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The shape of a free-surface slump of viscoplastic material supported by an oblique
barrier on an inclined plane is investigated theoretically and experimentally. The barrier
is sufficiently tall that it is not surmounted by the viscoplastic fluid, and a focus of this
study is the largest volume of rigid viscoplastic fluid that can be supported upstream of it.
A lubrication model is integrated numerically to determine the transient flow as the
maximal rigid shape is approached. Away from the region supported by the barrier, the vis-
coplastic layer attains a uniform thickness in which the gravitational stresses are in balance
with the yield stress of the material. However, closer to the barrier, the layer thickens and
the barrier bears the additional gravitational loading. An exact solution for the rigid shape
of the viscoplastic material is constructed from the steady force balance and computed by
integrating Charpit’s equations along characteristics that emanate from the barrier wall.
The characteristics represent the late-time streamlines of the flow as it approaches the rigid
shape. The exact solution depends on a single dimensionless group, which incorporates the
slope inclination, the barrier width and the fluid’s yield stress. It is shown that the shape is
insensitive to the transient flow from which it originates. The force exerted by the slump
is calculated for different barrier shapes. The results of new laboratory experiments are
reported; these show that although convergence to the final rigid state is slow, there is
good agreement with the experimental measurements at long times.

Key words: magma and lava flow, geophysical and geological flows, non-Newtonian flows

1. Introduction
Obstructions that hold up viscoplastic material occur in environmental and industrial
contexts, including mine tailing dams, porous networks such as forests, and defences
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Figure 1. Schematics of viscoplastic flow around an obstruction. (a) Steady flow. (b) Shape of the stationary
slump following termination of the upstream source. (c) Cross-section of the steady flow along the centreline.
(d) Photo of laboratory experiment 1; see § 5 (obstruction has extent 200 mm).

against hazardous flows such as lava and debris (e.g. Barberi et al. 2003; Sigtryggsdottir
et al. 2025). Key engineering questions include: what is the maximum height or volume
of material that is held up by a barrier, what is the force on the barrier, and can properties
of the fluid be inferred from the shape of the supported material (Pedersen et al. 2023)?
Indeed, it has been shown that markers of the maximum lava flow height on the surface of
trees can be used to effectively recreate aspects of the flow history (Chevrel et al. 2019).

Barriers to lava flows have been used or proposed at a variety of sites over the past
70 years with mixed success, including in Hawaii and at Etna, and most recently, to
protect the town of Grindavik on the Reykjanes peninsula in Iceland (Moore 1982; Barberi
et al. 2003; Bjarnason & Bubola 2024; Sigtryggsdottir et al. 2025). Improvements in the
effectiveness of this technology require a comprehensive understanding of the physical
mechanisms that control the interaction of lava flows with barriers (Dietterich et al. 2015).

In this paper, we use an analogue theoretical and laboratory model to investigate how
lava is held up by a barrier (see figure 1). Lava is represented by an isothermal viscoplastic
fluid (e.g. Griffiths 2000). We calculate the shape of the remnant material supported by
the barrier, and furthermore, we demonstrate that the model may be used to approximate
the yield stress from observations of the supported fluid (cf. Hinton 2022).

In contrast to viscous fluids, viscoplastics have a yield stress that must be exceeded for
motion to occur, and this bounds their spreading. Even when subjected to a gravitational
body force, they come to rest at some finite slumped shape, whose thickness is related to
the yield stress. In the absence of an obstruction, the final slumped shape of a viscoplastic
has been widely studied on both horizontal and inclined planes (Balmforth et al. 2002,
2007; Dubash et al. 2009). These studies demonstrated that the slump shape can be used
as a simple rheometer to infer the yield stress (Roussel & Coussot 2005).

The majority of these investigations exploit a shallow approximation to simplify the
governing equations. For viscoplastic fluids, some care is required in applying the shallow
model to free-surface flows (Balmforth & Craster 1999). Generally, the flow is partitioned
into two regions: a yielded region near the substrate, where the deviatoric stress is greater
than the yield stress, and a region adjacent to the free surface, where the stress does not
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exceed the yield stress and the material moves as a pseudo-plug; see Balmforth & Craster
(1999). The boundary between the two regions is called the ‘yield surface’; as the material
thins and approaches its final slumped shape, the yield surface approaches the substrate,
and the driving gravitational stresses are balanced by the yield stress.

Shallow free-surface models of viscoplastics have been used to investigate steady and
transient flows around obstructions and topography (Ionescu 2013; Hinton & Hogg 2022;
Hinton, Hewitt & Hogg 2023). It was shown that ‘dead’ zones – in which the entire
thickness of the layer is rigid – occur in the vicinity of the upstream stagnation point.
In general, the size of the dead zone is an increasing function of the yield stress and a
decreasing function of the upstream flow rate. The present study focuses on the geometry
of the arrested state; it is effectively the limit of a zero upstream flow rate, and the dead
zone comes to encompass the entirety of the upstream face of the obstruction.

Viscoplastic slumps supported by barriers have some similarities with their granular
counterparts, and both can form arrested wedge-shaped deposits (Cui & Gray 2013;
Tregaskis et al. 2022). Both materials exhibit a yield criterion such that they deform
only when the deviatoric shear stress exceeds a threshold. For viscoplastic materials, this
threshold, the yield stress, is an intrinsic material property, whereas for granular material,
it is proportional to the normal stress. Thus the yielding condition is modelled differently
and manifests in rather different forms of governing equations. However, it is shown in
Appendix C that when the yield stress of the viscoplastic material is much greater than
the gravitational weight of the layer per unit area (a condition that is made precise in
Appendix C), the leading-order governing equation for the arrested viscoplastic becomes
identical to the granular flow equation apart from at the edges of the arrested material.

The paper is structured as follows. The model of Hinton et al. (2023) for steady flow
around a barrier is summarised in § 1.1 to define governing parameters and equations. In
§ 2, we analyse the evolution of this flow following termination of the upstream source.
In § 3, an exact expression for the final rigid shape is given. Features of the rigid shape
and the force it exerts on the barrier are discussed in § 4. Results from new laboratory
experiments are presented and compared to the theory in § 5. Concluding remarks are
given in § 6. Some ancillary details are included in the appendices. The numerical method
is described in Appendix A, the integration of Charpit’s equations in Appendix B, the
asymptotic behaviour at low and high yield stress in Appendix C, and the generalisation
of the analysis to non-rectilinear obstructions in Appendix D.

1.1. Steady viscoplastic flow around an obstruction
Hinton et al. (2023) analysed the steady, shallow and inertialess free-surface flow of a
Bingham fluid down an inclined plane around an obstruction; see figure 1(a). Here, we
extend this formalism to a Herschel–Bulkley fluid of power-law index n, yield stress τY ,
and consistency k. The plane is inclined at an angle β with respect to horizontal. The x̂ axis
is directed downslope, the ŷ axis is directed cross-slope, and the ẑ axis is perpendicular
to the plane. The fluid has thickness ĥ(x̂, ŷ) and density ρ. The obstruction has square
cross-section and lies in (x̂, ŷ) ∈ [−L , L] × [−L , L]. The flow is supplied by an upstream
source of strength Q̂∞ per unit length in the ŷ direction.

The variables are non-dimensionalised via

(x, y) = (x̂, ŷ)/L , (z, H) = (ẑ, ĥ)/Ĥ∞, (1.1)

where Ĥ∞ is the critical rigid height of viscoplastic material on an inclined plane,

Ĥ∞ = τY

ρg sin β
. (1.2)
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The flux (the depth-integrated velocity) in the x and y directions was derived following
Balmforth, Craster & Sassi (2002) as

q = 3nY (sY )1/n [(2n + 1)H − nY )]
s(n + 1)(2n + 1)

(
1 − b

∂H
∂x

, −b
∂H
∂y

)
, (1.3)

where

s =
√(

1 − b
∂H
∂x

)2

+
(
b
∂H
∂y

)2

, (1.4)

and the height of the yield surface is

Y (x, y) = max

⎛
⎜⎜⎜⎜⎝0, H − 1√(

1 − b
∂H
∂x

)2

+
(
b
∂H
∂y

)2

⎞
⎟⎟⎟⎟⎠. (1.5)

The flowing solution is governed by two dimensionless parameters: the modified Bingham
number

b = τY

ρgL sin β tan β
= Ĥ∞

L tan β
, (1.6)

and the dimensionless upstream flux q∞. The dimensionless group b is sometimes referred
to as the plastic number (e.g. Thompson & Soares 2016), but here we retain the term
‘Bingham number’ for consistency with the literature on viscoplastic gravity currents
(Balmforth & Craster 1999; Balmforth et al. 2007; Hogg & Matson 2009).

Our choice of scaling for the flow thickness in (1.1) differs from the scales used by
Hinton et al. (2023), who non-dimensionalised the flow thickness with the thickness of
Newtonian flow (this is equivalent to scaling the upstream flux by its far-field value). The
scales employed here are chosen for ease of analysis of the stationary slump obtained once
the upstream source is terminated.

The flowing solution of Hinton et al. (2023) is controlled by two parameters, B and L
(defined in their (2.5a,b)), and here b = B/L. In contrast to the flowing solution developed
by Hinton et al. (2023), the model for the arrested state developed here features only the
single parameter b.

The steady flow is governed by

∇ · q = 0, (1.7)

with no-flux applied on the boundaries of the obstruction,

q · n = 0, (1.8)

where n is the boundary-normal vector. Far upstream (and far downstream), the
dimensionless flux satisfies q → (q∞, 0), whilst H → H∞ � 1, which reflects a constant
flux in the far field. These are related via

q∞ = 3n(H∞ − 1)1+1/n ((n + 1)H∞ + n)

(n + 1)(2n + 1)
, (1.9)

which is obtained directly from (1.3). Solutions for the steady free surface from Hinton
et al. (2023) are shown in figures 2(a) and 2(b) for two sets of parameter values.
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Figure 2. Steady flowing solutions for b = 1 and: (a) Bingham fluid, H∞ = 2.53 (corresponding to q∞ = 7.1);
(b) Bingham fluid, H∞ = 1.68 (q∞ = 1); (c) Herschel–Bulkley fluid, n = 0.5, H∞ = 1.30 (q∞ = 0.03); see
(1.3). When the flux source is switched off, all of these converge to the same final stationary slump, shown in
(d). Note the different scale bars used across the panels.

2. Unsteady model and switching off the source
We analyse the unsteady flow that arises when the upstream source is terminated. The
dimensionless variables are given by (1.1), and dimensionless time is given by

t = ρgĤ2∞ sin β

3μL
t̂, (2.1)

where

μ = k1/n

(
ρgĤ∞ sin β

3

)1−1/n

(2.2)

is a viscosity scale, and t = 0 corresponds to the switch-off time. The evolution of the flow
thickness H(x, y, t) is governed by

∂H
∂t

+ ∇ · q = 0. (2.3)

The initial condition is given by a steady flowing solution computed using the method
described by Hinton et al. (2023), with examples plotted in figure 2(a–c).

Equation (2.3) is numerically integrated in time; for details of the numerical method, see
Appendix A. In the computation, the source is located relatively far upstream at x = −6,
so at t = 0, the boundary condition at the left-hand end of the domain is adjusted to

H = 1 at x = −6. (2.4)

Note that a different location for the upstream source simply leads to a time offset in the
ensuing dynamics after the switch off (the reduction in H simply takes longer to propagate
downstream towards the barrier). The no-flux boundary condition on the obstruction (1.8)
is unchanged.
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Figure 3. Late-time slumping of a Bingham fluid. (a,b) The height of the free surface (dashed black lines)
at the upstream wall of the obstruction (x = −1) at times t ∈ {e1, e2, e3, e4, e5, e6} after the upstream flux
(at x = −6) is terminated. (c,d) Corresponding results along the centreline (y = 0). In (a) and (c), parameter
values are b = 1, q∞ = 1, whilst for (b) and (d), b = 1, q∞ = 1/2. The final shape is shown with a blue line
(from § 3).

Fluid drains downstream, and the flow thickness converges to a rigid stationary shape
everywhere; see figures 2 and 3.The final rigid shape is approached asymptotically with the
following late-time scalings when t � 1 (Matson & Hogg 2007; Hogg & Matson 2009):

H(x, y, t) = Hfinal(x, y) + t−n H1(x, y) + · · · , Y (x, y, t) = t−n Y1(x, y) + · · · ,

(2.5)

which are verified numerically for our problem in figure 4. Here, Hfinal(x, y) is the final
height of the free surface, while H1(x, y) and Y1(x, y) dictate the late-time approach of
the height of the free surface and yield surface, respectively, to their final static shapes.
Henceforth, we drop the subscript ‘final’ for brevity. Figure 4 shows that fluid near the
upstream corners of the barrier takes longer to drain away and approach the arrested height
than elsewhere. The yield surface exhibits a maximum at the upstream corners, and is also
significant on the sides of the barrier and at the downstream corners. This is because fluid
draining from upstream is diverted around the obstruction and thus flows past the upstream
corners, giving rise to a large flux at these locations (see figure 5). The increased flux at the
corners requires a higher yield surface. A similar phenomenon occurs at the downstream
corners, where fluid flowing around the sharp corner induces a large flux, and therefore a
relatively high yield surface, but to a lesser extent.
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3. Static shape
Figure 2(a–c) show the thickness of the steady flow for different values of q∞ and n. When
the source is terminated, these three cases all converge to the same rigid shape, suggesting
that it depends only on b, and specifically, is independent of the power-law exponent n and
the upstream source flux q∞. In this section, we derive an exact expression for the rigid
shape.

In the far field, the flow thickness converges to the critical rigid height of viscoplastic
material on an inclined plane, which furnishes

H → 1 as x2 + y2 → ∞. (3.1)
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The rigid shape is found by evaluating (2.3) at late times with Y → 0. Thus the maximal
rigid shape is found to satisfy (Balmforth et al. 2002)(

1 − b
∂H
∂x

)2

+
(
b
∂H
∂y

)2

= 1
H2 , (3.2)

where b is the single dimensionless parameter that characterises the shape of the rigid
slump. The no-flux boundary condition on the obstruction walls, which applies at all times,
imposes (

1 − b
∂H
∂x

, −b
∂H
∂y

)
· n = 0, (3.3)

which is applied at x = ±1, −1 � y � 1 and y = ±1, −1 � x � 1. The slump is
determined maximal when it is ‘on the verge’ of yielding; any further addition of material
to the slump will induce a flow that carries the added fluid downhill. The governing
partial differential equation (3.2) and boundary conditions (3.1), (3.3) feature only b,
and this is corroborated by the different flows in figure 2(a,b,c) all adjusting to the same
arrested state.

3.1. Shape of the free surface at the upstream wall
We parametrise the upstream wall of the obstruction by y = s with −1 � s � 1, x = −1
and H(−1, s) = H0(s), which is to be determined. Combining (3.2) and (3.3) on the
upstream wall furnishes

bH0
dH0

ds
= −sgn(s). (3.4)

The boundary condition in the far field, (3.1), imposes the following condition at the
corners of the obstruction:

H0(±1) = 1. (3.5)

This condition is required for a self-consistent solution. Specifically, one cannot satisfy
(3.1) if the height at the obstruction corners exceeds the far-field height. Equation (3.4) is
integrated to obtain

H0(s) =
√

2b−1(1 − |s|) + 1. (3.6)

This shape is shown as a blue line in figures 3(a) and 3(b), where it is compared to the
numerical results for the unsteady flow. The gradient of H0 is discontinuous at s = 0.

3.2. Charpit’s method
Equation (3.6) provides the boundary conditions to solve (3.2) in the region directly
upstream of the obstruction where the rigid material is supported. The solution is
obtained using Charpit’s method for first-order nonlinear partial differential equations.
Defining

p = ∂H
∂x

, q = ∂H
∂y

, (3.7)
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Charpit’s equations transform (3.2) into five ordinary differential equations along the
characteristics (Ockendon et al. 2003):

ẋ = −2b(1 − bp), (3.8a)

ẏ = 2b2q, (3.8b)

ṗ = −2pH−3, (3.8c)

q̇ = −2qH−3, (3.8d)

Ḣ = 2b2q2 − 2bp(1 − bp), (3.8e)

where a dot indicates differentiation with respect to τ , which parametrises the
characteristics. The characteristics (3.8a)–(3.8e) emanate from the upstream wall of
the obstruction where the boundary data from (3.6) are specified. The forms of the
characteristics are qualitatively different depending on whether they emanate from the
face of the upstream wall (−1 < y < 1) or from the corners (y = ± 1), so the analysis is
separated accordingly.

3.2.1. Characteristics emanating from the upstream wall (−1 < y < 1)
By combining (3.6) and (3.2), we obtain the following boundary data on the upstream wall
for the characteristics:

x0(s) = −1, (3.9a)
y0(s) = s, (3.9b)

p0(s) = 1
b
, (3.9c)

q0(s) = − sgn(s)

b
√

2b−1(1 − |s|) + 1
, (3.9d)

H0(s) =
√

2b−1(1 − |s|) + 1, (3.9e)

where subscript ‘0’ indicates evaluation at τ = 0. Equations (3.8a)–(3.8e) are integrated
subject to the boundary data (3.9a)–(3.9e). This furnishes part of the exact solution, given
by (full details are reported in Appendix B)

x + 1 = b

[
H −

√
2b−1(1 − |s|) + 1

]

− b log

⎡
⎣±b

(√
2b−1(1 − |s|) + 1 − 1

)
− y + s

(H − 1)b

⎤
⎦, (3.10a)

s = y ± b
√

2b−1(1 − |y|) + 1 − H2. (3.10b)

This solution covers the region of the (x, y) plane penetrated by characteristics emanating
from the upstream wall, which is given by

− 1 < y < 1 and b (A(y) − 1) − b log
(

1 − |y|
b(A(y) − 1)

)
� x + 1 � 0, (3.11)

with

A(y) ≡ H(y, s = 1) =
√

1 + 2b−1(1 − |y|) − b−2(1 − |y|)2. (3.12)
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Figure 6. (a) Characteristics for the thickness of the rigid shape supported by the obstruction for b = 1/2.
(b) Characteristic projections in the (x, y) plane corresponding to (a). (c) Characteristic projections for
b = 1. (d) Characteristic projections for b = 2. The solid black lines represent characteristics emanating from
the upstream wall, whilst the red dashed lines represent those emanating from the corners. See also figure 7.

The characteristics and the region penetrated are shown by black lines in figure 6. We
note that A(0)� 1 if b > 1/2. Thus for b� 1/2, the characteristics encompass the entirety
of the centreline, y = 0, x ∈ (−∞, −1]. The solution beyond this region is obtained by
considering characteristics that emanate from the upstream corners.

3.2.2. Characteristics from the upstream corners
At the upstream corners, the no-flux condition (3.3) is applied at all incoming angles to
the corner. That is, we parametrise the boundary normal vector at the upstream corners by

n = (sin θ, cos θ), (3.13)

with θ ∈ [−π/2, 0] and θ ∈ [0, π/2] for the corners at y = 1 and −1, respectively, where
θ = 0 corresponds to the positive x axis. Combining (3.3) and (3.2) gives the following
boundary data for characteristics emanating from the corners:

x0(θ) = −1, (3.14a)
y0(θ) = ±1, (3.14b)

p0(θ) = 1 + sin θ

b
, (3.14c)

q0(θ) = ∓cos θ

b
, (3.14d)

H0(θ) = 1, (3.14e)

1017 A14-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
48

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10485


Journal of Fluid Mechanics

–1–2–3–4
–1.0

–0.5

0

0.5

1.0

y

–1–2–3–4
–1.0

–0.5

0

0.5

1.0

0.5

0

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

–3.5

–4.0

log(H – 1)

–1–2–3–4
–1.0

–0.5

0

0.5

1.0

y

x
–1–2–3–4

–1.0

–0.5

0

0.5

1.0

x

(a) (b)

(c) (d)

Figure 7. The exact solution for the stationary slump ((3.10a), (3.10b) and (3.15)) for (a) b = 1/4, (b) b = 1/2,
(c) b = 1, (d) b = 2.

where the plus and minus signs are used to distinguish between the two upstream corners.
The solution for the shape covered by these characteristics is (see Appendix B)

x + 1 = b(H − 1) − b log
[
H2 − 1 + b−2(1 − |y|)2

2(H − 1)

]
, (3.15)

valid in the domain

− 1 � y � 1 and x + 1 < b (A(y) − 1) − b log
(

1 − |y|
b(A(y) − 1)

)
. (3.16)

The characteristics and the region penetrated are shown by red dashed lines in figure 6.
Outside the domains dictated by (3.11) and (3.16), i.e. for |y| > 1, the solution for the

fluid thickness is H = 1.

4. Discussion
Equations (3.10a), (3.10b) and (3.15) constitute complete and exact expressions for the
final slump shape in terms of b. Examples of the shape for four values of b are shown
in figure 7. It should be noted that a steeper slope corresponds to smaller b, which is
associated with a thicker and more localised slump. From the exact solution, many physical
aspects of the slump can be computed. The maximum thickness of the slump, attained at
(x, y) = (−1, 0), is given by

Hmax =√1 + 2/b, (4.1)

which is shown in figure 8(a). In dimensional terms, the maximum thickness is

Ĥmax =
√

τ 2
Y

(ρg sin β)2 + 2τY L

ρg cos β
, (4.2)
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Figure 8. (a) The dimensionless maximum slump height as function of b. (b) The dimensional maximum
height as a function of the yield stress τY for ρg = 104 kg m−2 s−2, L = 0.1 m and β = 5◦. (c) Dimensionless
excess volume of the slump ((4.3), solid blue line), compared with the small and large b asymptotic solutions
(see (4.4a)–(4.4b)). (d) Dimensional volume as a function of τY for the above-mentioned parameter values.
The scaled maximum height and volume obtained in experiments 1 and 3 (see § 5) are shown in (a) and
(c), where the error bars are smaller than the extent of the markers.

which is plotted in figure 8(b) for an example case with ρg = 104 kg m−2 s−2, L = 0.1 m
and β = 5◦, which is relevant to our laboratory experiments; see § 5. The dimensionless
maximum thickness is a monotonically decreasing function of b, whilst the dimensional
maximum thickness is a monotonically increasing function of the yield stress τY . This
difference arises because the dimensionless thickness has been scaled by the thickness in
the far field, which is linearly proportional to the yield stress. Thus although the slump
thickness is larger for a fluid with a higher yield stress, the ratio of the slump thickness
to the far-field thickness is smaller. A similar feature occurs with the excess volume,
discussed below.

The excess volume of the slump, V , is defined as the additional volume that is supported
by the obstruction as compared to the case with no obstruction for which H ≡ 1, i.e.

V =
∫ −1

−∞

∫ 1

−1
(H(x, y) − 1) dy dx . (4.3)

The excess volume is plotted as a function of b in figure 8(c). The dimensional excess
volume is shown in figure 8(d) (with the same parameter values as in figure 8b) .

The parameter b, which is proportional to the yield stress, represents the ratio of the far-
field rigid thickness to the obstruction width and the slope gradient (see (1.6)). The regime
of small b corresponds to a relatively small far-field thickness (or wide obstruction), and
large b corresponds to a relatively large far-field thickness. For b � 1, the governing
equations away from the margins of the arrested slump become identical to those of a
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Figure 9. The streamlines of the numerically calculated late-time flow (solid blue lines) compared with the
characteristic projections from Charpit’s method (dashed black lines), for b = 1. The obstruction is shown in
grey.

static granular pile on an empty plane (see § 7.1 of Tregaskis et al. 2022); see also the
calculations in § C.2 (though it should be noted that the static granular pile on an empty
plane has H → 0 away from the barrier, whereas here we have H → 1). In this regime
of a relatively large Bingham number, the static solution calculated here is also a good
approximation for the height of the free surface of steady flowing material from a constant
flux source. This steady flow driven by a constant-flux line source was analysed by Hinton
et al. (2023), and in their notation this regime corresponds to B � 1 and L= O(1).

For small and large b, (4.3) admits the respective asymptotic limits

V ∼ 1 −
(

8 − 2π

3
√

2

)√
b, b � 1, (4.4a)

V ∼ 1
18b

(5 + 6 log(2b)), b � 1; (4.4b)

for details, see Appendix C. In dimensional form, this is given by

V̂ ∼ L2τY

ρg sin β
−
(

8 − 2π

3
√

2

)(
LτY

ρg sin β

)3/2

(tan β)−1/2, b � 1, (4.5a)

V̂ ∼ L3 tan β

18
(5 + 6 log(2b)), b � 1. (4.5b)

Interestingly, the dimensional excess volume exhibits different scaling laws with respect
to the yield stress τY in the regimes of small and large b. In the relatively high yield stress
regime (b � 1), the excess volume is only weakly dependent on the yield stress through
the log(b) term, and instead the volume depends primarily on the geometry of the slope
and the barrier. Similar dependencies arise for a cylindrical obstruction; see Appendix D.

One other interesting observation concerning the rigid solution is that the characteristic
projections (figure 6) are exactly the streamlines of the late-time fluid flow as it approaches
the rigid state; this is shown in figure 9 for b = 1. The analogy arises because the
characteristics follow (ẋ, ẏ) ∝ (1 − b ∂H/∂x, −b ∂H/∂y), which is the flow direction. The
characteristics thus emanate tangentially to the obstacle, and data for the rigid solution are
carried in the opposite direction to the flow.

The stationary free-surface thickness exhibits a seam along the centreline, y = 0. Here,
the characteristics of the rigid solution collide and terminate. This corresponds to the
late-time flow of the slumping fluid bifurcating at the centreline.
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Figure 10. (a,c) Flowing and (b,d) stationary solutions for Bingham fluid (n = 1) with b = 1/4, q∞ = 1, for
(a,b) off-centre vent source, (c,d) infinite line source.

4.1. Force on the barrier
The dimensional hydrostatic force (F̂, 0) exerted on the barrier by the arrested slump is
given by the integral of the pressure over the upstream face,

F̂ =
∫ L

−L

∫ ĥ(−1,ŷ)

0
ρg
(
ĥ(−1, ŷ) − ẑ

)
cos β dẑ dŷ, (4.6)

and using the solution for the shape at this face, (3.6), we obtain

F̂ =
(

τY

ρg sin β
+ L tan β

)
τY L cot β. (4.7)

4.2. Insensitivity to the upstream source
The stationary slump shape calculated in § 3 is insensitive to the upstream flux source
provided that the flow exceeded the slump height. Here, we consider the flow generated
by an off-centre vent source located at −2 � y �−1/2, x = −4 supplying constant flux
(figure 10a). Using the techniques described in § 2 and initialising the fluid at zero
height i.e. H(x, y, t = 0) = 0, the steady flow and the flow following the switch off are
calculated; see figure 10. The steady flow exhibits an asymmetric profile. However, when
the source is switched off, the stationary shape upstream of the obstruction matches the
analytical calculations of § 3.

4.3. Downstream behaviour
The shape of the free surface of rigid material downstream of the obstruction depends
on the initial conditions of the flow prior to switch off as well as the upstream flux
source and the viscous rheology of the fluid. This is in contrast to the upstream shape,
which is independent of these parameters (see discussion above). The dependence of
the downstream shape arises because parts of the downstream region are inaccessible
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Figure 11. Fluid thickness at x = 1 (i.e. the downstream face of the obstruction), at various times after the
source has been switched off: (a) infinite line source, (b) vent source, as described in figure 10. The dashed
black lines indicate the edges of the obstruction’s downstream face.

to the flow. Thus if the fluid is initialised in this region to exhibit a static slump, then this
shape will be maintained independently of the fluid flow impinging from the flux source;
e.g. see unwetted region in figures 10(b) and 10(d). Moreover, the region inaccessible to
the upstream flow depends on the strength of the flux source. The stationary downstream
shape is altered at higher values of the upstream flux because more fluid invades the region
directly downstream, and subsequently cannot flow away; see also Hinton & Hogg (2022),
who observed similar behaviour upstream and downstream of a topographic mound. The
non-universality of the downstream shape is exemplified by the different static shapes
obtained for an infinite line-flux source and a vent source that are initialised to zero height
prior to the the flux source being turned on; compare figures 10(b) and 10(d). We illustrate
this explicitly by plotting the shape of the free surface at x = 1 (i.e. at the downstream face
of the obstruction) in figure 11, at different times after the flux source is terminated for both
an infinite line flux source and a vent. This shows that for the vent source (figure 11b), less
fluid invades the downstream region near y = 1 than near y = −1, as compared with the
line source (figure 11a), where the downstream region invaded by the fluid is symmetric
in y. This exemplifies the non-universality of the downstream rigid shape.

5. Laboratory experiments
We report experiments on an inclined plane of width 40 cm and length 50 cm held at a
shallow angle to the horizontal. A cuboid obstruction of total width 20 cm, or a cylindrical
obstruction with diameter 17 cm, was held fixed on the inclined plane. Hair gel was poured
onto the plane far upstream from the obstacle, with sufficient flux and quantity to ensure
that the plane was entirely coated by fluid, and that the thickness exceeded the rigid shape.
Excess fluid was allowed to drain off the end of the plane. The pouring was then stopped,
and the free surface approached its arrested shape as excess material drained around the
obstruction.

To quantify the thickness of fluid, we projected an array of 76 parallel blue lines
(e.g. figure 1d) using a video projector (Epson EH-TW5200) mounted perpendicularly
to the sloping surface. Similar methods have been employed elsewhere for free-surface
flow of complex fluids (Hewitt & Balmforth 2013), free-surface flow with an obstruction
(Hinton, Hogg & Huppert 2020), and elastic membranes (Pihler-Puzović et al. 2015).
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However, we extended the method here to determine the full profile of the surface in two
dimensions, ĥ(x̂, ŷ). This technique was verified by employing it to measure the thickness
of a 4 mm calibration plate, which exhibited an error of less than 2 %.

Hair gel was used as a representative viscoplastic material, owing to its established
rheological properties (Taylor-West & Hogg 2024), and the fact that it does not separate
over the time scales required for these experiments. We used one brand of hair gel
throughout the study (Woolworths Essentials ‘Firm Hold’). A small quantity of white
acrylic paint was added (approximately 2 % v/v) to introduce opacity, resulting in strong
diffuse scattering of light from the surface of the hair gel. Although this addition modified
the yield stress, it preserved the viscoplastic nature of the material (this was verified using
a cup and bob test with the Anton Paar MCR 702 rheometer; see § 5.2). The difference in
the yield stress across the three experiments is a result of small variations in the proportion
of paint.

The hair gel had density approximately 1000 kg m−3, and the surface tension is
approximately given by that of water, σ = 0.07 N m−1 (Taylor-West & Hogg 2024), which
furnishes a Bond number

Bo= ρgL2

σ
= 1400, (5.1)

suggesting that surface tension effects are negligible in the experiments. The Reynolds
number is given by

Re = ρUL

μ
= ρL2

μ

(
3μL

ρgĤ2∞ sin β

) = 0.015, (5.2)

where we have used the time scale from (2.1) and viscosity scale from (2.2), and the
consistency is determined with a rheometer; see § 5.2. The role of inertia is negligible.

In previous experimental studies that use hair gels (or similar carbomer fluids), the
elastic storage modulus G ′ at low strain is in the range 200−800 Pa (Tokpavi et al. 2009;
van der Kolk, Tieman & Jalaal 2023; Taylor-West & Hogg 2024). For our experiments, this
furnishes an elastic time scale λ= (k/G ′)1/n in the range 10−5−10−3 s (the consistency
is determined with a rheometer; see § 5.2). Two dimensionless groups quantify the relative
importance of elasticity: the Weissenberg number and the Deborah number. The former
is Wi = 2λγ̇ , which vanishes as the slump becomes arrested, and is always below 10−3

during the motion. The Deborah number is the ratio of the elastic time scale to the flow
time scale (which is of order hours); De = λ/Tflow, so De = 10−8−10−6. These values
suggest that elastic effects are negligible in our experiments.

Images were recorded without and with the fluid present, using a DSLR camera (Canon
5D Mark III) equipped with a telephoto lens (Canon 70–200 mm f/4 L IS USM) at focal
length 89 mm. An aperture f/22 was chosen with a large depth of field to ensure that the full
fluid surface was in focus. For each of the photographs, the projected lines were identified
using cubic spline fitting of points identified as exceeding two standard deviations above
the mean pixel intensity. The dimensional thickness of the material was then determined
using a spatially dependent pixel calibration, which considers the variable distance to the
camera, and accounts for the angle of the camera relative to the inclined plane. The 76
one-dimensional slices were interpolated to determine the dimensional thickness of the
entire two-dimensional fluid upstream of the obstacle (e.g. see figures 12a,c).
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Figure 12. (a) The fluid thickness at t̂ = 60 minutes from experiment 1 (square obstruction located in (x̂, ŷ) ∈
[−100 mm, 100 mm]2), which is compared with the lubrication prediction for the arrested state in (b). (c,d) The
fluid thickness for experiment 2 (circular obstruction) and the arrested state prediction, respectively. Parameter
values are given in table 1. White in (c) denotes a region with no data due to the circle obstructing the camera’s
view.
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Figure 13. Fluid thickness along the centreline measured in (a) experiment 1 and (b) experiment 2 after
60 minutes, and the final arrested state predicted by (3.10a)–(3.15).

5.1. Experiments 1 and 2
In experiments 1 and 2, after stopping the upstream supply of fluid, we waited 60 minutes
for fluid to drain and the slump to converge towards the arrested state. Experiment 1 was
conducted with the square obstruction, and experiment 2 with the cylindrical obstruction;
results for the fluid thickness at t̂ = 60 minutes are shown in figure 12.

The measured shape of the free surface along the centreline is shown in figure 13 along
with the predictions of (3.10a), (3.10b) and (3.15). Parameters for these two experiments
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Experiment 1 Experiment 2 Experiment 3

Obstruction Square Circle Square
L 100 mm 85 mm 100 mm
β β = 5◦ β = 6◦ β = 10.5◦
Ĥ∞ 5.8 ± 0.15 mm 12 ± 1 mm 33.5 ± 0.6 mm
b 0.66 ± 0.02 1.34 ± 0.2 1.81 ± 0.04
τY 4.96 ± 0.13 Pa (inferred) 12.3 ± 1 Pa (inferred) 57.05 ± 1 Pa (rheometer)

Table 1. Parameters for the three experiments conducted. For experiments 1 and 2, the upstream height Ĥ∞ was
measured at x̂ = −370 mm, with b calculated using (1.6), and the yield stress using (1.2). For experiment 3, the
yield stress was measured using a rheometer, and b and Ĥ∞ were calculated using (1.6) and (1.2), respectively.

are reported in table 1. The value of b is obtained by measuring the thickness of the layer
far upstream and then using (1.6); this does not require direct knowledge of the yield stress.
The yield stress is inferred from the height in the far field (at x̂ = −370 mm) using (1.2).

Figure 13 indicates that the free surface along the centreline after 60 minutes is
substantially larger than the rigid shape predicted by our lubrication model. The measured
free surface height is also higher than the predicted rigid shape away from the centreline,
as seen in figure 12. This is further seen in the maximum height and excess volume of the
fluid slump for experiment 1 (plotted as a diamond in figure 8) exceeding the predictions
of the theory. This volume prediction is calculated for −300 mm � x̂ �−100 mm to avoid
edge effects. We also note that the measured shape does not exhibit a sharp cusp at the
centreline (ŷ = 0).

The transient evolution of nine points along the centreline with t̂ ∈ [0, 60] minutes for
experiment 1 is shown in figure 14. This indicates that the convergence to the rigid shape
is algebraic in time, as suggested by our theoretical results, and that the decay is very slow
(cf. Ancey & Cochard 2009). Results from the Anton Paar MCR 702 rheometer found
that the hair gel mixture’s rheology was accurately fitted by a Herschel–Bulkley model
with n = 0.3, which suggests convergence with t̂−0.3. Our results suggest that in the first
60 minutes, the decay rate is even slower than this, especially near the barrier. The slower
time variation could be due to a residual slip velocity, or because the late-time behaviour
has not yet been reached at t̂ = 1 hour. These findings motivated an experiment with a
much longer time scale.

5.2. Experiment 3
We attribute the excess material in experiments 1 and 2 to the slump not reaching its final
stationary state within the time of the experiment. In experiment 3, the fluid was allowed
to drain and approach the arrested state for a significantly longer time period of 17 hours.

The constitutive relation for the hair gel–paint mixture from this experiment was
measured using a rheometer, which gave τY = 57.05 Pa, consistency k = 27.57 Pa s0.3,
and Herschel–Bulkley power-law exponent n = 0.3; see figure 15. Apart from at low strain
rates, there is good agreement between the up- and down-stepped tests. There was a thirty-
second rest period between the up and down data, suggesting that thixotropic effects are
negligible.

The measured height of the free surface after 17 hours is shown in figure 16, with
transects shown in figure 17. This is compared with our analytical predictions from (3.10a),
(3.10b) and (3.15). For this experiment, b = 1.81 (see table 1), which is obtained directly
from the Anton Paar MCR 702 rheometer; there are no fitting parameters here (unlike in
experiments 1 and 2).
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Figure 14. Transient evolution of the measured fluid thickness at nine points along the centreline from
experiment 1. The pouring of gel upstream stopped at t̂ = 0, but it takes approximately 100 s for this to
substantially alter the fluid thickness in the vicinity of the barrier. The time evolution follows power-law
behaviour; note the log-log scale.
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Figure 15. Steady-state flow curve for the hair gel and paint mixture. Data shown for up- and down-stepped
tests, and the best-fit Herschel–Bulkley constitutive law (yellow line).
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Figure 16. (a) The fluid thickness at t̂ = 17 hours from experiment 3. (b) Theoretical prediction for the static
shape with no fitting parameters.
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Figure 17. The measured height of the free surface after 17 hours (solid blue line), and height predicted by the
theory (dotted black line) for experiment 3 along (a) the centreline, and along the transects (b) x̂ = −150 mm
and (c) x̂ = −200 mm. (d) The relative height of the yield surface after 17 hours, as predicted by (1.5), where
white regions denote missing data due to the free surface being obscured by the fluid.

The comparison in figures 16 and 17 shows reasonable agreement, with the theory under-
predicting the fluid thickness closer to the obstruction, and over-predicting the thickness
further away from the obstruction by up to 11 %. The maximum height and excess volume
of the fluid slump are shown in figure 8 by a black ×, and are in excellent agreement with
the lubrication model prediction. Again, the measured slump does not exhibit sharp cusps
at the centreline, in contrast with the theoretical prediction. This is consistent with past
experiments (see e.g. Balmforth et al. 2006), and could be due to the finite time of the
experiments, since the kink is only realised asymptotically as t̂ → ∞, surface wrinkling
obscuring this phenomenon, or perhaps surface tension effects localised to the seam at
ŷ = 0.

We briefly comment on the expected approach of the fluid to its stationary state. The
time scale defined in (2.1) is approximately 10 seconds for experiment 3. Thus 17 hours
corresponds to a dimensionless time t ≈ 6 × 103; compare to figure 4(d). The algebraic
decay to the stationary state dictated by (2.5) and our numerical results predict that the
fluid thickness after 17 hours is approximately 8 % thicker than the final stationary state,
in agreement with the observed discrepancy. To improve on this, an even longer experiment
(say over a week) would be required. However, this is impractical as other effects such as
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evaporation would begin to become significant over such time scales. Indeed, dam-break
experiments using Carbopol have found that evaporation becomes significant after time
scales of 10 hours (Cochard 2007; Dubash et al. 2009).

We note that the lubrication parameter for experiment 3, being the ratio of the far-field
height to the half-width of the obstruction, is ε = Ĥ∞/L = 0.34. This indicates significant
departure from the lubrication approximation, with non-lubrication effects contributing
errors of order ε2, being ≈ 12 %. We also note that the experimental behaviour for
x̂ < −300 mm is attributed to edge effects from the pouring of the fluid onto the board.

Figure 17(d) shows the height of the yield surface, Ŷ after 17 hours. This was obtained
from the measured height of the free surface by smoothing ĥ in the x̂ direction using
a smoothing spline, and the height of the yield surface, Ŷ , is then inferred from (1.5).
Figure 17(d) suggests that the height of the yield surface does not exceed 20 % of the
free surface height in the bulk of the domain. However, near the upstream obstruction
corner (at ŷ = x̂ = −100 mm), the inferred height of the yield surface is non-negligible,
which indicates that the lubrication approximation may not be accurate in this region.
In particular, the requirement that shear stresses far exceed deviatoric normal stresses
(|τzx |, |τzy| � |τxx |, |τzz|), underpinning the lubrication approximation, likely does not
hold near the corners, where the stress balance requires a full three-dimensional treatment.
A similar observation has been made for viscoplastic material accumulating near the wall
of a moving squeegee (Ribinskas et al. 2024; Taylor-West & Hogg 2024).

6. Conclusion
We have analysed the shape of the rigid viscoplastic slump supported by a barrier on
an inclined plane, as well as the transient convergence to this shape for a Herschel–
Bulkley fluid. An exact expression for the rigid shape was found, which depends on a
single dimensionless parameter that measures the relative magnitude of the yield stress.
The arrested slump shape is independent of the viscous rheology and the nature of the
upstream source of fluid.

The reported theory for the stationary slump shape can be extended to obstructions of
different cross-section, provided that the length scale of variation in the barrier shape is
larger than the flow thickness so that lubrication theory applies. The case of a circle and a
wedge are straightforward extensions, discussed in Appendix D.

Laboratory experiments of the slumping of hair gel were reported. It was found that
the convergence to the final rigid state is very slow, in accordance with the expectations
of the model. Upon leaving the slump for 17 hours, we found that its shape can be
approximated by our analytical solution. Our results demonstrate that the late-time shape
of a supported slump could be used to infer the yield stress of the material provided that
the static state has been obtained. This could provide a tool for estimating the yield stress
of various hazardous environmental flows by observing the remnant material left upstream
of obstructions.

The hydrostatic force on the barrier is given by (4.7) for a square barrier, and by (D7)
for a barrier aligned at angle α to the downslope direction (for the half of the barrier
in y � 0). We apply these results to an example lava flow barrier, which is motivated by
those used during recent eruptions in Iceland (Sigtryggsdottir et al. 2025). The example
barrier has length scale L = 100 m, the underlying slope is 2◦, and the lava has yield stress
τY = 2000 Pa and density ρ = 3000 kg m−3. These values furnish b = 0.56 and upstream
thickness 1.95 m. The maximum flow thickness at the upstream wall and the magnitude of
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Figure 18. (a) Maximum thickness of the slump and (b) magnitude of the force on the half of the barrier
in y � 0 for the lava flow example discussed in § 6, as a function of barrier angle to the downslope
direction, α.

the force, |(F̂x , F̂y)|, on the half of the barrier in y � 0 are shown in figure 18 as a function
of barrier angle α, where α = π/2 corresponds to the square barrier. Although a barrier
of the same extent that is closer to perpendicular to the oncoming flow protects a larger
area downstream, it experiences a much larger force owing to the greater accumulation of
material.
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Appendix A. Numerical method
Equation (2.3) is numerically integrated using the method of lines. The spatial domain is
discretised using an evenly spaced mesh, and derivatives are approximated using a first-
order finite-volume method. The height at x = −6 is fixed to H = 1.

The resulting set of coupled, nonlinear ordinary differential equations for the height of
the free surface at each grid point is integrated in time using a forward-Euler scheme,
until the height of the yield surface is less than 10−4 over the whole spatial domain,
i.e. max(Y (x, y)) < 10−4. Typically, this required integration over the time domain t ∈
[0, 104]. The number of points in the spatial mesh is doubled until the final stationary
height of the free surface changes by less than 1 % between successive meshes. Use of
higher-order time integration schemes (we used MATLAB’s ode45 solver, implementing
fourth- and fifth-order Runge–Kutta methods) gives a final height of the free surface within
0.1 % of that calculated with the forward-Euler scheme.

Appendix B. Integrating Charpit’s equations
Charpit’s equations (3.8a)–(3.8e) are solved following Balmforth et al. (2002). Combining
(3.8c) and (3.8d), we obtain (Balmforth et al. 2002)

p = aq, (B1)

where a = a(s) is a constant along each characteristic. We eliminate p and q by
substituting (B1) into (3.2), giving
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p = a2H ± a
√

1 + a2 − H2

(1 + a2)Hb
, q = aH ± √

1 + a2 − H2

(1 + a2)Hb
. (B2)

Substituting into (3.8c) and (3.8d), and dividing each by (3.8e) furnishes

dy
dH

= ± bH√
1 + a2 − H2

, (B3a)

dx
dH

= ±
(

bH

aH ∓ √
1 + a2 − H2

)(
H√

1 + a2 − H2
± a

)
. (B3b)

Integrating (B3a) and (B3b) gives

y − y0 = ∓b
[√

1 + a2 − H2 −
√

1 + a2 − H2
0
]
, (B4)

x − x0 = b [H − H0(s)] − b log[Δ(H)/Δ(H0)], (B5)

with

Δ(H) = a ± √
1 + a2 − H2

H − 1
, (B6)

and Δ(1) = 1. This analysis applies to any obstruction shape; see also Appendix D.
Substituting the initial data (subscript ‘0’) for each set of characteristics gives the reported
solutions: (3.10a) and (3.10b) for the characteristics emanating from the obstruction face,
and (3.15) for those emanating from the obstruction upstream corners.

We note that for characteristics emanating from the face of a square barrier, at τ = 0, we
obtain

p0 = 1
b
, q0 = ± 1

bH0
, a = p0

q0
= ±H0. (B7)

Appendix C. Small and large b regimes
The slump shape and its volume can be derived analytically in the regimes b � 1 and
b � 1.

C.1. Small b regime
For b � 1, the rescaled free-surface height on the obstruction, (3.6), is

H0(s) =
√

2
b

(1 − |s|) + O(
√
b). (C1)

Combining this with the no-flux boundary condition (3.3) gives the scale for the extent
of slump as x + 1 ∼ √

b. This motivates defining the rescaled x coordinate

X = x + 1√
b

, (C2)

and expanding the slump height in powers of
√
b:

H = 1√
b

(
H̄0 + √

bH̄1 + O(b)
)
. (C3)
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Substituting (C2) and (C3) into (3.2), and expanding for small b, we obtain the governing
equations for H̄0 and H̄1:

(
1 − ∂H̄0

∂X

)2

= 0,
∂H̄1

∂X
= ±

√√√√ 1
H̄2

0
−
(

∂H̄0

∂y

)2

, (C4)

subject to the boundary conditions

H̄0(−1, y) =
√

2
b

(1 − |y|) , H̄1(−1, y) = 0. (C5)

Equation (C4) is solved via integration, giving

H̄0 = max
(

0, X +√2(1 − |y|)
)
, (C6a)

H̄1 = log

⎛
⎜⎜⎜⎜⎝

X + √
2(1 − |y|)√

−X

(
2 + X√

2(1 − |y|)
)

− √
2(1 − |y|)

⎞
⎟⎟⎟⎟⎠

−
√

− X√
2(1 − |y|)

(
2 + X√

2(1 − |y|)
)

. (C6b)

The asymptotic expansion breaks down in the vicinity of X = −√
2(1 − |y|), i.e. further

from the barrier, due to the leading-order term vanishing. An internal boundary layer
whose width is O(b) arises at X = −√

2(1 − |y|), which describes the slump height in
this region. Nonetheless, substituting (C6a) and (C6b) into (4.3) yields the excess volume
for b � 1, reported in (4.4a). Analysis of the internal boundary layer is required to obtain
the volume at O(b) and at higher orders, but is not needed for the results presented here.

C.2. Large b regime
For b � 1 and x + 1 = O(1), the free surface height is expanded in powers of b−1 as

H = 1 + b−1 H̃1 + b−2 H̃2 + O(b−3). (C7)

Substituting (C7) into (3.2), and expanding for large b, we obtain the governing equation
for H̃1, (

1 − ∂ H̃1

∂x

)2

+
(

∂ H̃1

∂y

)2

= 1, (C8)

with the boundary condition

H̃1(−1, y) = 1 − |y|. (C9)

This system is equivalent to the granular problem in Tregaskis et al. (2022). It is solved to
obtain

H̃1 = x + 1 +
√

(x + 1)2 + (1 − |y|)2. (C10)

However, (C10) does not describe the height of the free surface when x + 1 = O(b);
a boundary layer structure pertains far from the barrier. The outer region, where
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x + 1 = O(b), is analysed by defining the scaled coordinate

X = x + 1
b

. (C11)

For large b, the exact solution far from the obstruction is described by the corner
characteristics (3.15). Substituting (C11) into (3.15) and expanding for large b, we obtain
the free-surface height solution

H = 1 + 1
b2

[
(1 − |y|)2

2 (exp(−X) − 1)

]
. (C12)

Combining (C10) and (C12), we construct a uniformly valid composite asymptotic solution
for the free-surface height in the regime b � 1:

Huni = 1 + 1
b

[
x + 1 +

√
(x + 1)2 + (1 − |y|)2

]
+ 1

b2

⎡
⎢⎢⎣ (1 − |y|)2

2
(

exp
(

−(x + 1)

b

)
− 1

)
⎤
⎥⎥⎦

+ 1
b

[
1
2

(1 − |y|)2

x + 1

]
. (C13)

Substituting (C13) into the excess volume equation (4.3) yields the asymptotic result
reported in (4.4b).

Appendix D. Viscoplastic slump supported by general obstruction shapes
The method used to obtain the final rigid slump supported by a square obstruction (§ 3)
can be generalised to an arbitrary obstruction shape. The shape of the upstream boundary
of the obstruction is parametrised by (x0(s), y0(s)), where s gives an arc length of the
boundary. Combining the governing equation and no-flux boundary condition, (3.2) and
(3.3), the height of the free surface on the upstream wall of the obstruction face satisfies

H0(s)

∣∣∣∣bdH0

ds
− dx0

ds

∣∣∣∣= 1, (D1)

with appropriate boundary conditions at the obstruction edges (typically H0 = 1). For a
cylindrical obstruction (see figure 19), the height of the free surface at the upstream face
satisfies

H0(θ)

∣∣∣∣bdH0

dθ
+ sin θ

∣∣∣∣= 1, (D2)

where θ is the angle made with the positive x axis. To obtain H0(θ) requires numerical
integration. The initial data can be written in terms of H0(θ) as follows:

x0(θ) = cos θ, (D3a)
y0(θ) = sin θ, (D3b)

p0(θ) = 1
b

∓ tan θ

b H0(θ)
√

1 + tan2 θ
, (D3c)

q0(θ) = ±1

b H0(θ)
√

1 + tan2 θ
, (D3d)
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Figure 19. Stationary slumps supported by (a) circular and (b) wedge-shaped obstructions for b = 1.

for π/2 < θ < 3π/2. Substituting this initial information into (B4) and (B5) then furnishes
the stationary slump shape throughout the domain.

For a wedge cross-section, with the y > 0 part of the boundary having length unity and
angle α to the x axis, the shape on the upstream face is given implicitly by(

s − 1
b

)
cos2 α = (H0 − 1) cos α + log

(
H0 cos α − 1

cos α − 1

)
, (D4)

where s = 1 is the end of the boundary where H0 = 1. The initial data can be written as
follows:

x0(s) = s cos α, (D5a)
y0(s) = s sin α, (D5b)

p0(s) = 1
b

− cos α

b H0(s)
, (D5c)

q0(s) = − sin α

b H0(s)
. (D5d)

We can again use (B4) and (B5) with this initial information to obtain the stationary slump
shape throughout the domain.

The dimensional force (F̂x , F̂y) on the half of the barrier in y � 0 is given by

(F̂x , F̂y) = (sin α, − cos α)

∫ 1

0

H0(s)2

2
ds Ĥ2∞Lρg cos β, (D6)

which furnishes the magnitude of the force,

|F̂ | =
[

6
b

− 2(H0(0)3 − 1) cos α − 3(H0(0)2 − 1)

]
b

12 cos2 α
Ĥ2∞Lρg cos β, (D7)

where

H0(0) = W
[
(cos α − 1) exp(cos α − 1 − b−1 cos2 α)

]+ 1
cos α

, (D8)

and W is the Lambert W function.
Examples of the stationary slump solutions supported by obstructions with circular and

wedge cross-sections are shown in figure 19. The excess volume V (b) for a cylindrical
obstruction is non-monontonic with b (figure 20), so it is informative to analyse the
regimes of small and large b for a cylindrical obstruction.

1017 A14-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
48

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10485


Journal of Fluid Mechanics

10–2

10–2

b
100

Exact

b ≪ 1

b ≫ 1

102

10–1

V

Figure 20. Dimensionless excess volume of static material supported by an obstruction with circular cross
section. The b � 1 (D16) and b � 1 (D25) regimes are shown with dashed yellow and dotted red lines,
respectively.

D.1. Cylindrical obstruction, small b regime
For b � 1, the solution on the boundary is given by (see (D2))

H0(θ) = 1
| sin θ | , (D9)

for π/2 < θ < 3π/2. The no-flux boundary condition then furnishes the scaling r ∼ b for
the radial extent of the supported rigid material. This region therefore contributes O(b) to
the excess volume.

However, near the centreline where θ = π, (D9) becomes singular, and for a balance in
(D2), we scale

θ = π − b1/3φ, r = 1 + b2/3ξ, H = b−1/3 H̃ , (D10)

so (D2) becomes

H̃0

(
dH̃0

dφ
− φ

)
= −1, (D11)

which has solution (cf. Hinton & Hogg 2022; Hinton et al. 2023)

φ = −22/3 Ai′
[
(φ2/2 − H̃0)/21/3]

Ai
[
(φ2/2 − H̃0)/21/3

] , (D12)

where Ai is the Airy function, and we have used the condition that H̃0 ∼ 1/φ as φ → ∞
for matching with (D9). The maximum thickness occurs at φ = 0 and is given by H =
1.2836b−1/3. The leading-order solution in the region π − θ =O(b1/3) is obtained from
(3.2) as

H̃ = H̃0(φ) − ξ. (D13)

This region provides the dominant contribution to the excess volume:

V =
∫∫

(H − 1) dx dy. (D14)
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Substituting for H , we find that to leading order,

V = 2b2/3
∫ ∞

0

∫ H̃0

0
(H̃0 − ξ) dξ dφ (D15)

= 2b2/3
∫ ∞

0

H̃2
0

2
dφ

= 1.78b2/3. (D16)

This result is plotted as a yellow dashed line in figure 20, where it is compared to the
volume obtained from integrating Charpit’s equations (blue line). Although figure 20
indicates that the dimensionless excess volume is a non-monotonic function of b, the
dimensional excess volume is still an increasing function of the yield stress (as was the case
for a square obstruction). The scaling for the excess volume is different to that for a square
obstruction owing to the curvature at the upstream wall; similar variation between cross-
sections was observed for free-surface viscoplastic flows past obstructions (see Hinton
et al. 2023).

D.2. Cylindrical obstruction, large b regime
We restrict the analysis to π/2 < θ < π, which is sufficient due to the symmetry of the
problem. For b � 1, we write

H = 1 + b−1 H̃1. (D17)

On the upstream face, r = 1, (D2) becomes

dH̃1

dθ
+ sin θ = 1, (D18)

with solution

H̃1(r = 1) = cos θ + θ − π

2
. (D19)

In r � 1, H̃1 satisfies the governing equation (3.2), which becomes(
cos θ − ∂ H̃1

∂r

)2

+
(

sin θ + 1
r

∂ H̃1

∂θ

)2

= 1, (D20)

with solution

H̃1 = r cos θ + θ − π

2
+
√
r2 − 1 − tan−1

(√
r2 − 1

)
. (D21)

As for the square obstruction, a different asymptotic expansion is required distant from
the obstruction. For this scenario, the expansion is required when r =O(b) and π − θ =
O(1/b), and then H = 1 +O(b−2). On substituting and integrating, we find

H = 1 + b−2 (1 + Rφ)2

2(eR − 1)
, (D22)

with R = r/b and θ = π + φ/b.
Combining the expansions in the two regions, we construct a uniformly valid composite

asymptotic solution for the height of the free surface:
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H = 1 + b−1
[
r cos θ + θ − π

2
+
√
r2 − 1 − tan−1

(√
r2 − 1

)]
(D23)

+ b−2 [1 + r(θ − π)]2

2(er/b − 1)
− b−1 [1 + r(θ − π)]2

2r
. (D24)

The excess volume is calculated as

V = 2
∫ π

π/2

∫ 1/ sin θ

1
(H − 1)r dr dθ = 0.126 + log b

3b
. (D25)

This result is plotted as a red dotted line in figure 20, where it is compared to the volume
obtained from integrating Charpit’s equations.
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