). Therefore,
the features identified by the non-dispersive shallow water equations may still be
found if the dispersive region is sufficiently small relative to the streamwise length
scale of the rest of the flow. In what follows, most of the analysis and all of the
transitions between different phenomena occur for h1 < 0.72h0 and thus we anticipate
that dispersive effects do not play a significant role in the dynamics that we describe.

Our paper is structured as follows: first we introduce the model, identify the sole
dimensionless parameter that measures the depth of the tailwater relative to the initial
depth of the reservoir and we present the hodograph transformation (§ 2). We then
exploit the characteristic structure of the underlying equations to develop the initial
flow solutions (§ 3). These reproduce the results of Stoker (1957), but additionally
show the initial effects of the bounded reservoir. In § 4 we calculate how the front is
decelerated, an effect that is reliant upon the effects of the no flow condition at the
rear wall of the reservoir influencing the motion. This deceleration then subsequently
affects the internal velocity and height fields. We show in § 5 that for some tailwater
depths there emerges a motionless region adjacent to the rear wall and thereafter there
may be a region of negative velocity. Finally, we demonstrate that after a sufficiently
long period of time that depends upon the tailwater depth that all of the flows develop
an internal shock (§ 6). Finally we summarize the results, draw some conclusions and
compare our theoretical predictions with experimental observations (§ 7). There is also
an Appendix in which we give a lengthy algebraic expression that determines when
the flows develop an internal shock for some values of the tailwater.
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FIGURE 1. Initial configuration of the dam and tailwater at t̃ = 0 and a typical height profile
at some time after release for t̃ > 0. x̃s(t̃) denotes the position of the forward propagating
shock and marks the front of the moving fluid.

2. Formulation

The initial configuration of this problem is a layer of fluid of height h̃0 between an
impermeable wall at x̃ = 0 and a lockgate at x̃ = x̃0, and a semi-infinite layer of fluid
of height h̃1 in the region x̃> x̃0 with h̃0 > h̃1 (see figure 1). Initially, all fluid is at rest
before the instantaneous removal of the lockgate at t̃ = 0. Thereafter, the fluid flows
predominantly horizontally over the underlying boundary; the front of the motion is at
x̃= x̃s(t̃) and fluid ahead of this point remains at rest.

We model the fluid motion by the nonlinear shallow water equations on the
assumption that the flow is predominantly horizontal and the pressure hydrostatic,
(see Peregrine 1971). Denoting the height and horizontal velocity of the flow by h̃ and
ũ, respectively, and the gravitational acceleration by g, the shallow water equations are
given by

∂ h̃

∂ t̃
+ ∂(ũh̃)

∂ x̃
= 0 and

∂ ũ

∂ t̃
+ ũ

∂ ũ

∂ x̃
+ g

∂ h̃

∂ x̃
= 0. (2.1)

Non-dimensionalizing using

h= h̃

h̃0

, x= x̃

x̃0
, u= ũ√

gh̃0

, t = t̃
√

gh̃0

x̃0
, (2.2)

we obtain

∂h

∂t
+ ∂(uh)

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ ∂h

∂x
= 0, (2.3)

and henceforth h1 ≡ h̃1/h̃0 denotes the dimensionless depth of the tailwater. At the
front of the motion, in the region propagating away from the wall, we apply general
shock conditions that conserve mass and momentum across the forward propagating
shock. Denoting the dimensionless speed of the front by s = ẋs, we generate the
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following conditions

(u− s)h=−sh1 (2.4)
(u− s)2h+ 1

2 h2 = s2h1 + 1
2 h2

1. (2.5)

To close this system, at the rear of the dam we apply a no flow condition

u= 0 on x= 0. (2.6)

The non-dimensionalized shallow water wave equations can now be put into
characteristic form and we find that the characteristic variables are

α = u+ 2c, β = u− 2c, (2.7)

with c=√h, and that

dα
dt
= 0 on

dx

dt
= u+ c (2.8)

dβ
dt
= 0 on

dx

dt
= u− c. (2.9)

Henceforth, we shall use hodograph variables where the hodograph transformation is
made by setting x and t to each be functions of α and β. The characteristic form of
the governing equations becomes

∂x

∂β
= 1

4
(3α + β) ∂t

∂β
on α = constant (2.10)

∂x

∂α
= 1

4
(α + 3β)

∂t

∂α
on β = constant. (2.11)

This transformation remains invertible when the Jacobian, J, is finite and non-zero,
where J is given by

J = ∂x

∂α

∂t

∂β
− ∂x

∂β

∂t

∂α
= (β − α)

2
∂t

∂α

∂t

∂β
=−2c

∂t

∂α

∂t

∂β
. (2.12)

The characteristic equations (2.10) and (2.11) can be combined to form

∂2t

∂α∂β
= 3

2(α − β)
(
∂t

∂α
− ∂t

∂β

)
. (2.13)

Thus, the hodograph transformation has enabled us to form a single linear equation
from the nonlinear shallow water wave equations. At the rear of the dam we also have
a no flow condition

x= 0 on α + β = 0, (2.14)

which we apply by treating the problem as symmetric about the line α + β = 0 in the
hodograph plane. This condition of symmetry can be alternatively viewed as assuming
that there is a virtual dam break in the domain x < 0. This virtual dam break has an
initial condition that is the reflection of our problem of interest in the plane x= 0. Our
governing equations then dictate that the flow will be symmetric about a coordinate
frame centred at x = 0 and therefore we naturally have that u = 0 at x = 0 without
strictly enforcing this condition.
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From Garabedian (1986), using the linearity of the governing (2.13), we can find the
solution within a region D in terms of boundary integrals∫

∂D
f · dx= 0, (2.15)

where f (a, b;α, β) = −V â + Ub̂. The integration is around the curve ∂D in the
hodograph plane such that dx= daâ+ dbb̂ and

U =− 3tB

2(a− b)
+ B

2
∂t

∂b
− t

2
∂B

∂b
(2.16)

V = 3tB

2(a− b)
+ B

2
∂t

∂a
− t

2
∂B

∂a
. (2.17)

In the above expressions, B(a, b;α, β) is the Riemann function satisfying the adjoint
partial differential equation to (2.13) given by

∂2B

∂a∂b
+ 3

2(a− b)

(
∂B

∂a
− ∂B

∂b

)
− 3B

(a− b)2
= 0, (2.18)

subject to the boundary conditions

∂B

∂b
=− 3B

2(a− b)
on a= α, ∂B

∂a
= 3B

2(a− b)
on b= β, (2.19)

and B(a, b; a, b)= 1. The Riemann function is given by Garabedian (1986):

B(a, b;α, β)= (a− b)3

(a− β)3/2(α − b)3/2
F

[
3
2
,

3
2
; 1; (a− α)(β − b)

(a− β)(α − b)

]
(2.20)

where F denotes a hypergeometric function, which when evaluated numerically can be
expressed in terms of elliptic integrals.

3. Initial motion: geometry of the characteristic plane
We consider the fluid motion within the characteristic (x, t)-plane and define three

types of region, a uniform region, within which α and β are constant; a simple region,
within which either α or β is constant; and a complex region, within which α and β
vary.

Initially the motion is identical to the instantaneous collapse of a dam of infinite
extent into a tailwater of depth h1 centred at x = 1 (Stoker 1957). When the fluid
is released there is a rarefaction fan of β-characteristics centred at x = 1 that travels
toward the rear of the dam in which α = 2. This is a simple wave region that we
denote by S1. The lead rearward motion is when β = −2, due to u = 0 and c = 1,
and is given by the path x = 1 − t (see figure 2). Hence, the rear of the dam
first has an influence on the motion when t = 1. Within this simple wave region,
−2 6 β 6 βm, where βm is the maximum value of β which is found later. Using (2.11),
we find that this region is composed of β-characteristics that are straight lines and are
given by

x= 1+ 1
4(2+ 3β)t. (3.1)

Emanating from (x, t) = (1, 0), next to S1, we have a uniform wave region U1 in
which α = 2 and β = βm (see figure 2). This is bounded on the right by the straight
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FIGURE 2. The geometry of the characteristic plane a short time after the release of fluid for
a tailwater of dimensionless height 0.1, showing the uniform regions U1 and U2, the single
wave regions S1 and S2 and the complex wave regions C1 and C2.

line x = 1 + st, where s denotes the velocity of the front of the spreading flow and at
which there is a shock where the height jumps discontinuously to the tailwater depth.
The variables s and βm are determined by solving the shock conditions (2.5) after
having substituted for u and h in terms of α and β and using that α = 2 and β = βm.
Hence, we solve the coupled equations

1
16(

1
2(2+ βm)− s)(2− βm)

2 =−sh1 (3.2)
1
2(

1
16(2− βm)

2 + h1)=−( 1
2(2+ βm)− s)s (3.3)

with the constraints that s> 0 and s > βm, which come from that the shock propagates
forwards and the shock cannot travel slower than the fluid behind it. We see that s and
βm vary only with h1, and the characteristic plane which emerges depends strongly on
this height of the tailwater. Leal et al. (2006) compared this relationship between s and
h1 with experimental data from a range of sources and we reproduce this analytical
relationship in figure 3 along with the dependence of βm on h1. Note that the speed
of the shock has a minimum of s = 0.93682 at h1 = 0.336. The value of βm decreases
monotonically as h1 increases and, hence, the expansion fan toward the rear of the
dam, the simple region S1, becomes narrower as h1 increases. In the limit h1 → 1,
s→ 1 and we recover the linear wave speed (s = 1). As h1 decreases to zero, s
and βm both tend to 2 and so the uniform region U1 next to the expansion fan S1

becomes narrower, ultimately vanishing in the limit h1→ 0. Thus, in the limit h1→ 0
we recover the results of Hogg (2006) where it was shown that for a finite dam-break
release onto a dry bed, the simple region S1 is unbounded and uniform region U1

vanishes.
Once the lead rearward β-characteristic meets the rear of the lock it is reflected

and becomes a forward propagating α-characteristic with α = 2 emanating from x = 0
at t = 1, which we derive parametrically as xb(β) and tb(β). Along this curve we
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FIGURE 3. The shock speed and the characteristic value βm as functions of the dimensionless
tailwater depth, h1. The dashed lines indicate asymptotic expansions in the regimes h1 � 1
and |1− h1| � 1.

find that

∂xb

∂β
= 1

4
(6+ β)∂tb

∂β
(3.4)

and after Hogg (2006) we have that

tb = 8
(2− β)3/2 and xb = 1+ 2(2+ 3β)

(2− β)3/2 . (3.5)

These expressions are valid for −2 6 β 6 βm.
The lead reflected characteristic (xb(β), tb(β)) forms a boundary to the simple region

S1 until it is met by the maximum β-characteristic in S1, upon which β = βm.
This β-characteristic then leaves the expansion fan and forms the boundary of the
complex region C1 that is made up of incoming β-characteristics from S1 and outgoing
α-characteristics that have been reflected from the wall. The boundary of this complex
region, along which β = βm and α varies, is denoted parametrically by x1(α) and t1(α)

(see figure 2). We find that

t1(2)= 8
(2− βm)3/2

and x1(2)= 1+ 2(2+ 3βm)

(2− βm)3/2
. (3.6)

Thus, in the limit of vanishing tailwater depth (h1 → 0), for which βm → 2,
t1(2), x1(2)→∞, hence the lead reflected characteristic from the rear of the dam
does not intersect the moving shock at the front of the motion and S1 is unbounded
(cf. Hogg 2006). This is significant as it implies that for this case the front of the flow
is not affected by the presence of the rear wall of the lock.
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To find an expression for the characteristics within the first complex region, C1, we
employ integration in the hodograph plane about a rectangle with vertices (2,−2),
(2, β), (α, β) and (α,−2). For this domain (2.15) becomes

0=
∫ β

−2
U(2, b;α, β) db−

∫ α

2
V(a, β;α, β) da+

∫ −2

β

U(α, b;α, β) db

−
∫ 2

α

V(a,−2;α, β) da. (3.7)

We proceed by first integrating by parts the terms containing a derivative of t in the
second and third integrals and applying the boundary conditions. Second we integrate
by parts the terms containing a derivative of B in the first and last integrals and apply
that on α = −2, t = 8/(2 − β)3/2 and by symmetry in the hodograph plane on β = 2,
t = 8/(2 + α)3/2. Collecting the remaining terms, applying B(a, b; a, b) = 1 and using
that t(2,−2)= 1 we find

t = B(2,−2;α, β). (3.8)

We can now also obtain the boundary of the complex region (x1(α), t1(α)) by setting
β = βm, hence we have that t1(α) = B(2,−2;α, βm) and by integrating along this
characteristic we find

x1(α)= x1(2)+
∫ α

2

1
4
(α + 3βm)

∂t1

∂α
dα. (3.9)

Hogg (2006) showed this first complex region will only be bounded if βm < 0. This
condition is satisfied here provided that h1 > 0.0275. Hence, dam breaks with a
tailwater height that is sufficiently small (h1 < 0.0275) have a complex region next to
rear wall that exists for all times after t = 1.

We find the trajectory of the lead reflected characteristic (xb, tb) as it crosses the
uniform region U1 to meet the shock (see figure 2). In doing so, it forms the
boundary between U1 and a second simple region S2. This simple region S2 contains
α-characteristics from C1 with −βm 6 α 6 2 and constant β-characteristics from U1

with β = βm. Along the boundary (xb, tb), α = 2 and β = βm, integrating along this
characteristic and using that it came from the point (x1(2), t1(2)) we have

xb = 1− 4
(2− βm)1/2

+ 6+ βm

4
tb (3.10)

and, hence, it intersects the shock at

t2(2)= 16
(2− βm)1/2(6+ βm − 4s)

(3.11)

x2(2)= 1+ 16s

(2− βm)1/2(6+ βm − 4s)
. (3.12)

Here t2(α) and x2(α) define the β-characteristic formed from the intersection of the
shock and the lead reflected characteristic, which forms a boundary between S2 and
a second complex region C2 (see figure 2). Note that as above we find that as
h1→ 0, βm→ 2 and hence x2(2), t2(2)→∞ and so reflected characteristics do not
intersect the shock as in Hogg (2006). Also, as h1→ 1, βm→−2 and s→ 1 hence
x2(2), t2(2)→∞ and again reflected characteristics do not intersect the shock. In
this latter limit we are recover the linear wave speed for both the shock and the
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reflected characteristics and hence they never meet. We note also that for t < t2(2), the
propagation of the shock at the front of the motion is given by Stoker (1957), but
for t > t2(2) the motion of the shock differs. Importantly we anticipate that the speed
slows, and this is calculated explicitly in the following analysis.

The asymptotic behaviour of t2(2) and x2(2) in the limits h1→ 0 and h1→ 1 can
be found from ascertaining the asymptotic behaviour of βm and s in these limits.
Performing an expansion of (3.2) and (3.3) in h1 for h1� 1, we find that

βm = 2− 211/4h1/4
1 + o(h1/4

1 ) and s= 2− 27/4h1/4
1 + o(h1/4) for h1� 1. (3.13)

Inserting these expressions into (3.11) and (3.12) we find that

t2(2)= 2−1/8h−3/8
1 + o(h−3/8

1 ) (3.14a)

and

x2(2)= 1+ 27/8h−3/8
1 + o(h−3/8

1 ) for h1� 1. (3.14b)

Using the same procedure for 1− h1� 1, we find that

βm =−2+ (1− h1)+ o((1− h1)) (3.15a)

and

s= 1− 1
8(1− h1)+ o((1− h1)) for 1− h1� 1, (3.15b)

and hence

t2(2)= x2(2)= 16
3(1− h1)

+ o((1− h)−1) for 1− h1� 1. (3.16)

Figure 4 shows the variation of the time and position, t2(2) and x2(2), respectively,
with the tailwater depth. We reiterate that these are the times and positions when the
speed of the front first deviates from the infinite lock result of Stoker (1957). We note
that there is a local minimum in each of the figures with the minimum time that the
shock is intersected being t2(2) = 6.6470 when h1 = 0.105 and the minimum position
that the shock is intersected being x2(2) = 7.4833 when h1 = 0.141. The asymptotic
relations found above are plotted in figure 4 as dashed lines.

We now proceed to find the β-characteristic (x2(α), t2(α)) that forms the boundary
between S2 and C2, which emanates from the point at which the shock is met by the
lead reflected characteristic. On (x2(α), t2(α)) β = βm and hence it satisfies

∂x

∂α
= 1

4
(α + 3βm)

∂t

∂α
(3.17)

and the α-characteristics that meet it satisfy

x2 = x1 + 1
4(3α + βm)(t2 − t1). (3.18)

Substituting for x2 in (3.17), we have

∂x1

∂α
+ 3

4
(t2 − t1)+ 1

4
(3α + βm)

(
∂t2

∂α
− ∂t1

∂α

)
= 1

4
(α + 3βm)

∂t2

∂α
. (3.19)

Given that x1 is a β-characteristic with β = βm, we can substitute for ∂x1/∂α in terms
of ∂t1/∂α to give

1
4
(α + 3βm)

∂t1

∂α
+ 3

4
(t2 − t1)+ 1

4
(3α + βm)

(
∂t2

∂α
− ∂t1

∂α

)
= 1

4
(α + 3βm)

∂t2

∂α
, (3.20)
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FIGURE 4. The time, t2(2), and position, x2(2), of the intersection between the shock and
the lead reflected characteristic as a function of the dimensionless tailwater depth h1. After
these times and positions the speed of the frontal shock is diminished. Note that a truncated
horizontal scale is employed due to divergence as h1 → 1, the dashed lines indicate the
asymptotic expansions found above in the regimes h1� 1 and |1 − h1| � 1. The dotted lines
indicate the minimum values of x2(2) and t2(2) and the values of h1 at which they occur.

and after rearranging this gives

t2 − t1 =−2
3
(α − βm)

(
∂t2

∂α
− ∂t1

∂α

)
, (3.21)

which can be integrated subject to the conditions of α = 2, (3.6) and (3.11), to yield

t2(α)= t1(α)+ 8(4s− 2− 3βm)

(6+ βm − 4s)(α − βm)3/2
. (3.22)

Inserting this into (3.18) gives

x2(α)= x1(α)+ 2(3α + βm)(4s− 2− 3βm)

(α − βm)3/2(6+ βm − 4s)
. (3.23)

We have identified the geometry of the characteristic plane up to the point at which
reflected characteristics from the rear wall meet the shock. The front speed is given by
Stoker (1957) as a result of solving shock conditions at the front and the motion at the
rear wall immediately after rearward propagating characteristics meet it are given by
Hogg (2006). We have identified five regions of the motion, a uniform region U1, two
simple regions S1 and S2 and two complex regions C1 and C2. The second complex
region C2 is formed at the front of the motion after the shock has been met by
reflected characteristics from the rear wall. This region is of importance in determining
the future motion as characteristics are reflected back from the shock, altering the front
speed and influencing the motion of fluid behind the shock.
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FIGURE 5. The path of the hodograph plane integrals used to solve the time problem in the
second complex region for a tailwater of dimensionless height h1 = 0.1, α = 1 and βs =−0.6.

4. The deceleration of the front: the second complex region C2

We now calculate the time t(α, β) in the second complex region C2. This complex
region is caused by the reflected characteristics from the rear of the dam meeting the
shock at the front of the flow, the speed of which is now less than that found earlier
from Stoker (1957). In this region we find that −βm 6 α 6 2 and β is decreasing
slowly from the initial value of βm. The reflected β-characteristics leaving the shock
are reflections of the incoming α-characteristics, hence there must be a dependence
of β upon α along the shock (see figure 2). Denoting the shock by the hodograph
variables αs, βs and treating βs ≡ βs(αs) we employ the boundary integral method used
in the first complex region C1 to find that

0=
∫ βm

βs

U(α, b;α, β) db−
∫ 2

α

V(a, βm;α, β) da

+
∫ αs

2

(
U(a, b(a);α, β)db(a)

da
− V(a, b(a);α, β)

)
da

−
∫ α

αs

V(a, βs;α, β) da. (4.1)

The evaluation of (4.1) entails four line segments, as shown in figure 5. The first
is along an α-characteristic from the point at which we want to determine time,
(α, βs), to the boundary of the second complex region formed by a β-characteristic,
the point (α, βm). The second integral is along the β-characteristic with β = βm, given
parametrically by (x2(α), t2(α)), from the point where it is met by the α-characteristic,
(α, βm), to its origin at the formation of the new shock trajectory, the point (2, βm).
The third integral is along the shock trajectory from (2, βm) until we reach the point
at which the desired value of βs is reached, (αs, βs). The final integral is along the
β-characteristic from the shock at (αs, βs) until it meets the point (α, βs).
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Substituting in the definitions for U and V employing integration by parts and the
boundary conditions of the Riemann function given by (2.19) we find that

t(α, βs)= 1
2

t(2, βm)B(2, βm;α, βs)+ 1
2

t(αs, βs)B(αs, βs;α, βs)

−
∫ 2

α

B(a, βm;α, βs)

(
3t2

2(a− b)
+ ∂t2

∂a

)
da+

∫ αs

2

(
− 3tsB

2(a− b(a))
(1+ b′)

)
+ B

2

(
b′
∂ts

∂b
− ∂ts

∂a

)
+ ts

2

(
∂B

∂a
− b′

∂B

∂b

)
da (4.2)

where in second integral ts ≡ t(a, b(a)), B≡ B(a, b(a);α, βs) and b′ is the derivative of
b(a) with respect to a.

The second integral in (4.2) entails the time field along the curve (αs, βs) as well as
the derivatives tangential and perpendicular to the curve. The time ts(αs, βs) must be
evaluated before the problem can be further progressed and so it is advantageous to
remove terms involving its derivatives by integration by parts. To this end, following
algebraic manipulations that are similar to those used by Antuono, Hogg & Brocchini
(2009), we note that on the shock

dxs

da
= s

dts

da
. (4.3)

However, from the characteristic (2.10) and (2.11) we find that

dxs

da
= a+ b

2
dts

da
+ a− b

4

(
−∂ts

∂a
+ b′

∂ts

∂b

)
, (4.4)

where b= b(a), and thus rearranging gives the desired expression

−∂ts

∂a
+ b′

∂ts

∂b
= 2

a− b
(2s− (a+ b))

dts

da
, (4.5)

and hence we can substitute this into (4.2) and use integration by parts to remove the
derivative of ts.

The integral equation (4.2) for t(α, βs) includes the shock speed s(α) and the beta
characteristics βs(α) parameterized as functions of α. They may be evaluated directly
from the shock conditions (2.5) after substituting for u and h in terms of α and β to
give

1
16(

1
2(α + β)− s)(α − β)2 =−sh1 (4.6)

1
2(

1
16(α − β)2 + h1)=−( 1

2(α + β)− s)s. (4.7)

These expressions do not yield explicit forms for β and s. However, in terms of the
rotated hodograph co-ordinates given by σ = α − β and λ= α + β we find that

1
16(

1
2λ− s)σ 2 =−sh1 (4.8)

1
2(

1
16σ

2 + h1)=−( 1
2λ− s)s (4.9)

and hence the shock speed s and λ as functions of σ and h1 are given by

s= σ
√
σ 2 + 16h1

512h1
and λ= 2(σ 2 − 16h1)

σ

√
σ 2 + 16h1

512h1
. (4.10)
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Thus, it is convenient to form the second integral in (4.2) in terms of (λ, σ ) rather
than (α, β); to this end the partial derivatives become

∂

∂α
= ∂

∂σ
+ ∂

∂λ
and

∂

∂β
=− ∂

∂σ
+ ∂

∂λ
(4.11)

and denoting λ′ ≡ dλ/dσ the total derivatives become

β ′ = λ
′ − 1
λ′ + 1

dB

dα
= dB

dσ
2

λ′ + 1
ds

dα
= ds

dσ
2

λ′ + 1
. (4.12)

Making the change of variables in the second integral of (4.2) and rearranging gives
our final result

t(α, βs)= t2(2)B(2, βm;α, βs)
6+ βm − 4s(2)

2(2− βm)

+ t(αs, βs)B(αs, βs;α, βs)
4s(αs)− αs − 3βs

2(αs − βs)

+
∫ α

2
B(a, βm;α, βs)

(
3t2

2(a− βm)
+ ∂t2

∂a

)
da

+
∫ σs

2−βm

t(σ̃ , λ̃)

[
B

(
2s̃− λ̃
σ̃ 2
− 4s̃′ + λ̃′

2σ̃

)
+ ∂B

∂σ̃

(
λ̃′

2
− 2s̃− λ̃

σ̃

)

+ ∂B

∂λ̃

(
1
2
− (2s̃− λ̃)λ̃′

σ̃

)]
dσ̃, (4.13)

where in the final integral B ≡ B((σ̃ + λ̃)/2, (λ̃ − σ̃ )/2;α, βs) and similarly for its
derivatives, and s′ ≡ ds/dσ . Before this expression can be used to find the solution
throughout the entire complex region C2, we must first find the time evolution of the
shock curve ts(σ ). To this end we set α = αs in (4.13) and changing variables in the
first three terms to put everything in terms of σ gives

t(σ, λ)= 2σ
σ + 2λ− 4s

(
t2(2)B

(
2, βm; σ + λ2

,
λ− σ

2

)
6+ βm − 4s(2)

2(2− βm)

+
∫ (σ+λ)/2

2
B

(
a, βm; σ + λ2

,
λ− σ

2

)(
3t2

2(a− βm)
+ ∂t2

∂a

)
da

+
∫ σs

2−βm

t(σ̃ , λ̃)

[
B

(
2s̃− λ̃
σ̃ 2
− 4s̃′ + λ̃′

2σ̃

)
+ ∂B

∂σ̃

(
λ̃′

2
− 2s̃− λ̃

σ̃

)

+ ∂B

∂λ̃

(
1
2
− (2s̃− λ̃)λ̃′

σ̃

)]
dσ̃

)
, (4.14)

where in the final integral

B≡ B

(
σ̃ + λ̃

2
,
λ̃− σ̃

2
; σ + λ

2
,
λ− σ

2

)
(4.15)

and similarly for its derivatives. This is a Volterra equation of the second kind for
ts(σ ) and we employ numerical integration and an iterative procedure to find the
solution as in Arfken & Weber (1995). This method converges rapidly to the solution,
with typically five iterations needed for an accuracy of 10−6. We find that the shock
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FIGURE 6. The shock speed as a function of time for tailwaters of dimensionless height 0.02,
0.1 and 0.5 as indicated. The dashed lines mark the time at which the shock is met by the lead
reflected characteristic and thereafter the speed is progressively reduced.

deviates from its initial path and we see from figure 6 that the speed of the shock s
varies continuously after the shock is met by reflected characteristics, supporting this
formation of a second complex region rather than another expansion fan.

To find the spatial evolution of the shock, xs, once it has been met by the first
reflected characteristic, we integrate by parts the following expression

dxs

dσ
= s(σ )

dts

dσ
(4.16)

to give

xs(σ )= x2(2− βm)+ [s(σ )ts(σ )]σ2−βm
−
∫ σ

2−βm

ts
ds

dσ
dσ (4.17)

which we evaluate numerically using the solutions for ts found from (4.14).
Using the condition that energy must be dissipated across the shock, we require that

the shock is always forward propagating and that u > 0 at the shock. Therefore,
λ = 2u > 0 and thus σ > 4

√
h1 and αs > 2

√
h1 and we have that the reflected

characteristics upon which −βm 6 α 6 2
√

h1 never intersect the front. Hence, the
second complex region is unbounded and persists for all times after the first reflected
characteristic has met the forward propagating shock.

5. The interior velocity and height fields: completing the characteristic plane
5.1. Unbounded first complex region (h1 6 0.0275)

In § 3 we found for h1 6 0.0275 the first complex region C1 is unbounded and persists
for all times. Therefore there is also no boundary to the second simple region S2

formed by the last rearward propagating characteristic from the lock release reflecting
from the rear wall and thus it is also unbounded. From § 4 we see that the second
complex region will always persist for all times and therefore the characteristic plane
for h1 6 0.0275 is complete. Figure 7 shows the characteristic plane for h1 = 0.02. We
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FIGURE 7. Characteristic plane for a tailwater of dimensionless height 0.02.

can clearly see that after the shock is met by reflected characteristics we have three
regions of motion, a complex region C1 next to the rear wall, a complex region C2

behind the shock and a simple region S2 between them.

5.2. Bounded first complex region (h1 > 0.0275)

Having completed the geometry of the characteristic plane for h1 6 0.0275 in § 5.1 we
proceed by considering the case for h1 > 0.0275 in which the first complex region is
bounded. The last reflected characteristic from the rear wall forms a boundary between
the second simple region, S2, and a second uniform region, U2, see figures 2 and 8.
Within this second uniform region α = −βm and β = βm, hence this is a static region
in which u = 0 and h = β2

m/4. Upon the boundary between S2 and U2, α = −βm and
β = βm, and it emanates from the point (0,B(2,−2,−βm, βm)), hence using (2.10) and
denoting the line by (x3, t3) we have

x3 = βm

2
(B(2,−2,−βm, βm)− t3). (5.1)

This characteristic meets (x2, t2) at the point (x2(−βm), t2(−βm)), and we can calculate
the trajectory of (x2, t2) after this intersection. Upon being met by this characteristic,
(x2, t2) becomes a straight line completing the boundary of the second uniform region
U2, with α =−βm and β = βm along it. Hence, using (2.11) we have that

x2 = x2(−βm)+ βm

2
(t2 − t2(−βm)). (5.2)

After (x3, t3) has met (x2, t2) it continues as an α-characteristic forming a boundary
between the second complex region C2 and a third simple region S3, see figure 8.
To find the values of t3, we substitute α = −βm into (4.13) and the numerically
computed values found for ts. Once we have the time evolution of this α-characteristic,
we can find the spatial evolution, x3, by integrating the characteristic equation (2.10)
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FIGURE 8. Characteristic plane for a tailwater of dimensionless height 0.5.

with α =−βm. Using integration by parts the formula for x3 in this region is

x3 = x2(−βm)+
[

1
4
(−3βm + β)t(−βm, β)

]β
βm

+ 1
4

∫ β

βm

t(−βm, β) dβ. (5.3)

This can be evaluated numerically using the values found for t(−βm, β).
The characteristics reflected from the shock at the front of the motion become

β-characteristics that travel back toward the rear wall. The third simple region S3 is
made up entirely of these characteristics and within this region we find that α = −βm

and −2
√

h1 6 β 6 βm. Remarkably, as β 6 −α, the velocity in this entire region is
negative.

The lead reflected characteristic from the front, (x2, t2), meets the rear wall at the
point (x, t) = (0, t2(−βm) − (2/βm)x2(−βm)). Upon meeting the rear wall it becomes
an α-characteristic and forms a boundary between S3 and a third complex region
C3, see figure 8. This third complex region is composed of β-characteristics that are
travelling rearwards from the shock and α-characteristics that are formed from the
reflected β-characteristics. We denote the boundary between S3 and C3 by (x4, t4) and
the trajectory of this boundary can be calculated in an identical manner to the segment
of (x2, t2) that forms a boundary between C2 and S2, although in this case x4 and t4 are
parameterized in terms of β and not α. Using that on the boundary (x4, t4) we have

∂x4

∂β
= 1

4
(−3βm + β)∂t4

∂β
(5.4)

and the boundary is met by incoming β-characteristics upon which

x4 = x3 + 1
4(−βm + 3β)(t4 − t3) (5.5)

we can substitute (5.5) into (5.4) and integrate to find t4. To evaluate the integration
constant we use that t4(βm) − t3(βm) = −(2/βm)x2(−βm). Once we have found t4 we
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FIGURE 9. An example of the path of the integrals in the hodograph plane used to determine
the time field within the third complex region C3 for h1 = 0.1, βm =−0.5177, α = 0.5582 and
β =−0.5748.

insert this into (5.5) to find x4. We find that

t4(β)= t3(β)− 2x2(−βm)

βm

(
2βm

β + βm

)3/2

(5.6)

x4(β)= x3(β)− (3β − βm)
x2(−βm)

2βm

(
2βm

β + βm

)3/2

. (5.7)

From (5.6) and (5.7), we see that the boundary (x4, t4) does not meet the boundary
(x3, t3) as x2(−βm) > 0 and we are in the regime of βm < 0. Therefore, S3 is
unbounded and we have one final region of motion to determine, a third complex
region C3. This region is composed of incoming β-characteristics from S3 and α-
characteristics formed by the reflected β-characteristics from the rear wall. To find
the time evolution in this region we employ integration in the hodograph plane in an
identical manner to that used to find the time evolution in the first complex region
C1, where here we integrate around the rectangle with vertices (−βm,βm), (−βm, β),
(α, β) and (α, βm), see figure 9. Note that the curve along which α = −βm is given
parametrically by (x4(β), t4(β)). For this domain (2.15) becomes

0=
∫ β

βm

U(−βm, b;α, β) db−
∫ α

−βm

V(a, β;α, β) da+
∫ −βm

β

U(α, b;α, β) db

−
∫ −βm

α

V(a, βm;α, β) da. (5.8)

Using integration by parts and applying the boundary conditions in an identical
manner to that used for C1 we find that

t(α, β)= t(−βm, β)B(−βm, β;α, β)− t(−βm, βm)B(−βm, βm;α, β)
+ t(α, βm)B(α, βm;α, β)



178 A. J. N. Goater and A. J. Hogg

2 4 6 8 10 12 14 16
x

5

10

15

20

25

30

35

40

45

50

55

t

C3

C1

(x4, t4)

S3

(x2, t2)

U2

S2

C2

(x3, t3)

0

FIGURE 10. Characteristic plane for a tailwater of dimensionless height 0.1.

−
∫ β

βm

t4(b)

(
∂B(−βm, b;α, β)

∂b
+ 3B(−βm, b;α, β)

2(−βm − b)

)
db

−
∫ −βm

α

t4(−a)

(
3B(a, βm;α, β)

2(a− βm)
− ∂B(a, βm;α, β)

∂a

)
da (5.9)

where t4 is defined in (5.6). Note that in the second integral t4(−a) comes from
imposing the no flow condition at x = 0 by assuming back-to-back dam breaks in an
identical manner to that used in the first complex region. The spatial evolution of fluid
within C3 can now be readily found by integrating along a desired β-characteristic and
using values found above for the temporal evolution. As the third simple region S3 is
unbounded, β-characteristics from it enter into C3 for all times and thus C3 is also
unbounded.

We have now completed the geometry of the characteristic plane for all times.
Figure 8 shows the characteristic plane computed for a tailwater of height h1 = 0.5.
One can identify the various characteristic regions mentioned above, and the slow
divergence of the shock from its initial path upon being met by the reflected
characteristics from the rear wall. We also construct the characteristic plane for the
case where h1 = 0.1 in figure 10. We see that the smaller height of the tailwater has
made βm larger and opened out the first simple and the complex regions. The shock is
met by the reflected characteristics at an earlier time.

Once the characteristic structure is completely determined, the height and velocity
profiles of the motion can be calculated. This is trivial within the uniform regions, but
within the simple and complex regions this entails integration along characteristics to
find the position at a given time. Figure 11 shows the height profiles for a tailwater of
height 0.1. We can see that the shock at the front of the motion, between the moving
fluid and the tailwater, propagates forward with a constant height until the motion
from the rear of the dam catches up with it and subsequently the height decreases.
Also, we find that the uniform region of constant height forms next to the rear wall,
as also shown in figure 10, and within this region h = β2

m/4 < h1 (for h1 = 0.1, we
find βm = −0.5177, thus β2

m/4 = 0.0670). Figure 12 shows the velocity profiles for a
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FIGURE 11. The height, h(x, t), as a function of distance for a tailwater of dimensionless
height 0.1 at t = 0.5, 1.5, 4, 8, 20, 40, 135.96. The dashed line depicts the initial profile at
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FIGURE 12. The velocity, u(x, t), as a function of distance for a tailwater of dimensionless
height 0.1 at t = 0.5, 1.5, 4, 8, 20, 40, 135.96.

tailwater of height 0.1. Similarly to the height profiles, we see that the velocity at the
front decreases once it has been met by the reflected characteristics from the rear of
the dam, which occurs at t = 6.648 for h1 = 0.1. At t = 40 and t = 135.96 we clearly
see regions of negative velocity corresponding to S3 and C3.

6. The formation of an internal shock
For all tailwater heights we find that eventually an internal shock forms. This is due

to the intersection of characteristics and at this point the Jacobian of the hodograph
transformation vanishes. Our solution cannot be extended beyond this point without
explicitly handling the discontinuity (see, for example, Antuono & Hogg 2009). The
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location of the inception of this internal shock varies with the height of the tailwater
and is found to lie on three possible boundaries. For tailwater heights sufficiently
small, h1 6 0.0513, the internal shock will be formed along the boundary between
C2 and S2 due to the intersection of β-characteristics. As the height of the tailwater
increases, the value of α at which the shock forms decreases and hence the location of
the shock travels along this boundary until it leaves the boundary between C2 and S2

and occurs upon the boundary between S3 and U2, again due to the intersection of β-
characteristics. Increasing the height of the tailwater further, for h1 > 0.0588, the shock
forms upon the boundary between C3 and S3 due to α-characteristics intersecting,
where these α-characteristics are reflected β-characteristics from the rear wall.

To find the time at which an internal shock forms on the boundary between C2 and
S2, we are required to find the value of α for which ∂t/∂β|β=βm = 0. The complete
form of ∂t/∂β|β=βm on the boundary between C2 and S2 can be found in the Appendix.
Once the form of ∂t/∂β|β=βm is computed we employ Newton–Raphson root finding to
find the value of α for which ∂t/∂β|β=βm = 0 and then give this value of α, the time
and position of the shock formation are given by (3.22) and (3.23), respectively.

For 0.0513 < h1 < 0.0588 the internal shock forms at the boundary between U2 and
S3. The time of the internal shock formation on this boundary is found by noting that
along β-characteristics within S3

x= x3(β)+ 1
4(−βm + 3β)(t − t3(β)). (6.1)

Differentiating this expression with respect to β and employing the relation that along
α-characteristics within S3

∂x

∂β
= 1

4
(−3βm + β) ∂t

∂β
, (6.2)

and setting β = βm we find that the time, tshock, and position, xshock, of shock formation
along the boundary between U2 and S3 are given by

tshock = t3(βm)+ 4
3
βm
∂t3

∂β

∣∣∣∣
β=βm

(6.3a)

xshock = x3(βm)+ 2
3
β2

m

∂t3

∂β

∣∣∣∣
β=βm

. (6.3b)

For h1 > 0.0588 the internal shock forms upon the boundary (x4, t4) between S3 and
C3. To find the location of the formation of the shock we must find the value of β for
which ∂t/∂α|α=−βm = 0 in the third complex region. Differentiating (5.9) with respect
to α and setting α =−βm gives

∂t

∂α

∣∣∣∣
α=−βm

= t(−βm, β)
3

2(βm + β) + t(−βm, βm)
3(−2βm)

1/2(β − 5βm)

4(−βm − β)5/2

− t(−βm, βm)
3(−2βm)

1/2(β − βm)

2(−βm − β)5/2 + (−2βm)
3/2

(−βm − β)3/2
∂t(α, βm)

∂α

∣∣∣∣
α=−βm

−
∫ β

βm

t4(b)
−6(βm + β)

8(−βm − b)1/2(−βm − β)5/2 db

+ t(−βm, β)

(
3(−2βm)

1/2

2(−βm − β)3/2 +
3(−2βm)

1/2(3βm + β)
4(−βm − β)5/2

)
. (6.4)



Bounded dam-break flows with tailwaters 181

0 0.01 0.02 0.03 0.04 0.051 0.059 0.07 0.08 0.09 0.10

h1

40

60

80
92.2438

120

100.7575

20

40

60

80

100

120

5.3946

140

x s
ho

ck

20

140

t s
ho

ck

0 0.01 0.02 0.03 0.04 0.051 0.059 0.07 0.08 0.09 0.10

FIGURE 13. The time and position of the formation of the internal shock as functions of the
dimensionless tailwater height. The dotted lines indicate the transitions of the location of the
shock between different boundaries in the characteristic plane.

From this expression, we can calculate by numerical root finding the value of β at
which ∂t/∂α|α=−βm = 0 and hence from (5.6) and (5.7) we can find the time and
position of the formation of the internal shock.

Figure 13 shows the time and position of the formation of the internal shock. We
see that as h1 → 0, tshock →∞ and xshock →∞. This is the anticipated behaviour
as we have shown above in the limit of no tailwater that the front speed is not
diminished because reflected characteristics do not catch up with it. The time of the
shock formation decreases as h1 increases from 0 until it reaches a minimum time
at t = 47.8615 for h1 = 0.006. The time of shock formation increases monotonically
for all tailwater heights after this minimum, passing continuously through the changes
in boundary in the characteristic plane, indicated by the dotted lines in figure 13,
until tshock→∞ as h1→ 1. The position of the shock formation also decreases as h1

increases from 0 until h1 = 0.0588 when xshock = 0. For h1 > 0.0588, xshock increases
monotonically until xshock→∞ as h1→ 1.

Physically, internal shocks will form when a region of fluid moving at a higher
velocity impacts on another region of fluid moving with a lesser velocity. Figure 14
depicts the height and velocity profiles for h1 = 0.02 at the time of internal shock
formation t = tshock = 56.7777. This is an example of the shock forming at the
boundary between C2 and S2 at x = xshock = 27.0336. We can see that the formation of
the shock is due to the fluid in S2 (x < xshock) being of shallower height and moving
faster than the fluid adjacent to it in C2 (x > xshock). Figure 15 shows the height and
velocity profiles for h1 = 0.055 at t = tshock = 96.8122. This is an example of the shock
forming at the boundary between U2 and S3 at x= xshock = 2.6556. We can see that the
formation of the shock is due to the fluid in U2 (x < xshock) being of shallower height
than the fluid adjacent to it in S3 (x > xshock) and the fluid in S3 moving with negative
velocity against the motionless fluid in U2. The height and velocity profiles at the time
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FIGURE 14. The height, h(x, t), and velocity, u(x, t), as functions of distance for h1 = 0.02
at t = tshock = 56.7777. The shock forms at the boundary between C2 and S2 at x = xshock =
27.0336.
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FIGURE 15. The height, h(x, t), and velocity, u(x, t), as functions of distance for h1 = 0.055
at t = tshock = 96.8122. The shock forms at the boundary between U2 and S3 at x = xshock =
2.6556.

of shock formation are also shown in figures 11 and 12 at t = tshock = 135.9647 for
h1 = 0.1. These are an example of the shock forming at the boundary between C3

and S3 at x = xshock = 21.6747. We can see that the formation of the shock is due to
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the fluid in C3 (x < xshock) being of larger height than the fluid adjacent to it in U3

(x> xshock) from figure 11, with |u| being greater in U3 than in C3 from figure 12.

7. Summary and conclusions
The shallow-water equations have been used to model the flow of a finite volume of

fluid instantaneously released from behind a lockgate onto a wet plane. Through the
deployment of a hodograph transformation and Riemann’s method, results are found
using analytical techniques and, where necessary, simple numerical evaluations and
quadrature. Our analysis has revealed three features of the dam-break motion that
were previously unreported. These are that the front decelerates, the internal velocity
becomes negative and that internal shocks form at later times.

The gravitational collapse of a reservoir of infinite extent into a tailwater was
analysed by Stoker (1957). He demonstrated the motion, modelled using the shallow
water equations, was governed by an expansion fan of characteristics centred at the
front of the lock and the imposition of shock conditions at the front of the motion. For
a finite reservoir, we have established that the presence of the wall at the rear of the
dam causes initially rearward characteristics to be reflected, which significantly alters
the solution and causes a complex wave region C1 to form by the wall. For tailwater
heights h1 < 0.0275 we find that the complex region at the rear of the motion remains
unbounded for all times whereas for h1 > 0.0275 this complex region is bounded and
a uniform region U3 develops at later times adjacent to the wall in which there is
no motion and a depth less than that of the tailwater. For all tailwater depths the
reflected characteristics from the rear wall leave the complex region and travel across
the released fluid to meet the front of the moving fluid, causing the height and velocity
of the front to decrease (see figure 6).

For h1 > 0.0275 the reflected characteristics from the rear wall all travel across the
fluid and meet the front of the motion where they are reflected again. After being
reflecting from the front they precede to travel back towards the rear of the dam, and
a simple wave region is formed in which the velocity is negative (see figure 12). Once
the characteristics meet the rear wall they are reflected again but stay localized to
the rear wall in another region of negative velocity. Hence, there are three regions of
motion at all times after the reflected characteristics from the front have met the rear
wall (see figure 8). For h1 < 0.0275 the reflected characteristics from the front do not
travel back across the fluid to meet the rear wall and stay localized to the front and
there are three regions of motion for all ensuing times with two complex wave regions
either side of a simple wave region (see figure 7).

For all tailwater heights we find that after a period that we have calculated the
hodograph transformation breaks down due to the intersection of characteristics and
an internal shock forms. The location of these incipient internal shocks is found on
three boundaries: the boundary between C2 and S2 for h1 6 0.0513; the boundary
between U2 and S3 for 0.0513 < h1 < 0.0588; and the boundary between C3 and S3

for h1 > 0.0588 (see figure 13). The earliest time at which the solution breaks down is
found to be t = 47.8615 which occurs for h1 = 0.006.

Jánosi et al. (2004) conducted experiments of dam-break flows of a finite reservoir
into a tailwater using a channel of length 993 cm with a lock of length 38 cm.
Figure 16 shows a comparison of the front position of the flow between our analytical
solution and data from Jánosi et al. (2004) in dimensional units with h̃0 = 15 cm,
h̃1 = 0.5 cm and x̃0 = 38 cm. We see that the analytical solution agrees well at early
times and notably captures the time and position at which the reflected characteristics
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FIGURE 16. The dimensional position of the front of the flow as a function of time for a
tailwater of dimensionless height 0.033 (—) plotted with data (×) from Jánosi et al. (2004).
The front of the flow is decelerated by reflected characteristics from the rear wall after
t̃ = 2.287 s at x̃= 305.3 cm, indicated by the dotted line.

from the rear wall first decelerate the front at (x̃, t̃) = (305.3 cm, 2.287 s). We note
that at later times the agreement is not as good and we postulate that drag from
the sidewalls is further decelerating the flow and causing the divergence from our
analytical solution. Jánosi et al. (2004) also present a data collapse of the temporal
evolution of the front position of the flow; by plotting x̃s/h̃0.45

0 against t̃, they find that
all of their data follow approximately the same curve. Such an empirical scaling is
not consistent with the analysis in this paper. At early times we find that x̃s/(gh̃1/2

0 )

grows linearly with time, t̃, but that the constant of proportionality is dependent on
the tailwater depth. This relationship established by Stoker (1957) is borne out by
the experiments reported in Stansby et al. (1998) and Leal et al. (2006). Further, the
data collapse of Jánosi et al. (2004) implies that the location at which the velocity of
front of the flow is decelerated after the initial phase of motion is independent of the
dimensionless tailwater depth. This is not in accordance with the results presented in
this study in which the dimensionless height of the tailwater strongly influences the
dynamics. The experiments of Jánosi et al. (2004) conducted for the data collapse had
dimensionless tailwater depths within the narrow interval of (0.022–0.045) and thus
some similarity between the different experiments is perhaps expected. We thus assert
that a wider range of dimensionless tailwater depths must be considered to confirm the
results presented within this study.

We conclude by observing that our results that have catalogued the various new
phenomena have revealed how the presence of the tailwater strongly affects the flow
and that a much richer range of dynamics emerge than for bounded dam-break flows
into initially dry regions. The hodograph transformation and our analytical solutions
allow us to pinpoint accurately the transitions between the various regimes. We note
that because the results are not derived by the direct numerical integration of the
primitive governing partial differential equations that they form an important test case
against which the numerical results can be tested. Indeed the new analytical solutions
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feature locations in which there are discontinuities in the dependent variables, or their
gradients, and these provide a severe test for many numerical algorithms. Our results
also reveal that the commonly used numerical practice of providing a shallow tailwater
to study dam-break flows into initially dry regions may not capture accurately the
detailed mechanics of the motion. Not only does the initial shock speed deviate from
its dry bed case by a factor proportional to h1/4

1 , but also the presence of a tailwater
inevitably introduces frontal deceleration and internal shock formation after a sufficient
time.

Appendix
In this appendix we state explicitly the form of ∂t/∂β|β=βm on the boundary

between C2 and S2. Internal shocks are found to form at this boundary when two
β-characteristics coincide. To find the location at which this occurs on the boundary
between C2 and S2, we are required to find the value of α for which ∂t/∂β|β=βm = 0.
The time field on this boundary is given by (4.13), and thus differentiating this
expression with respect to β and setting β = βm we have

∂t(α, βs)

∂βs

∣∣∣∣
βs=βm

= t2(2)
3(6+ βm − 4s)(6− α − 2βm)

8(2− βm)1/2(α − βm)5/2

+
(
∂t(2, βm)

∂βs
+ α′s

∂t(2, βm)

∂αs

)
(2− βm)

1/2(4s− 2− 3βm)

2(α − βm)3/2

+ t2(2)
3(4s− 2− 3βm)((α − βm)(α

′
s − 1)+ 1)

4(2− βm)1/2(α − βm)5/2

+ t2(2)
2(α′s(βm − s)+ s− 2)
(α − βm)3/2(2− βm)1/2

+ t2(2)
2(2− βm)

1/2(α′s − 1)
(α − βm)3/2

ds(σ )

dσ

∣∣∣∣
σ=2−βm

+
∫ α

2

(a− βm)
3/2

(α − βm)3/2

(
3t2

2(a− βm)
+ ∂t2

∂a

)
da

+ (α′s − 1)t2(2)
(2− βm)

1/2

(α − βm)3/2

×
(

3(α − 2)
8(α − βm)

(
1
2
− 2s− 2− βm

2− βm

dλ(σ)
dσ

∣∣∣∣
σ=2−βm

)

+ (6+ α − 4βm)

(
1
2

dλ(σ)
dσ

∣∣∣∣
σ=2−βm

− 2s− 2− βm

2− βm

)

− 2
ds(σ )

dσ

∣∣∣∣
σ=2−βm

)
, (A 1)

where α′s ≡ ∂αs/∂βs.
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