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The effects of scale and aeration on violent breaking wave impacts with trapped
and entrained air are investigated both analytically and numerically. By dimensional
analysis we show that the impact pressures for Froude scaled conditions prior to the
impact depend on the scale and aeration level. The Bagnold–Mitsuyasu scaling law for
the compression of an air pocket by a piston of incompressible water is rederived and
generalised to 3D air pockets of arbitrary shape. Numerical results for wall pressure,
force and impulse are then presented for a flip-through impact, a low-aeration impact
and a high-aeration impact, for nine scales and five levels of initial aeration. Two of
these impact types trap a pocket of air at the wall. Among the findings of the paper
is that for fixed initial aeration, impact pressures from the flip-through impact broadly
follow Froude scaling. This is also the case for the two impact types with trapped air
pockets for impact pressures below 318 kPa, while impact pressures above this value
broadly follow the Bagnold–Mitsuyasu scaling law with full-scale pressures greater
than those predicted by the Froude law. For all impact types, the effect of aeration is
found to reduce the maximum impact pressure, maximum force and impulse. Good
agreement with the asymptotic model of Peregrine & Thais (J. Fluid Mech., vol. 325,
1996, pp. 377–397) is found for the flip-through impact pressure and a fair agreement
is found for the low- and high-aeration impacts. Based on the numerical results, a
modified scaling curve that combines Froude scaling and the Bagnold–Mitsuyasu law
is suggested. The practical implications of the findings are discussed and attention is
drawn to the limitations of physical model tests.
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1. Introduction

Steep-fronted coastal structures such as breakwaters and sea walls can suffer
severe damage during violent storms. When Oumeraci (1994) reviewed the failures
of 22 breakwaters of various types, he concluded that breaking waves were the
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most significant cause of damage and that greater knowledge was required of the
associated impact loads. Subsequent attempts to obtain a detailed understanding of
the temporal and spatial variations in the associated pressure, force and impulse have
been complicated by the fact that significant quantities of air are usually entrained
as bubbles within the water column due to wave breaking and earlier wave impacts.
Additional air is often trapped as a pocket between the overturning breaker and the
structure. This means that compressibility effects need to be taken into account even
if the water is assumed to be incompressible.

Bagnold (1939) was one of the first to conduct laboratory experiments into breaking
wave impacts on a vertical wall and found that the highest pressures occurred when
a small pocket of air was trapped against the wall. This was confirmed by Hattori,
Arami & Yui (1994) who also observed that pressure waves propagated away from
the impact zone at the speed of sound, i.e. as acoustic waves in the fluid. Other
findings regarding the characteristics of violent wave impacts include the strong
sensitivity of impact pressures to wave shape (Bagnold 1939; Hattori et al. 1994;
Peregrine et al. 2006; Bullock et al. 2007), see also Chan & Melville (1988), and
oscillatory temporal pressure variations following the main impact due to alternate
compression and expansion of trapped air. The latter has often been found to lead
to the occurrence of subatmospheric pressures at the end of the first and even
subsequent expansion phases (Bullock et al. 2007). All of these phenomena were
comprehensively reproduced in the results of Bredmose, Peregrine & Bullock (2009),
who developed a novel model of aerated flows and computed its solutions numerically.
This study also showed how acoustic pressure waves can develop into shock waves in
the more extreme cases and that reflection at the seabed can lead to large pressures
at the toe of a structure which can propagate back to the impact zone after reflection.
Semi-analytical solutions for the linear propagation and reflection of pressure waves
in relation to violent wave impacts on vertical walls have been presented by Cooker
(2002) and Korobkin (2006). Recent computations by Plumerault, Astruc & Maron
(2012) indicate that if the reflected pressure waves are in phase with the oscillation
of the air pocket, pressures higher than those caused by the initial impact may occur
due to resonance.

Entrained air is usually associated with a reduction in impact pressure due to the
cushioning effect of the air. In principle, this could be taken into account by use of
a scale-dependent pressure reduction factor such as that described by Bullock et al.
(2001). Conversely, the existence of a trapped air pocket may lead to an increase
in the pressure impulse exerted at the wall, as shown by Wood, Peregrine & Bruce
(2000). This latter effect is also likely to be scale dependent, although there are no
previous studies on how this might be accounted for.

The design of coastal structures is often based, at least in part, on small-scale
physical model tests conducted in freshwater, designed according to the Froude law
which preserves the ratio of the water’s inertial to gravitational forces. This model
law implies that the pressures scale with the length scale ratio between model and
prototype. If the impact pressures are generated by a breaking wave that in the field,
even if not in the model, would be associated with appreciable quantities of entrained
and/or trapped air, Froude scaling can lead to erroneous results.

The present paper aims to provide a better understanding of the effects of scale
and entrained air on violent impact pressures, forces and impulses mainly by means
of a detailed numerical investigation built upon fundamental physical principles. It
is part of a combined field, laboratory and numerical study into Breaking Wave
Impacts on Steep-fronted COastal STructures (BWIMCOST). The field measurements
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were taken at Admiralty Breakwater on Alderney in the Channel Islands, see Bullock
et al. (2003). Most of the extensive laboratory test programme was conducted in
the ‘Grosser Wellen Kanal’ (GWK or Large Wave Channel) in Hanover, Germany,
using a vertical or sloping wall mounted on a 1:4 scale model of the mound of
Admiralty Breakwater. The results of the regular wave tests have been presented in
Bullock et al. (2007), which is paper 1 of the present series. Paper 2 by Bredmose
et al. (2009) details the formulation of a numerical model for aerated flows and its
application to wave impacts with entrained and trapped air.

In the present paper, the numerical model is applied to wave impacts over a
range of different geometric scales and levels of ambient aeration. This permits
a clear identification of the fluid dynamical processes and will potentially enable
better account to be taken of aeration and scale in engineering design. The paper
is structured as follows. First, a review of existing work on scale and aeration
effects for violent wave impacts is given in § 2. Next, in § 3, a generalisation of the
Bagnold–Mitsuyasu scaling law is derived. Section 4 presents the method and scope
of the computations, while in § 5, pressure, force and impulse for a flip-through,
a low-aeration and a high-aeration impact are described and the maximum impact
pressures are compared with the Bagnold–Mitsuyasu scaling law. Results for different
initial levels of aeration are described in § 6 and then compared with the approximate
solution of Peregrine & Thais (1996). A summary and discussion are given in § 7.

2. Review of the effect from scale and aeration
Froude scaling is the most commonly applied model law for scaled experiments

with gravity waves and is based on the assumption that the influence from viscosity,
surface tension and air can be neglected. For a length scale ratio of S between
prototype and model, it implies that velocity and time scale like S1/2, while pressures
scale like ρw,proto/ρw,modelS. Here, ρw is the density of unaerated water.

The presence of trapped and entrained air makes the Froude scaling law questionable
for violent wave impacts. The violent impact pressures are influenced by (i) the scale
effect associated with the change of dynamic fluid pressure relative to the atmospheric
pressure and (ii) the aeration due to wave breaking and previous wave impacts which
introduces compressibility effects. A review of the existing literature on these two
effects is given below. In many cases, the two influences cannot easily be separated,
as, for example, the level of aeration often increases with the scale. Throughout the
paper p denotes absolute pressure and p0 atmospheric pressure, such that p − p0 is
the gauge pressure.

2.1. Scale effects
Blackmore & Hewson (1984) obtained field data from Ilfracombe sea wall, UK, and
studied the relation between the maximum wave-impact pressure (pmax − p0) and the
rise time, (tr), from the background pressure up to maximum pressure. They found
empirically that a curve of the form pmax− p0= k/tr provided a good fit to the upper
envelope of the measured peak pressures, k being a dimensional constant. Further,
analysis of six sets of field data and three sets of laboratory data led to a suggested
formula for the peak pressures, pmax − p0 = λρwTc2

b, where (T, cb) are the period and
phase speed of the impacting wave and λ is a parameter with units of s−1. Although
the pressures for each data set showed considerable scatter, values for λ between 1.0
and 10 at model scale and between 0.1 and 0.5 for field data were suggested. Based
on the two upper limits and Froude scaled wave motion at a scale ratio of 1:20, this
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relation implies a pressure ratio of (pmax,proto− p0)/(pmax,model− p0)≈ 201/2≈ 4.5 which
is well below the Froude law value of 20.

Lugni et al. (2010b) studied a wave impact with an enclosed air cavity in a 2D
sloshing test. Their measured time histories of pressure in the air pocket showed the
characteristic oscillation associated with cyclic compression and decompression of the
air pocket. The experiments were carried out in a closed tank which allowed the air
pressure in the initial situation of calm water, the ullage pressure, to be varied. The
air pocket evolution was studied in terms of the Euler number and cavitation number,
which in our notation are Eu=2(p0−pullage)/(ρwu2

0), Ka=2(pullage−pv)/(ρwu2
0), where

pv is the vapour pressure. The compressibility of the air pocket was quantified in
terms of the ratio of pocket area at its most compressed and expanded states, which
was found to increase with the Euler number and to decrease with the cavitation
number. For Eu ∈ [0; 30] the growth was quasilinear, then for Eu ∈ [28; 38] a plateau
regime was identified where the pocket compression varied little with Eu. For Eu> 40,
where Ka< 4 the compression ratio grew strongly again, due to cavitation during the
pocket expansion. The observation of increased pocket compression at increased Euler
number is in agreement with the numerical results of Peregrine et al. (2006). Further,
it was found that the frequency of the pocket oscillations decreased with the Euler
number. A detailed study of the dynamic pressure in the cavity and surrounding fluid
was provided in a separate paper (Lugni, Brocchini & Faltinsen 2010a). Analytical
formulae for the pocket frequency have been published by Abrahamsen & Faltinsen
(2012), where it was found that the position of the free surface affects the oscillations
strongly. The decay and damping of the pocket oscillations have been investigated by
Abrahamsen & Faltinsen (2011), who found that air escape causes an initial decay
in the pocket oscillations. Additionally, pockets that closed against a wall showed
a damping, and here it was found that heat exchange to the surrounding water can
explain this damping.

Many authors have worked with the 1D piston analogy of Bagnold (1939) for
wave impacts that trap a pocket of air. In this model a mass of water is released at
a velocity u0 and compresses a volume of air that is initially at atmospheric pressure
p0. The effect of gravity is neglected such that the only force to decelerate the piston
is due to the pressure difference between the air pocket and the ambient air. Bagnold
calculated time series of pressure at two scales from the model and found that for
maximum pressures in the range of 2–10 atmospheres, the pmax were given to within
±10 % by pmax − p0 = 2.7ρwu2

0K/D, where K and D are the initial lengths of the
impacting water and the trapped air pocket and p0 is the atmospheric pressure. If the
parameters u0,K and D are scaled using the Froude model law, the above relationship
implies that pmax − p0 scales in proportion to the length scale. Mitsuyasu (1966)
extended the Bagnold model to cover air leakage from the pocket during compression
and, for the case of no leakage, also derived an expression for pmax. Lundgren (1969)
discussed the scaling implication of this result and presented a scaling curve with pmax
as function of a dimensionless wave height. However, application of these results to
real wave impacts is not straightforward due to the need to convert the parameters of
the wave into the K, D and u0. Takahashi, Tanimoto & Miyanaga (1985) applied the
model to slamming beneath bridge decks, where air can be trapped, and noted that
the maximum pressure is a function of the dimensionless group BgN = ρwKu2

0/(p0D).
He called this group the ‘Bagnold number’.

Bredmose & Bullock (2008) (see also Bullock & Bredmose 2010) extended the
derivation of the Bagnold–Mitsuyasu model to 2D and 3D axisymmetric air pockets
and demonstrated that the resulting pressure laws were identical to the 1D case.
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They were also able to show that the Bagnold number is directly proportional to
the length scale in cases where the hydrodynamics is Froude scalable. This means
that precise values of K, D and u0 are not needed for application of the scaling
law. Bredmose & Bullock (2008) next compared some early numerical results for
scaled wave impacts with their proposed scaling curve and found an encouraging
level of agreement. Recently, Cuomo, Shimosako & Takahashi (2009) have applied
the pressure model of Takahashi et al. (1985) to the analysis of the pressures due
to ventilated wave impacts on the underside of decks. Cuomo, Allsop & Takahashi
(2010b) (see also Cuomo et al. 2010a) have also provided a way of estimating K, D
and u0 from the wave parameters that allows prediction of prototype pressures with
inclusion of air leakage.

More recently, Abrahamsen & Faltinsen (2013) derived a second-order ordinary
differential equation (ODE) for the dynamics of the pressure in a trapped air pocket
of arbitrary shape. The model has two free parameters that for a measured pressure
history can be fitted to match the maximum pressure and rise time. Next, the model
can be scaled to prototype and solved to yield the maximum pressure and rise time
at full scale. Abrahamsen & Faltinsen applied the scaling procedure to a problem of
air pocket compression in the upper corner of a sloshing tank and obtained a close
match to the results of a mixed Eulerian Lagrangian numerical model.

Research into the scaling effects of liquid-impact pressures has also been the
focus of the Sloshel project on the sloshing problem for LNG tankers (e.g. Brosset
et al. 2009). In this project Braeunig et al. (2009) found that for an impact to scale
consistently, not only must the flow prior to impact be Froude scalable, but also
the density ratio and sound speed ratio of the liquid and the ambient gas must be
preserved. Bogaert et al. (2010) compared Froude scaled experiments for freshwater
wave impacts at two scales and found a good agreement with a surrogate piston
model for the scaling of pressures. However, they noted that use of the results of
Kimmoun, Ratouis & Brosset (2010) from two smaller scales would have led to
a different scaling relation. This confirms the difference of scaling implied by the
Bagnold–Mitsuyasu law. Recently, Lafeber, Bogaert & Brosset (2012) compared
carefully Froude scaled wave flume impacts at two scales and found a good match
to the Bagnold–Mitsuyasu scaling law.

2.2. Aeration effects
Deane & Stokes (2002) investigated bubble formation processes in a laboratory wave
channel filled with seawater and found that two mechanisms controlled the distribution
of bubble sizes within the plume formed by plunging breakers approximately 0.1 m
high. Bubbles larger than 2 mm in diameter were created as the air pocket trapped
below the crest fragmented. Smaller bubbles, down to at least 0.2 mm, were mainly
formed when the overturning crest plunged into the water in front of the wave.
Analysis of bubble size spectra suggested that bubbles of less than 2 mm in diameter
were unlikely to break up. The distributions of bubble size within spilling breakers
in the field were found to have similar spectra despite the difference in geometrical
scale. This implies that, even if seawater were to be used in a small-scale physical
model, bubble fragmentation would not scale because the Weber number, that is, the
ratio of the fluid inertia forces and surface tension forces, would be different.

A number of factors have been identified that may cause bubbles to be smaller
in saltwater and seawater than in freshwater (Scott 1975; Slauenwhite & Johnson
1999). Because small bubbles rise up to the surface at a slower speed than large
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bubbles, this enables entrained air to persist for longer in seawater than in freshwater.
Bullock et al. (2001) conducted laboratory tests of wave impacts on a vertical wall in
freshwater and seawater and detected significantly higher aeration levels in seawater
than in freshwater. This contrasts with the results of Blenkinsopp & Chaplin (2007b,
2011), who found the bubble plumes to be very similar when they studied plunging
breakers up to 0.1 m high in a laboratory wave channel filled with freshwater,
artificial seawater and natural seawater. As noted by Blenkinsopp & Chaplin (2011),
the difference may be due to the almost double wave height of Bullock et al. relative
to Blenkinsopp & Chaplin, which may have increased the air entrainment for each
wave and thus led to a stronger accumulation of small air bubbles in the saltwater
over time.

An increase in scale implies an increase in aeration level, due to the fact that the
distance an entrained air bubble needs to travel to escape from the water increases
directly with the length scale, while the wave period scales with the square root
of the length scale. This effect was examined by Blenkinsopp & Chaplin (2007b)
for the evolution of their measured plumes by means of a Lagrangian simulation
model that tracked the development of each individual bubble under the influence of
turbulent diffusion, bubble dissolution, buoyancy and hydrostatic bubble expansion.
This indicated that, at 20 times the physical model scale, a significant number of
bubbles could persist for several wave periods, leading to an appreciable ambient
level of aeration.

The effect of entrained air on impact pressures was investigated by Bullock et al.
(2001), who conducted comparative laboratory drop tests in freshwater and seawater
with controlled aeration. While for the drop tests, the freshwater pressures were
only slightly larger than for saltwater, the regular wave tests showed a significant
reduction in impact pressures of approximately 10 % associated with saltwater. This
was attributed to the difference in average aeration level, which for the freshwater
tests was measured to be 0.2 % while the seawater value was 3.1 %. Bullock et al.
further presented field data from the Admiralty Breakwater which showed that aeration
levels of 40 % (at atmospheric pressure) were not uncommon at the time of maximum
pressure in the measured violent wave impacts.

The cushioning effect of entrained air on a flip-through wave impact (Cooker &
Peregrine 1990) was investigated by Peregrine & Thais (1996). Their model was
the compressible extension of the work of Peregrine & Kalliadasis (1996) for the
‘filling flow’ of a liquid container. Given (in our notation) the inflow speed v0, the
ambient pressure p0, the initial aeration at the inflow β0, the container height Ĥ and
the inflow height ĥ, the model provides a solution for the maximum pressure pmax
and all other parameters of the flow. Peregrine & Thais (1996) also presented an
approximate solution valid for small values of ε = 1 − ĥ/Ĥ and air fraction β0. For
pmax this reads

pmax − p0
1
2ρwv

2
0
= 1
(ε+ β0)2

, (2.1)

which illustrates how the entrained air acts to reduce the impact pressures. The
parameter ε is a measure of the impact violence. The smaller the value, the greater
the violence.

3. Scaling analysis for aerated wave impacts
3.1. Dimensional analysis

We consider the situation sketched in figure 1(a), where a free-surface gravity wave
is about to break against a vertical wall, at a fixed instant of time t0 prior to impact.
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FIGURE 1. (a) Approach of a gravity wave towards impact at a wall. (b) An air pocket
of arbitrary shape prior to compression by an incompressible fluid.

A Cartesian coordinate system (x, y) is defined, where x is the horizontal coordinate,
positive in the direction of wave propagation with origin at the wall, and the y-axis
points upwards from the still water level. It should be noted that although the analysis
is carried out for two-dimensional waves, the results are valid in three dimensions. The
density of unaerated water is denoted by ρw, the gravitational acceleration by g and
the position of the free surface by the vector curve (x, y)free surface = R(ξ), where ξ is
a parameter specifying the surface. The still water depth is denoted h̃(x), the internal
velocity field is u(x) = (u(x, y), v(x, y)) and the fluid is considered to be a mixture
of unaerated incompressible water and compressible air with local air volume fraction
β =Volair/Volmixture. The corresponding air volume fraction at atmospheric pressure is
denoted by β0(x). The compression of air is assumed to happen adiabatically such
that pair = p0(σ/σ0)

γ , where p0 is the atmospheric pressure, σ0 is the air density at
atmospheric pressure, σ is the instantaneous air density and γ = 1.4 is the exponent
of adiabatic compression. As a first approximation, and well in accordance with most
wave theories, the effects of viscosity and surface tension will be neglected. This
makes the maximum wall pressure in the subsequent wave impact pmax a function of
all of the above parameters ρw, g, h̃(x), R, u(x), β0(x), p0, σ0, γ . Normalisation with
ρw, g and the still water depth at the foot of the wall, h, gives

pmax − p0

ρwgh
= f

(
h̃(x)

h
,

R
h
,

u(x)√
gh
, β0(x),

p0

ρwgh
,
σ0

ρw
, γ

)
, (3.1)

where (pmax − p0)/(ρwgh) is the normalised maximum wave-impact pressure.
We now consider a situation where a specific wave impact is scaled to a new

length scale, as would be the goal of a model scale experiment. While the two first
parameters on the right of (3.1) are invariant to a change of length scale, the third is
scale-independent only if the velocity field u scales as the square root of the length
scale, which defines Froude scaling of the flow. Hence, in the case of Froude scaled
flow and no air, so that the other four dimensionless factors do not feature in f , we
deduce that f is a constant and the impact pressures scale directly with the density
and the length scale.
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For an impact process in which air plays a significant role, it is necessary to
consider all of the parameters of the functional dependence in (3.1). The parameters
σ0/ρw and γ , however, are scale-independent. Hence, for the case of Froude scaled
initial flow (3.1) can be written

pmax − p0

p0
= f
(
β0(x),

ρwu2
0

p0

)
, (3.2)

where u0 is a reference velocity picked from u(x) and the invariance of u0/(ρwgh)
under Froude scaling has been utilised. From this result, the normalised maximum
gauge pressure (pmax − p0)/p0 for a specific Froude scaled wave impact is a function
of the initial aeration and the ratio of dynamic pressure to the atmospheric pressure
(ρwu2

0)/p0. The latter parameter is seen to scale directly with the length scale and
may therefore, for a specific wave impact, be represented directly by a measure of
the length scale. This forms the basis for the parametric investigations of §§ 5–6, and
the aim of the paper is to explore the form of f .

3.2. Generalisation of the Bagnold–Mitsuyasu scaling law
Bredmose & Bullock (2008) showed that the Bagnold–Mitsuyasu scaling law can be
generalised to include also the 2D and 3D axisymmetric cases. Here, we show that the
scaling law is even more general, as it applies to any situation in which all the kinetic
energy within a certain fluid region goes into the compression of an air pocket. We
note that this assumption may be questionable for a wave impact since kinetic energy
is also used to accelerate the fluid away from the impact zone and as the balance
between the relative amounts of work for compression and acceleration may not be
invariant to scale. We further note that the recent scaling procedure of Abrahamsen
& Faltinsen (2013), which is also valid for pockets of arbitrary shape, also allows for
the scaling of rise time. The scaling procedure proposed here is more simplistic as it
only concerns the maximum pressure. Apart from the generalisation of the Bagnold–
Mitsuyasu scaling law’s applicability, one of the aims of the present study is therefore
to investigate its validity for wave impacts by the computations of § 5.

Consider the liquid region of volume V∗ in figure 1(b) which encloses an air pocket
of volume V0 that is initially at atmospheric pressure. If the liquid has density ρw and
the velocity field u, its kinetic energy is

Ekin = 1
2

∫
V∗
ρwu · udV. (3.3)

The air is assumed to obey the adiabatic compression law

p
p0
=
(
σ

σ0

)γ
=
(

V0

V

)γ
, (3.4)

where V is the instantaneous volume of the pocket. The work needed to compress the
air to the pressure pmax is

W =
∫ pmax

p=p0

(p− p0)dV, (3.5)

and from (3.4) we have

V = V0

(
p
p0

)−1/γ

, dV =− 1
γ

V0

p0

(
p
p0

)−(γ+1)/γ

dp. (3.6a,b)
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We may now express the assumption that all the kinetic energy goes into compression
of the air by equating (3.3) to the result of (3.5) after integration,

W =− p0V0

γ − 1

[(
pmax

p0

)(γ−1)/γ

+ (γ − 1)
(

pmax

p0

)−1/γ

− γ
]
= 1

2

∫
V∗
ρwu · udV. (3.7)

Upon definition of

P = pmax − p0

p0
, (3.8)

F (P)= (P + 1)(γ−1)/γ + (γ − 1) (P + 1)−1/γ − γ , (3.9)

C=−γ − 1
V0

1
2

∫
V∗

u · u
u2

0
dV, (3.10)

the relation (3.7) can be written

F (P)=C
ρwu2

0

p0
, (3.11)

where C is a scale-independent constant. If the inverse of F is applied on both sides
of this equation, one obtains P =F−1(Cρwu2

0/p0), which is of the form postulated
by (3.2), when the effects of entrained air are neglected.

For a given topography and velocity field, C can be evaluated and (3.11) solved
for pmax. Even without knowledge of the velocity field and topography, however, a
scaling law can be derived by evaluation of (3.11) at two different scales under the
assumption that the velocity fields are Froude scalable. Denoting the scales by ‘1’ and
‘S’ one obtains

F
(
P [1])=C

ρwu[1] 20

p0
, F

(
P [S])=C

ρwu[S] 20

p0
=C

ρwu[1] 20 S
p0

, (3.12a,b)

where under Froude scaling u[S]0 =
√

Su[1]0 . Thus, we deduce

P [S] =F−1
(
SF (P [1])

)
. (3.13)

The implication of the scaling relation is illustrated in figure 2 where P is plotted
against F (P). For a given pressure P [1], the scaled pressure P [S] can be obtained
graphically by reading off F (P [1]) on the horizontal axis, multiplying it by S to
obtain F (P [S]) = S F (P [1]) and subsequently reading off the corresponding value
for P [S] on the vertical axis. It should be noted that no knowledge of wave shape
or physical geometry is needed for its application. Furthermore, as no assumption for
the shape of the cavity has to be made, it is valid for 2D and 3D pockets of arbitrary
shape. As long as uniform pressure can be assumed, the scaling law is even valid for
the case where the air pocket is subdivided into a number of smaller pockets.

To aid the interpretation of the scaling curve, a solid line with slope unity has been
added to figure 2. This slope corresponds to Froude scaling of the pressure and is
tangent to the curve at P = 3.18. This value was found by solving the equation
d log P/d log F = 1 and corresponds to a gauge pressure of 3.18 p0 = 318 kPa.
Further, the asymptotic limits

P ∼ S1/2, P� 1, (3.14)
P ∼ S7/2, P� 1 (3.15)
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FIGURE 2. (Colour online) Scaling curve for the Bagnold–Mitsuyasu scaling law. The
arrows demonstrate the scaling procedure which is based solely on the measured pressure
at one scale.

are shown as dashed lines. It should be noted that the dramatic increase in the slope
of the scaling curve at the highest pressures covered by the plot is well beyond the
normal range relevant for coastal engineering.

Because the scaling factor for pressure from one scale to another is determined by
the slope of the chord passing through (F [1], P [1]) and (F [S], P [S]) on the curve,
figure 2 indicates that the following three types of situation can arise.

(a) P[1]< 3.18 and P[S]< 3.18. Here, the relatively gentle chord slope implies that the
use of Froude scaling would lead to an overestimation of the prototype pressure
by comparison with the Bagnold–Mitsuyasu law. This is consistent with the
widespread belief among practising engineers that Froude scaling of laboratory
wave-impact pressures often leads to unrealistically high predicted pressures. The
numerical results of § 5, however, demonstrate that the Bagnold–Mitsuyasu law
is not relevant in this situation.

(b) P[1] < 3.18 and P[S] > 3.18. In this intermediate situation, the slope of the chord,
and hence the implications by comparison with Froude scaling, will depend on
the particular circumstances.

(c) P[1] > 3.18 and P[S] > 3.18. Here, the steeper chord slope implies that the use of
Froude scaling can lead to a serious underestimation of the prototype pressure
by comparison with the Bagnold–Mitsuyasu law. Little consideration is given
to this possibility in engineering design. Although pressures at model scale
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are often below 318 kPa, many waves in the study of Bullock et al. (2007)
generated pressures in excess of this value, a few even exceeding 1 MPa. For
such a 1 MPa pressure, measured at scale 1:4, the Bagnold–Mitsuyasu law would
suggest a prototype scale pressure of 13 MPa, which is more than three times
larger than the Froude scaled value of 4 MPa.

4. Numerical computation of violent wave impacts
4.1. Numerical set-up

The numerical set-up is identical to that of Bredmose et al. (2009) apart from a
slightly larger vertical extent of the compressible-flow domain and a modification of
its offshore boundary condition which is detailed below. A vertical wall is placed at
x = 0 m on top of a 3 m high, 18 m long semi-elliptical mound. At the offshore
depth of 4.25 m, a unidirectional wave group is used as initial condition, formed by
modulation of a 50 m long regular stream function theory wave (Fenton 1988).

Because aeration effects are relatively unimportant away from the wall and prior to
impact, the nonlinear wave propagation and transformation over the mound was
calculated by an incompressible potential-flow solver (Dold & Peregrine 1986;
Tanaka et al. 1987; Cooker et al. 1990; Dold 1992). To account for the effects
of trapped and entrained air, the final propagation to the wall and the subsequent
impact were computed using a compressible-flow model for aerated water. The
model is a two-phase finite-volume solver for the conservation equations of density,
horizontal and vertical momentum, air density and energy density. The model and its
numerical implementation in the finite-volume framework Clawpack (LeVeque 2002)
are described in detail in Bredmose et al. (2009). Here, the convergence properties
and model limitations in terms of creation of spurious pressure oscillations in front of
transmitted shock waves that propagate from air into water are further discussed. The
latter effect is caused by numerical smearing of the air–water interface and requires
a sufficiently refined numerical grid to be kept under control.

The initial condition for the computation was taken from the incompressible-flow
solution when the wavefront was approximately 0.5 m from the wall. Moreover, the
offshore boundary condition was taken from the incompressible-flow solution. In
Bredmose et al. (2009), however, this could for some impacts lead to propagation of
spurious pressure waves from the offshore boundary. These waves were caused by the
instantaneous propagation of the impact pressure in the incompressible-flow solution,
which led to large pressures at the offshore boundary which would next be imposed
on the compressible flow. To overcome this, a pragmatic approach was utilised in the
present study, where the smallest of the incompressible-flow pressure and the pressure
in the first inner point of the compressible-flow domain was applied at the offshore
boundary. This method was found to reduce the propagation of spurious pressure
waves significantly with little change of other flow aspects.

The compressible-flow model has been validated successfully against a one-
dimensional piston test for compression of an air pocket and the fully nonlinear
potential-flow solution for a flip-through impact in Bredmose et al. (2009). The
extraordinary variability found in physical tests makes the case-specific pressure
records obtained for violent wave impacts unsuitable for detailed comparison. In
controlled laboratory tests using regular waves, not only do the measured pressures
vary greatly from wave to wave, causing Hattori et al. (1994) to describe wave
breaking as an extremely unstable phenomenon, but Bullock et al. (2007) measured
pressures an order of magnitude different in the same wave at locations at an
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identical elevation just 1 m apart. Similar behaviour has also been recorded using
highly repeatable focused wave groups (Peregrine et al. 2006). Reproduction of
the fine detail of breaker shape that leads to such variability in physical models
is outside the scope of the present investigation and may well be impossible
using a 2D simulation. However, the numerical model has already been shown
to reproduce a strong sensitivity to wave shape in line with the overall trends found
in experiments (Bredmose et al. 2009). A direct comparison with a small-scale
high-aeration impact has also been presented in Jayaratne et al. (2008). Despite
observable three dimensionality and notable differences in the final shape of the air
pocket, the model showed a generally good agreement with the measured pressures
including the oscillation in the trapped air. It should be noted that this test was made
with a preliminary version of the model that utilised an explicit equation of state
rather than conservation of energy. As demonstrated by Bredmose et al. (2009), the
two formulations are mathematically identical for flows without shock waves, as was
the case for the reproduced experiment. In this paper, the updated model was further
shown to be able to reproduce the oscillatory and subatmospheric pressures in trapped
air pockets and the compression of aerated water by the impact pressures, further
to the strong sensitivity of the impact pressures to the wave shape. Consequently,
there is good reason to suppose that the model is capable of correctly identifying the
overall influences of both scale and the level of entrained air, which are the objectives
of the present paper.

4.2. Three impact types
Numerical results for eight different wave impacts at one scale and water with an
initial aeration of 5 % were presented in Bredmose et al. (2009). Three of these, which
are respectively typical of a flip-through impact, a low-aeration impact and a high-
aeration impact, have been selected as the basis for the present study.

A flip-through impact is characterised by a rapid focusing of surface points in
the wave trough and crest just as the breaker reaches the wall. This leads to the
formation of a jet of water up the wall, which prevents any air from being trapped
between the wave and the wall. Lugni, Brocchini & Faltinsen (2006) measured
vertical accelerations up to 1500g for a flip-through impact in a sloshing tank, while
Cooker & Peregrine (1991) reported numerical flip-through accelerations in excess
of 10 000g. A combined experimental and numerical study for a flip-through impact
on an idealised coastal structure has been presented by Bredmose et al. (2010). In
a low-aeration impact, the wave crest turns over slightly and traps a small pocket
of air. This type of event is often associated with the highest impact pressures.
A high-aeration impact is characterised by significant overturning prior to impact,
leading to the entrapment of a much larger pocket of air. Detailed results for the
flip-through and low-aeration impacts may be found in Bredmose et al. (2009).
Similar information for the evolution of the high-aeration impact is presented here in
figure 3.

The snapshots of density and pressure for t= 28.374 s show the impact close to the
instant of maximum pressure where an air pocket has been trapped and compressed
against the wall. The strong impact pressure propagates away from the impact zone
and down the wall. Reflection of these waves at the bed leads to the formation of a
region of high pressure at the toe of the wall (t= 28.390 s). The expansion associated
with decompression of the air pocket can be seen in the corresponding density plot
and leads to negative (subatmospheric) pressures in the air pocket. Further inspection
of the computational results shows how air leakage leads to the formation of an escape
flow out of the pocket prior to its closure.
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FIGURE 3. Density and pressure variation during a high-aeration impact: (a) the density
and pressure fields at t= (28.374, 28.390) s; (b) the pressure at the wall in the (t, y)-plane
with the pressure scale identical to that of (a). The time instants of the snapshots are
marked by solid vertical lines in (b).

Figure 3(b) gives a compact view of the pressure time history at the wall, in terms
of a (t, y)-plot of the wall pressure. Visible in the plot are the early stages of impact
before pocket closure (t ≈ 28.36 s), the pocket closure and continued compression
to maximum pressure, the vertical distribution of the impact pressure within the
pocket, the propagation of pressure waves down the wall that initiate before the time
of maximum impact pressure, the reflection of the pressure wave at the bed, the
uprush along the wall that follows the maximum impact pressure (from t ≈ 28.38 s)
and the expansion of the pocket that leads to a distributed subatmospheric pressure
(t= 28.40 s). The plot also indicates that two mechanisms can lead to the recurrence
of high pressures in the impact zone: (a) the second and subsequent compression
phases of the oscillation of the air pocket and (b) the return of reflected pressure
waves from the bed.

5. Variation of scale for the three wave impacts
The effect of scale has been investigated for the three wave-impact types by running

the compressible-flow model at the scales of (1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16),
where the scale 1 model has identical dimensions to those used by Bredmose et al.
(2009). Thus, this scale corresponds to the scale of the GWK experiments and is
approximately 1/4 of the size of the breakwater on Alderney. As the initial and
boundary conditions for the scale 1 computation were taken from an incompressible
potential-flow solution with no aeration effects, initial and boundary data for the
other scales could be calculated by simple application of the Froude law. An initial
aeration of 5 % was used in all computations. The parameters for the associated 27
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Type S (–) β0 (–) H/S (m) pmax − p0 (ρgh) Fmax (ρgh2) Irise (ρg1/2h5/2)

Flip-through 0.0625 0.05 1.36 16.8 11.5 0.33
Flip-through 0.125 0.05 1.36 16.8 11.4 0.36
Flip-through 0.25 0.05 1.36 16.7 10.9 0.33
Flip-through 0.5 0.05 1.36 17.0 9.9 0.32
Flip-through 1 0.05 1.36 17.9 9.3 0.29
Flip-through 2 0.05 1.36 20.0 9.0 0.23
Flip-through 4 0.05 1.36 25.7 8.9 0.25
Flip-through 8 0.05 1.36 20.2 8.7 0.25
Flip-through 16 0.05 1.36 20.2 8.7 0.25
Low-aeration 0.0625 0.05 1.45 43.9 24.1 0.37
Low-aeration 0.125 0.05 1.45 46.5 22.5 0.40
Low-aeration 0.25 0.05 1.45 44.7 20.7 0.39
Low-aeration 0.5 0.05 1.45 46.8 20.0 0.33
Low-aeration 1 0.05 1.45 53.7 20.5 0.31
Low-aeration 2 0.05 1.45 59.4 21.4 0.32
Low-aeration 4 0.05 1.45 87.7 25.9 0.28
Low-aeration 8 0.05 1.45 123.0 34.3 0.27
Low-aeration 16 0.05 1.45 182.7 49.1 0.28
High-aeration 0.0625 0.05 1.51 20.6 19.5 0.36
High-aeration 0.125 0.05 1.51 18.8 18.2 0.45
High-aeration 0.25 0.05 1.51 19.4 17.4 0.59
High-aeration 0.5 0.05 1.51 19.5 17.7 0.45
High-aeration 1 0.05 1.51 21.9 18.0 0.61
High-aeration 2 0.05 1.51 23.0 16.8 0.49
High-aeration 4 0.05 1.51 30.9 17.3 0.49
High-aeration 8 0.05 1.51 36.8 19.1 0.45
High-aeration 16 0.05 1.51 53.3 23.6 0.43

TABLE 1. Computational parameters and results for investigation of the scale effect for
the three impact types. The results are shown in terms of dimensionless maximum gauge
pressure, dimensionless maximum force per unit width and dimensionless impulse over the
rise time of the impact force.

computations are listed in table 1 along with the results for maximum gauge pressure
pmax − p0, maximum force per unit width Fmax and rise-time impulse Irise, which is
defined in § 5.3. All results are normalised with the still water depth at the wall h,
the gravity g and ρ = β0σ0+ (1− β0)ρw, which is the density at atmospheric pressure
of the air–water mixture with aeration β0.

5.1. Temporal variation of pressure and force
Figure 4 shows results for flip-through impacts at five different scales in terms of
snapshots of density and pressure close to the time of maximum impact pressure,
and (t, y)-plots of the wall pressure. The spatial coordinates (x, y) are shown in
dimensional units to give an impression of size. However, time and gauge pressure
are presented in normalised values. Consequently, results that are Froude scalable
yield identical plots, while scale effects that differ from Froude scaling can be
assessed by cross-comparison between the scales. Generally, the flip-through impacts
are characterised by a localised region with a large impact pressure that moves up
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FIGURE 4. Flip-through impact at varying scale. In each row, the two first frames show
snapshots of density and gauge pressure at a time close to the instant of maximum
pressure. The right frame shows a contour plot of gauge pressure in the (t, y)-plane. The
vertical black line marks the time for the snapshots. The gauge pressure is shown in units
of ρgh while the time in the (t, y)-plot has been normalised with (h/g)1/2. The scale is
written in the upper right corner of each row, increasing from top to bottom.

the wall. At the same time, the impact pressure propagates down the wall in terms of
a pressure wave which is subsequently reflected at the seabed. In the Froude scaled
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variables, the propagation speed of the pressure wave is equal to the slope s of the
pressure trace in the (t, y)-plot. This can be expressed as

s=
1y
h

1t(g/h)1/2
= 1y
1t
(gh)−1/2 = c(gh)−1/2, (5.1)

where c is the speed of the pressure wave. From Bredmose et al. (2009) c =
(γ p/βρ)1/2, which may for simplicity be evaluated at atmospheric pressure for the
initial aeration β0 and with the approximation βρ=β(βσ0+ (1−β)ρw)=βρw+O(β2).
This leads to

s∼=
(

γ p0

ρwgh[1]

)1/2

(β0S)−1/2 , (5.2)

where h[1] is the still water depth at the wall at scale 1, and which confirms that the
slopes in the figure decrease for increased scale S. We note also that the slope s is
related to the Mach number Ma of the aerated water by

Ma= u
c
= s−1 u√

gh
∼ (β0S)1/2 , (5.3)

where the last result follows from the invariance of
√

gh/u under Froude scaling.
For the flip-through impact, the (t, y)-plots show that the impact pressure increases

slightly more with scale than the Froude law would suggest. This can be attributed to
the compressibility of the water phase, in the present case resulting from the initial
aeration, as the perfectly incompressible solution will have Froude scalable pressures.
For increased scale, the front of the pressure wave that moves down the wall becomes
increasingly steep. This can be linked to the increase of Mach number with scale.
Further, at the smallest scale, the pressure field in the air has increased importance
relative to the hydrodynamic pressures and is able to induce several smaller pressure
pulses that travel into the water column.

The scale dependence for the low-aeration impact is presented in figure 5. The
small trapped air pocket can be seen to distribute the impact pressure over its full
extent, which leads to a larger zone of high pressure relative to the flip-through
impact. Further, the air pocket becomes increasingly compressed as the scale is
increased and the maximum impact pressure becomes much greater than Froude
scaling would suggest. At scale 1 and above, the pressure wave that propagates down
the wall develops into a shock wave, as can be seen from the (t, y)-plots in which
the distinct sloping lower edge of the high-pressure region delineates the pressure
discontinuity. At scale 16, the dependence of the shock waves propagation speed on
pressure also becomes evident, in that the slope of the boundary is largest where the
pressure differential is greatest. It is also noticeable at the larger scales that the pocket
pressure for the present geometry emerges from the lower edge of the air pocket.

The oscillation of the air pocket subsequent to impact is observable through
recurrence of large pressure in the impact zone, e.g. at t

√
g/h= 0.08 for scale 1. By

comparison of scales, the Froude scaled period of the air pocket oscillation increases
with scale. This agrees with the findings of Topliss, Cooker & Peregrine (1992), who
derived an expression for the oscillatory frequency of an air pocket close to the free
surface. For Froude scaled geometry and outer flow, their result implies the scaling
Tr ∼ Rb ∼ S, where Tr is the oscillation period and Rb is the bubble diameter. This
result exceeds the Froude scaled result of Tr,Froude ∼ S1/2.
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FIGURE 5. Low-aeration impact at varying scale. See figure 4 for detailed explanation of
the figure layout.

Results for the high-aeration impact are given in figure 6. Compared with the
low-aeration impact, the larger pocket leads to a longer duration of the large impact
pressure. Further, the compression of the air pocket and the Froude scaled impact
pressure increase significantly at scales above 1. The last two observations indicate
that the air is relatively softer at large scale, in agreement with the Bagnold–Mitsuyasu
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FIGURE 6. High-aeration impact at varying scale. See figure 4 for detailed explanation of
the figure layout.

scaling law. At the smaller scales of 1/4 and 1/16 the change of pocket size is less
pronounced and, for all scales below 1, the pocket does not close against the wall at
the time of maximum impact pressure. Such behaviour was also observed by Lugni
et al. (2010b).

By scale 16 the pocket is divided into two by a developed Rayleigh–Taylor
instability which also separates a section of the pocket from the wall. As for the
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FIGURE 7. (Colour online) Time series of pressure (a,c,e) and force per unit width (b,d,f )
for different scales: (a,b) flip-through impact; (c,d) low-aeration impact; (e, f ) high-aeration
impact. All quantities are made dimensionless such that the curves are invariant to pure
Froude scaling.

flip-through and low-aeration impacts, the propagation of pressure waves down the
wall shows a decreasing slope for increased scale. Only at the largest scales, however,
is the impact pressure strong enough to form a shock wave. Further, at large scale,
the (t, y)-plots show that the overturning wave crest generates a substantial pressure
when it hits the wall, an effect that is not significant at small scale. This occurs
before the time at which maximum impact pressure associated with compression of
the air pocket is reached and is higher up the wall.

Froude normalised time series of pressure and depth-integrated force per unit
width on the wall for the three impact types are presented in figure 7. The pressure
record shown for each scale is for the y-elevation where the largest pressure occurred.
Consequently, the different curves may not be associated with similar elevations on
the wall. For the flip-through impact the slight increase in the Froude scaled pmax with
scale is seen to be associated with a slight reduction in the Froude scaled duration
of the pressure peak.

The low- and high-aeration impacts are similar in that their pressure records show
the previously mentioned significant increase in the Froude scaled pmax for scales
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FIGURE 8. Numerical values of pmax compared with the Bagnold–Mitsuyasu scaling law
and the Froude scaling law.

larger than 1 and pressures that seem almost Froude scalable at smaller scales.
Oscillatory fluctuations in pressure occur after the main peak in both types of impact,
with Froude scaled periods that increase with scale, as already discussed in relation
to the (t, y)-plots of pressure.

For all impacts, the pocket oscillations and/or the reflection of pressures at the
seabed lead to oscillations in pressure and force histories following the main impact.
For the high-aeration impact at scale 1/16, the period of the bed reflection coincides
with two periods of the pocket oscillation and resonance occurs. A similar match of
periods occurs for the low-aeration impact, but in this case the resonance is much less
pronounced.

5.2. Comparison of pmax with the Bagnold–Mitsuyasu scaling law
The pmax values computed for all scales and types of impact are compared with the
Bagnold–Mitsuyasu pressure law in figure 8. Here, the fact that F (P) is proportional
to the length scale has been utilised, see (3.11), such that the horizontal placement of
each point was determined as F = kiS, where (k1, k2, k3) are fixed constants chosen
for the flip-through, low-aeration and high-aeration impacts respectively to obtain the
best fit to the pressure law.

The flip-through values only deviate slightly from the Froude relationship, most
notably at scale 4, where pmax− p0= 25.7 ρgh, see table 1. The resemblance to Froude
scaling can be attributed to the fact that no air is trapped by this type of wave impact.
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Consequently, the deviations from Froude scaling are associated with the initial 5 %
entrained air fraction and possibly the surrounding air flow prior to impact.

Unlike the flip-through values, the low- and high-aeration values broadly follow
the Bagnold–Mitsuyasu law in the region where this predicts a stronger increase with
scale than the Froude law. In § 3.2 this was found to occur for (pmax − p0)/p0 > 3.18.
The broad agreement in this region implies that for pmax above about three
atmospheres, the scaling of the impact pressures in these types of impact is mainly
governed by compression of the air pocket and thus exceeds what the Froude law
would predict. The fact that the pmax values computed for the largest scales do not
increase as much as the Bagnold–Mitsuyasu law would suggest may be due to air
leakage effects and compression of the aerated water. Since the Mach number (5.3)
for the aerated water increases with scale, the cushioning effect of this compression
will increase with scale even for fixed initial aeration. Another effect that may
explain the deviation is compression of the air pocket to such a small size that it
has a much reduced effect on the flow. It should be noted though that the deviation
from the Bagnold–Mitsuyasu law occurs at scales 16 and 8, which are larger than the
prototype scale of the Alderney breakwater (scale 4). Hence, for the present examples
of impacts, the deviation occurs outside the range of practical application.

When (pmax− p0)/p0< 3.18, the pmax values are seen to follow the Froude law. This
implies that at these smaller scales, the air pocket has very little influence on the
scaling. This may be attributed to the relatively large stiffness of the air pocket at
small scales and the fact that the pressure variations associated with the fluid motion
become quite small relative to atmospheric pressure. Consequently, the impact often
has little effect on the air pocket. In the regime of very small scale, the air pocket
is as stiff as the wall and there is no scaling behaviour associated with compression
of the air. In such circumstances the Froude law is the relevant scaling relationship.
This behaviour is contrasted by the Bagnold–Mitsuyasu scaling law which predicts
a pressure increase that is smaller than Froude scaling for gauge pressures below
318 kPa. However, this model is based on the assumption that all the kinetic energy
of a geometrically scalable fluid region goes into compression of the air pocket. At
small scale, where the pocket is stiff, no work is associated with pocket compression.
The initial kinetic energy is instead used to accelerate the vertical uprush from the
impact zone and the Bagnold–Mitsuyasu law is therefore not relevant.

On the basis of the present results, a scaling law for impacts with trapped air
pockets at fixed aeration can be proposed which combines the Froude curve of
figure 8 for (pmax− p0)/p0< 318 kPa and the upper branch of the Bagnold–Mitsuyasu
curve for (pmax − p0)/p0 > 318 kPa. As illustrated by the results in the figure, such
a curve is likely to overpredict the pressures at very large scale and does not take
the effect of changed aeration with scale into account. Nevertheless, it provides an
improvement over the underprediction by Froude scaling at large pressures and the
irrelevance of the Bagnold–Mitsuyasu law at small pressures.

5.3. Maximum force and rise-time impulse
Figure 9(a) shows the maximum force per unit width, Fmax, for all impacts. For
the flip-through impact, Fmax decreases with scale whereas pmax exhibits a slight
increase. These apparently contradictory observations can be reconciled by noting
that, in relative terms, the impact pressures propagate down the wall more rapidly at
small scale than at large scale – see figure 4. Consequently, there is greater temporal
overlap of high values in the vertical pressure distribution at small scale and hence
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FIGURE 9. (a) Maximum force per unit width as a function of scale. (b) Rise-time
impulse as a function of scale.

a relatively greater force. This can be linked to the increase of the Mach number of
the aerated water (5.3) with scale.

The Froude scaled force also decreases with scale for both the low- and
high-aeration impacts for scales below 1/4, which might also be explained by
the increased Mach number. At larger scales, however, Fmax increases. This is not
surprising given that, in both cases, not only do the impact pressures increase above
Froude scaling but the higher pressures also increase the velocity at which they
propagate down the wall. Thus, although the velocity down the wall still tends to be
greater at small scale than at large scale, the difference is less marked than it was
for the flip-through impact.

The total impulse from the impact on the wall can be assessed by the rise-time
impulse defined by

Irise =
∫ tmax

t0

F
ρgh2

dt, (5.4)

where F is the force at the wall per unit width, t0 = −0.05(h/g)1/2 and tmax is the
time of maximum force. Although an impulse definition that takes the force history
after the instant of maximum force into account would be beneficial for the analysis,
it was found that the associated definition of the upper time limit for the integration
was non-trivial, given the many time scales involved for the impacts. On the contrary,
(5.4) is simply the area under the force curves in figure 7 from the left border at
t(g/h)1/2 = −0.05 until the time of maximum force and is thus associated with the
force history during the rise time of the impact pressure. The rise-time impulses for
all impacts are shown in figure 9(b). Except at the smallest scales, the high-aeration
impulses are larger than for the flip-through and low-aeration impacts. This can be
linked to the broader spikes in the force curves caused by the temporal spread of
the impact pressures by the air pocket. While no clear trend with respect to scale
can be deduced for the high-aeration impact, the flip-through and low-aeration impacts
show a broadly constant variation, with a slight overall decrease as a function of scale.
The decrease is attributed to the Mach-number effect which makes the aerated water
relatively softer at large scale.

6. Variation of initial aeration for the three wave impacts
The dependence of the impact pressure, force per unit width and impulse on the

level of initial aeration has been investigated for the three impact types at scale 1
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Type S (–) β0 (–) H/S (m) pmax − p0 (ρgh) Fmax (ρgh2) Irise (ρg1/2h5/2)

Flip-through 1 0.01 1.36 18.7 11.3 0.32
Flip-through 1 0.02 1.36 18.3 10.4 0.31
Flip-through 1 0.05 1.36 17.9 9.3 0.29
Flip-through 1 0.1 1.36 17.3 8.6 0.28
Flip-through 1 0.2 1.36 16.4 7.9 0.27
Low-aeration 1 0.01 1.45 77.5 32.9 0.40
Low-aeration 1 0.02 1.45 68.0 28.2 0.37
Low-aeration 1 0.05 1.45 53.7 20.5 0.31
Low-aeration 1 0.1 1.45 42.5 15.8 0.28
Low-aeration 1 0.2 1.45 29.1 12.2 0.26
High-aeration 1 0.01 1.51 27.7 27.8 0.81
High-aeration 1 0.02 1.51 25.7 23.7 0.72
High-aeration 1 0.05 1.51 21.9 18.0 0.61
High-aeration 1 0.1 1.51 19.1 14.8 0.50
High-aeration 1 0.2 1.51 15.9 12.2 0.45

TABLE 2. Computational parameters and results for investigation of the aeration effect
for the three impact types.

by means of computations in which β0 = (0.01, 0.02, 0.05, 0.10, 0.20). While β0(x)
generally varies in space and depends on the history of previous wave breaking and
impacts, a uniform distribution was chosen due to its generic character. The results
and computational parameters for the 15 associated model runs are listed in table 2.

6.1. Temporal variation of pressure and force
The aeration dependence of the flip-through impact is shown in figure 10 for β0 =
(0.01, 0.05, 0.20). The main effects of an increased initial air fraction are to lessen
the impact pressure and to decrease the slope of the pressure-wave trajectory in the
(t, y)-plot. The latter effect is confirmed by (5.2) and the computational results of
Plumerault et al. (2012). It is due to the fact that, within the range of β0 values used
in the present investigation, the propagation speed of pressure waves reduces as the
amount of entrained air increases. Ultimately, when air predominates, the propagation
speed starts to increase again, but this is not relevant to the conditions considered here.

Similar effects are seen for the low-aeration impact in figure 11. However, because
the impact pressures are now larger than for the flip-through impact, the reduction in
propagation speed with increased aeration is more likely to turn the pressure wave into
a shock wave. The pressure discontinuities at the lower edges of the pressure waves
in the (t, y)-plots for β0 > 0.05 indicate that shock waves have formed.

The link between propagation speed and aeration level also changes the way in
which oscillatory and reflected pressures interact in the impact zone. Thus, while the
first recompression of the air pocket seems to occur at the same time t(g/h)1/2∼= 0.07
for all levels of aeration, the arrival of the first reflected pressure wave from the bed
is increasingly delayed as the level of aeration is increased. Resonance occurs for
β0 = (0.01, 0.02), where the reflected wave arrives at almost the same time as the
recurrence of the oscillatory pocket pressure.

Increased levels of aeration also act to reduce impact pressures and increase
pressure-wave travel times in the high-aeration impacts shown in figure 12. However,
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FIGURE 10. Flip-through impact for different initial levels of aeration, as indicated by the
value of β0 in the upper right corner of each row. See figure 4 for detailed explanation
of the figure layout.

at the present scales, the maximum pressures are not strong enough to form shock
waves and the time scale of the pocket oscillation is too large to be resonant with
the reflection of impact pressure from the bed.

Time series for Froude scaled pressure and force per unit width are presented for the
three types of impact in figure 13. In each case, increased aeration leads to a reduction
of pmax, in agreement with Bullock et al. (2001) and Peregrine & Thais (1996), but the
magnitude of the reduction is case-specific. For example, over the whole range of β0

values, pmax is reduced by 12 % from 18.7 ρgh to 16.4 ρgh for the flip-through impact,
while for the low-aeration impact it is reduced by 62 % from 77.5 ρgh to 29.1 ρgh and
for the high-aeration impact it is reduced by 43 % from 27.7 ρgh to 15.9 ρgh.

The cushioning of the impact pressures also leads to a reduction in Fmax as
the aeration increases. For the low-aeration impact, the resonance between pocket
oscillation and reflected impact pressure is clearly seen in the force time series for
β0 = (0.01, 0.02). Further, for the high-aeration impact and for β0 = (0.01, 0.02),
negative forces occur, caused by the pocket oscillation. At larger values of initial
aeration, the negative pocket pressures are compensated by the positive impact
pressures that propagate down the wall. For the two lowest levels of initial aeration,
however, these waves travel fast enough to have practically disappeared at the time
of negative pocket pressure.
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FIGURE 11. Low-aeration impact for different initial levels of aeration, as indicated by
the value of β0 in the upper right corner of each row. See figure 4 for detailed explanation
of the figure layout.

6.2. Comparison with the model of Peregrine & Thais (1996)
The cushioning effect of entrained air is further illustrated in figure 14(a), where the
dimensionless maximum gauge pressures are plotted against the initial aeration β0. A
fitted version of the approximate solution of Peregrine & Thais (1996), see (2.1), has
been added to the plot for each type of impact. For the gauge pressure, normalised
by ρgh, their solution yields

pmax − p0

ρgh
=

1
2ρwv

2
0

ρgh
1

(ε+ β0)2
∼= ρwv

2
0

2ρw(1− β0)gh
1

ε2(1+ β0/ε)2

= K̃
1

(1− β0)

1
(1+ β0/ε)2

, (6.1)
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FIGURE 12. High-aeration impact for different initial levels of aeration, as indicated by
the value of β0 in the upper right corner of each row. See figure 4 for detailed explanation
of the figure layout.

where the constant K̃ is defined through the last equality. The curves used in the
plot were obtained by choosing best-fit values of K̃ and ε, and are seen to match
the numerical results for the flip-through impacts well. For the low- and high-aeration
impacts, a fair match is seen, with slight underprediction of the cushioning effect for
small values of β0 and overprediction for larger values of β0.

The value of K̃ provides an estimate for the incompressible impact pressure at
β0 = 0, extrapolated through the fit of (6.1) to the results at finite levels of aeration.
In figure 14(b) the maximum pressures have been normalised with this value for
each impact type, to form pressure reduction factors. This plot illustrates that the
cushioning from entrained air is most pronounced for the most violent impacts, as
previously noted by Peregrine & Thais (1996) and Bullock et al. (2001). While the
good match between the numerical results and the model of Peregrine & Thais could
be expected for the flip-through impact, the match for the low- and high-aeration
pressures is a surprise. This suggests that the softening from aeration of the water
around the air pocket affects its maximum compression and thereby pmax.

6.3. Maximum pressure, maximum force and rise-time impulse
The values of maximum force per unit width and rise-time impulse are plotted
against initial aeration in figure 15. The plots confirm that the maximum force and
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FIGURE 13. (Colour online) Time series of pressure (a,c,e) and force per unit width
(b,d,f ) for varying initial aeration: (a,b) flip-through impact; (c,d) low-aeration impact,
(e,f ) high-aeration impact. All quantities are made dimensionless such that the curves are
invariant to pure Froude scaling.

rise-time impulse decrease for increased initial aeration. This can be linked to the
Mach-number effect, also discussed for the variation of scale: by (5.3), the Mach
number increases with β0 and thus makes the fluid relatively softer. This cushions
the impact and leads to a reduced force. As for the pressures, the force reduction
is strongest for the low-aeration impact, followed by the high-aeration impact, while
the reduction for the flip-through impact is modest. A similar trend is observable for
the rise-time impulse. While the impulses are largest for the high-aeration impact
due to the increased duration of impact pressure from the air pocket, the decrease in
impulse is also largest for this impact.

7. Summary and discussion
The roles of scale and aeration in violent breaking wave impacts on a vertical

wall have been investigated. By dimensional analysis, the effect of trapped and
entrained air for otherwise Froude scalable wave impacts has been shown to depend
on scale through the Bagnold number and on the level of initial aeration. The
Bagnold–Mitsuyasu pressure law has been generalised to 3D air pockets of arbitrary
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FIGURE 15. (a) Maximum force as a function of initial aeration. (b) Rise-time impulse
as a function of initial aeration.

shape, including subdivided air pockets, and a simple scaling procedure has been
suggested, which is based solely on the measured impact pressure. In terms of the
generalised scaling law, impact gauge pressures larger than 318 kPa increase more
with scale than implied by Froude scaling.

Numerical computations at varying scale and initial aeration have been undertaken
for a flip-through impact, a low-aeration impact and a high-aeration impact. For
variation of scale, the flip-through impact pressures were found to be broadly Froude
scalable, while the low- and high-aeration impacts were found to follow Froude
scaling for pmax < 318 kPa and to almost follow the Bagnold–Mitsuyasu scaling
law for pmax > 318 kPa. The first observation disagrees with the Bagnold–Mitsuyasu
scaling law and has been explained in terms of the increase of relative air stiffness at
small scale, which eventually makes the air behave like a rigid boundary. This finding
is also in contrast to the results of Abrahamsen & Faltinsen (2013) for water wave
slamming of an air pocket trapped in a corner, bounded by rigid boundaries. However,
the geometry of their configuration is different from what we have computed in this
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study. In particular, the presence of the free surface provides an extra degree of
freedom to the motion and, as described above, we suggest that it is this effect that
leads to the recovery of Froude scaling when the overall scale of the flow is relatively
small. This highlights the complexity of the interactions and the care needed when
applying prototype and laboratory scales to full-scale installations.

For large scale, the smaller deviations from the Bagnold–Mitsuyasu scaling law
may be caused by the increased Mach number for the aerated water, which leads to
increased cushioning, air leakage effects and compression of the air pocket to such
an extent that it loses its influence on the flow. These deviations occurred for scales
that are larger than typical prototype scales. The present results hereby suggest that the
pure scale effect can be described by a pressure law that resembles Froude scaling for
impact pressures below 318 kPa and the Bagnold–Mitsuyasu law for impact pressures
above 318 kPa. To this end, the upper branch of the Bagnold–Mitsuyasu scaling law
could even be modified to include the effect of pressure cushioning from the aerated
water phase at large scale. Such an extension is subject to current work in relation to
the Sloshel project (L. Brosset 2013, private communication).

For the flip-through impacts, the Froude scaled maximum force decreases with scale.
This effect has also been explained in terms of the increased Mach number which
increases the relative propagation speed for the impact pressure over the extent of
the wall. The low- and high-aeration impacts show a similar behaviour at small scale,
while the increase in pmax relative to Froude scaling at large scales leads to increased
Froude scaled values of Fmax. The rise-time impulses for the flip-through and low-
aeration impacts are broadly constant, with a slight overall decrease with scale that
can probably be attributed to the increased Mach number. No clear trend was deduced
for the high-aeration impact.

The effect of aeration has been investigated at scale 1. For all three impact
types, pmax, Fmax and the rise-time impulse decrease with initial aeration due to the
cushioning by the aerated water. Our computations confirm that the pressure reduction
factor increases with impact violence, as suggested by the Peregrine & Thais (1996)
model. The pressure reductions for the flip-through and high-aeration impacts were
found to agree well with their asymptotic model and with some deviation for the
low-aeration impact. The good agreement for the high-aeration impact implies that
the aeration of the surrounding water is still able to reduce the maximum pressure,
although this appears inside the air pocket. The explanation may be that, although
the air pocket is deformable, it will be quasistatic in shape at the time of maximum
compression and thus for a short instant resemble the behaviour of a rigid wall.
In this situation, the aeration of the surrounding water will still cushion the large
pressures at the air–water interface in a similar way to that for a rigid wall.

Both the impact pressure and the Mach number depend on scale and aeration, which
variously affect the oscillation of trapped air pockets, the propagation of pressure
waves and their possible development into shock waves. For certain combinations of
impact type, scale and aeration, resonance can occur between the pocket oscillations
and the returning pressure waves. This means that values higher than those caused by
the initial impact could occur, as predicted by Plumerault et al. (2012). Unfortunately,
the resonance is not easily predicted by small-scale model tests, as the phenomenon
depends on the scale as well as aeration.

From the present investigation, the effect of scale acts to preserve and possibly
increase the Froude scaled impact pressures, while aeration acts to reduce the impact
pressures. The likely increase of aeration level for increased scale may in some
circumstances reduce the full-scale impact pressures to below the values predicted by
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the Froude law. This possibility could be investigated by means of the present model,
which could be extended by adding a predictive model for the level of aeration
similar to that of Blenkinsopp & Chaplin (2007a, 2011). This might help to justify
the widespread belief among practising engineers that Froude scaling of laboratory
freshwater impact pressures leads to the prediction of unrealistically large full-scale
pressures. The present study indicates that pressures below those predicted by the
Froude law must be due to increased aeration rather than the pure scale effect and
that, in the absence of aeration, pressures significantly above the Froude level are
possible.
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