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Integral models of volcanic plumes allow predictions of plume dynamics to be made and the rapid estimation of
volcanic source conditions from observations of the plume height by model inversion. Here we introduce
PlumeRise, an integral model of volcanic plumes that incorporates a description of the state of the atmosphere,
includes the effects of wind and the phase change of water, and has been developed as a freely available web-
based tool. The model can be used to estimate the height of a volcanic plume when the source conditions are
specified, or to infer the strength of the source from an observed plume height through a model inversion. The
predictions of the volcanic plume dynamics produced by the model are analysed in four case studies in which
the atmospheric conditions and the strength of the source are varied. A global sensitivity analysis of the model
to a selection of model inputs is performed and the results are analysed using parallel coordinate plots for
visualisation and variance-based sensitivity indices to quantify the sensitivity of model outputs. We find that if the atmo-
spheric conditions do not vary widely then there is a small set of model inputs that strongly influence themodel predic-
tions. When estimating the height of the plume, the source mass flux has a controlling influence on the model
prediction,while variations in theplumeheight strongly effect the inferred valueof the sourcemassfluxwhenperforming
inversion studies. The values taken for the entrainment coefficients have a particularly important effect on the quantitative
predictions. Thedependencies of themodel outputs to variations in the inputs are discussed and compared to simple alge-
braic expressions that relate source conditions to the height of the plume.
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1. Introduction

Volcanic tephra produced during explosive volcanic eruptions is
hazardous to populations and infrastructure. Tephra transported in
the atmosphere is damaging to aircraft, causing widespread disruption
to international air transport, while tephra deposited on the ground
has impacts on human health and can cause structural damage to build-
ings (Jenkins et al., 2015). The largest eruptions can inject large volumes
of tephra at stratospheric levels, causing global temperature changes
and tephra deposition over thousands of square kilometres (Self,
2006). However, even relatively small eruptions have regional impacts,
as fine ash is transported far from the volcanic source by atmospheric
winds and buoyancy forces.

The mitigation of the hazard presented by volcanic ash relies on
effective forecasting of ash transport in the atmosphere, which requires
estimates of source conditions, particularly the maximum height in the
atmosphere towhich ash is transported (subsequently referred to as the
plume height) and the rate at which ash is delivered from the vent (the
source mass flux). These quantities are fundamentally related by the
dynamics of the volcanic plume. By developing models of volcanic
niversity of Bristol, Bristol, BS8

oodhouse).
plumes, we can gain insight into the physical processes that control
the plume rise and may infer unobserved quantities such as the source
mass flux by matching model predictions to observations.

Volcanic plumes are mixtures of solid pyroclasts, produced by the
fragmentation of magma in the volcano conduit, with gases exsolved
from the magma and entrained from the environment. On ejection
from the vent, the mixture is usually hotter and more dense than the
surrounding atmosphere and is initially carried upwards by inertia as
a jet (Woods, 1988; Sparks et al., 1997). Typically the flow is turbulent
on exit from the vent or becomes turbulent close to the vent (Sparks
et al., 1997). The turbulent flow field results in a mixing of ambient air
with the erupted material, with a transfer of heat and momentum to
the entrained air. The expansion of the gaseous phases causes a reduc-
tion in the bulk density of themixture, which may become buoyant be-
fore the initial momentum is lost if the entrainment and heat transfer
are sufficiently efficient, and the jet transitions into a buoyant plume
which can ascend to high altitudes. If insufficient mixing occurs then
the mixture does not become buoyant before the vertical momentum
is lost, and the jet collapses (Sparks et al., 1997; Degruyter and
Bonadonna, 2013).

In addition to the volcanic source controls on the plume dynamics,
the atmosphere also strongly influences the rise of the plume (Woods,
1988; Sparks et al., 1997; Glaze and Baloga, 1996; Bursik, 2001;
Woodhouse et al., 2013). A large proportion of the erupted gaseous
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phase is water vapour derived from magma, and additional water va-
pour is entrained from the moist troposphere. The plume transports
this moisture to higher levels where it can condense to liquid water
and ice (Woods, 1993; Glaze et al., 1997; Mastin, 2007). The phase
change results in the release of latent heat to the plume and this source
of energy can, in some atmospheric and volcanological conditions, pro-
mote significant additional rise of the plume (Woods, 1993; Glaze et al.,
1997). In contrast, atmospheric winds enhance the mixing of ambient
air into the plume, thus more rapidly reducing the density contrast
between the plume mixture and the ambient atmosphere, resulting in
a reduction in the rise height of the plume (Bursik, 2001; Degruyter
and Bonadonna, 2012; Woodhouse et al., 2013), while the additional
entrainment due to the wind can lead to plumes that would collapse
in a quiescent atmosphere becoming buoyant (Degruyter and
Bonadonna, 2013; de' Michieli Vitturi et al., 2016).

The turbulent and multiphase character of volcanic plumes and the
large range of scales onwhich physical processes operatemeans that sim-
ulating all aspects of themotion is computationally demanding. For rapid
hazard assessment during a volcanic crisis, simplified models with low
computational requirements are valuable tools for producing estimates
of the important properties of the volcanic source and the plume. Here
we present PlumeRise, an integralmodel of volcanic plumes that includes
descriptions of atmosphericwind andphase changes ofwater. In addition
to use in research, a version of PlumeRise has been developed as a web-
tool (Fig. 1) that can be freely accessed at www.plumerise.bris.ac.uk and
can be used to examine the source and atmospheric controls on the
plumemotion and performmodel inversions to estimate the source con-
ditions required for the plume to attain a specified height.

The PlumeRise model has 12 dimensional parameters, four bound-
ary conditions thatmust be specified, and requires profiles of the atmo-
spheric pressure, temperature, wind speed and direction, and the
relative humidity. These dimensional model inputs can be formed into
17 dimensionless groups. This high dimensional space of model inputs
and the non-linearity of the systemof equationsmeans that it is difficult
to anticipate all of the dependencies of the model outputs to the values
taken for the input parameters and boundary conditions. Note, in the
Fig. 1. The main settings and results page of the PlumeRise web-tool. Up to five sets of source
displayed in the panel of plots. In this example two different atmospheric profiles are used (
the “Infer source flux from observed rise height” option. An inversion calculation adjusts the
plan-view and cross-section of the plumes, and the temperatures in the plumes and atmosphe
of the elevation above sea level. Other plots are available and can be selected in the “Plot settin
PlumeRise web-tool some of the parameters are fixed at characteristic
values, while the research version that is examined here allows all
model inputs to be varied. Small changes in parameter values, and in
combinations of parameters, can result in substantial changes to the
model output. A crucial question in the application of models to inter-
pret observations is to what extent and accuracy must parameters in
the model be calibrated and boundary conditions be chosen in order
to draw meaningful inferences about the volcanic system. In this study
we conduct a global sensitivity analysis of the PlumeRise model to ex-
amine the variability of the model predictions when parameter values,
boundary conditions, and atmospheric inputs are changed.

This paper is structured as follows. We present first the system of
equations that are solved in the PlumeRisemodel, and themodelling as-
sumptions on which these are based. We then introduce the methods
used for the global sensitivity analysis. The results of the sensitivity
analysis performed in four case studies are presented. We then discuss
the interpretation of these results, in particular examining how the re-
sults compare to the algebraic expressions that relate the plume rise
height to the conditions at the volcanic source.

2. The PlumeRise model of moist, wind-blown volcanic plumes

PlumeRise is an integral model of a steady volcanic eruption column
in a wind field. Atmospheric conditions are included through profiles of
the pressure, temperature, wind speed and direction, and the relative
humidity, which can be taken from direct measurement (e.g. radio-
sonde soundings), numerical weather prediction tools, or constructed
to represent typical conditions (e.g. standard atmospheres). The
model is derived by combining an integral model of pure plumes in a
horizontal wind (Hewett et al., 1971) with an integralmodel of volcanic
eruption columns in a quiescent atmosphere (Woods, 1988). Details of
themodel development are presented inWoodhouse et al. (2013). Here
we present the governing equations and the main assumptions on
which the model is based.

A steady model of plumes is appropriate if the time scale of varia-
tions in source and atmospheric conditions are much longer than the
conditions and atmospheric profiles can be specified in the settings box, and results are
passed through the “Atmospheric data” tab), and two plume heights are specified using
source velocity to match the centreline height to the height specified. The plots show a
res, the vertical velocities, and the densities in the plumes and atmospheres as functions
gs” tab.

http://www.plumerise.bris.ac.uk


Fig. 2. The coordinate system for the PlumeRise model. A Cartesian coordinate system is
fixed with x denoting the East–West (longitudinal) coordinate, y denoting the North–
South (latitudinal) coordinate and z denoting the vertical coordinate (altitude).
Equations describing the plume dynamics are derived in a plume-centred coordinate
system, with s denoting the curvilinear distance (arclength) from the vent along the
plume axis, θ(s) denoting the angle of the centreline with respect to the horizontal, and
ψ the angle of the trajectory in the xy-plane. A cross-section of the plume normal to the
centreline is circular with radius L(s). The centreline speed of the plume is denoted by
U(s). The wind speed is denoted by V(z), with the angle ψa denoting the angle to which
the wind blows.

56 M.J. Woodhouse et al. / Journal of Volcanology and Geothermal Research 326 (2016) 54–76
time of rise offluid parcels through the atmosphere, the latter time scale
given by 1/N where N is the buoyancy frequency of the atmosphere,
with a typical value of N=0.01 s-1 (Gill, 1982). The plume can then be
considered to be in a statistically steady state, and the transient turbu-
lent motions are removed by averaging on a time scale that is longer
than the eddy turn-over time (Woods, 2010). The turbulent mixing of
the ambient fluid into the plume is then represented by a flow into
the plume, referred to as entrainment (Morton et al., 1956). The turbu-
lence within the body of the plume ensures the material remains well
mixed, and properties of the eruption column can be described by
time-averaged bulk quantities. We assume that the radial profiles of
the bulk density, axial velocity and temperature in the plume are
modelled by top-hat profiles (i.e. these quantities have constant values
within the plume and vanish outside the plume boundary) and that
cross-sections of the plume normal to the axis are circular with radius
L. The assumption of top-hat profiles is a mathematical convenience;
other profiles, for example Gaussian distributions, could be adopted.
However, adopting such profiles has little effect on the predictions of
plume models in quiescent environments if the value of the no-wind
entrainment coefficient is appropriately adjusted (Kaye, 2008). The
bulk density of the plume, denoted by ρ, varies due to the entrainment,
mixing and expansion of atmospheric air, which has density ρA. The
bulk temperature of the column is denoted by T, while the atmospheric
temperature is TA. The plume is composed of gases, derived from the
magma and entrained from the environment, solid pyroclasts and liquid
water (if conditions allow for the condensed water phase). The mass
fraction of gas in the plume is denoted by n.

While PlumeRise models the transport of solid pyroclasts in the
plume, the fallout of pyroclasts is not modelled. Models of the fallout
of pyroclasts from the rising plume have been proposed for plumes in
quiescent environments (Ernst et al., 1996; Woods and Bursik, 1991;
Sparks et al., 1997), and have shown that the loss of mass associated
with fallout has only a small effect on the rise height attained by buoy-
ant plumes unless fallout occurs before pyroclasts have reached thermal
equilibrium with the gases in the plume (Woods and Bursik, 1991;
Sparks et al., 1997). Thermal equilibrium occurs rapidly for small grain
sizes, within 1 km of the vent for pyroclasts of diameter up to approxi-
mately 0.4 cm ejected at 100 ms-1 (Woods and Bursik, 1991; Sparks
et al., 1997). Therefore the fallout of pyroclasts has little effect on fine-
grained eruption columns. However, fallout may be an important pro-
cess for eruptions that produce larger pyroclasts for which the relaxa-
tion time to thermal equilibrium is longer and so pyroclasts may fall
out before thermal equilibrium is reached, reducing the supply of heat
(and therefore buoyancy) to the eruption column (Woods and Bursik,
1991; Sparks et al., 1997). It is not currently known how the interaction
with thewindmodifies the empirical settlingmodels (Ernst et al., 1996;
Bursik, 2001) that are used to describe sedimentation of particles from
plumes rising in quiescent environments, but we expect fine-grained
pyroclasts to rapidly reach thermal equilibrium with the gases in a
wind-blown plume, and therefore to have only a secondary effect on
the rise height attained by the plume.

The moisture content of an eruption column is included by account-
ing for phase changes of the water within the column and the effect of
phase changes on the energy budget (Morton, 1957; Woods, 1993;
Koyaguchi and Woods, 1996; Mastin, 2007). For simplicity, we neglect
the phase changes of water vapour and liquid water to ice, as the latent
heat of freezing is about a factor of 10 smaller than the latent heat of
vaporisation (Sparks et al., 1997) so a description of condensation
alone is likely to be sufficient in the majority of settings, and the com-
plexities of ice formation in volcanic plumes is not fully understood.

Our model assumes that the pressure in the plume is equal to the
atmospheric pressure throughout the ascent. This assumption is appro-
priate for slender plumes (Morton et al., 1956; Woods, 1988; Linden,
2000), where the length scale of radial variations is much smaller than
the length scale for vertical variations. The assumption may not be ap-
propriate very near to the vent, where the erupted material can have a
substantial over-pressure (Woods and Bower, 1995; Ogden et al.,
2008b; Saffaraval et al., 2012). This alters the flow dynamics (Woods
and Bower, 1995; Ogden et al., 2008b; Ogden et al., 2008a), in particular
the turbulent mixing processes, such that a different parameterisation
of entrainment is required (Saffaraval et al., 2012). However, the pres-
sure in the near vent jet rapidly adjusts to atmospheric pressure
(Saffaraval et al., 2012) and therefore we expect the model results to
be little affected by the simplified description (Saffaraval et al., 2012).

The entrainment of ambient air into the body of the plume through
the action of turbulent eddies is parametrised by an entrainment veloc-
ity that is directed normal to the local plume axis (Fig. 2). In awindy en-
vironment we adopt the parameterisation of Hewett et al. (1971),

Ue ¼ ks U � V cosθj j þ kw V sinθj j; ð1Þ

where U is the axial centreline velocity of the plume, V is the horizontal
velocity of the wind, θ is the local angle on the plume axis to the hori-
zontal, ks is the entrainment coefficient due to the motion of the
plume relative to the environment, and kw is the entrainment coefficient
due to the alignment of the wind field with the local normal to the
plume axis. In the absence of atmospheric wind, V≡0, the entrainment
velocity Eq. (1) reduces to Ue=ksU, and therefore ks is the entrainment
coefficient for plumes rising in a quiescent environment (Morton et al.,
1956; Woods, 1988). We therefore refer to ks as the no-wind entrain-
ment coefficient, and kw as the wind entrainment coefficient. (Note ks
is given the symbol α and kw the symbol β in Costa et al., 2016.)

It is often assumed that the entrainment coefficients take constant
values, and experiments on plumes in a quiescent ambient show that
this is appropriate when the radial profiles of plume properties reach
a self-similar form (Papanicolaou and List, 1988; Ezzamel et al., 2015).
However, close to the source there is a deviation from the self-similar
plume profile as the flow is momentum-driven as it exists the vent
(Kaminski et al., 2005; Papanicolaou and List, 1988; Ezzamel et al.,
2015). Non-constant forms for the no-wind entrainment coefficient
have been proposed (Wang and Law, 2002; Kaminski et al., 2005;
Carazzo et al., 2006; Folch et al., 2015) for quiescent settings, but there
has been no investigation of the detailed influence of the wind on the
variation of the entrainment coefficients. In PlumeRise we adopt a
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simple model (Woods, 1988) of the variation of the entrainment coeffi-
cient as the eruption column develops from a momentum-driven jet
near the vent to a buoyant plume, with the eruption column separated
into a near-source jet-like region (also referred to as the gas-thrust re-
gion) and a buoyant plume-like region. In the near-source region the
density of the eruptedmixture is much greater than that of the atmosphere,
and the entrainment coefficient is a taken to be a function of the density con-
trast (Woods, 1988)withks ¼

ffiffiffiffiffiffiffiffiffiffiffi
ρ=ρA

p
=16,whereρ is the bulk density of the

eruption column and ρA is the density of the atmosphere. If the eruption col-
umn becomes buoyant, we take the entrainment coefficient to be constant
with ks=0.09 in the buoyant region. It is not known how the wind-
entrainment coefficient varies in the transition from jet-like to plume-like
behaviour, so we take a constant entrainment coefficient kw=0.9 deter-
mined from a series of laboratory experiments (Hewett et al., 1971).

Amathematicaldescriptionof thevariationof thesteadyeruptioncolumn
with distance from the volcanic source is formulated in a plume-centred
coordinate systemwithin a Cartesian frame of reference (Fig. 2).We let z de-
note the height of the plume, x and y denote the Cartesian coordinates or-
thogonal to z, and s denote the curvilinear distance from the vent along the
centreline of the plume. Therefore x, y and z are related to s through

dx
ds

¼ cosθ cosψ;
dy
ds

¼ cosθ sinψ;
dz
ds

¼ sinθ: ð2Þ

Equations describing the variation of the plume density ρ(s), radius
L(s), centreline velocity U(s), and temperature T(s) are derived by con-
sidering conservation of mass, momentum and energy in cross-sections
normal to the plume axis (Woodhouse et al., 2013). Themass of the col-
umn increases due to the entrainment of atmospheric air, so that from
conservation of mass we have

d
ds

ρUL2
� �

¼ 2ρAUeL; ð3Þ

noting that the fallout of solid pyroclasts is neglected. The mass flux
through a cross section normal to the plume centreline is given by

Q ¼ πρUL2: ð4Þ

An equation for the conservation of vertical momentum can be
written usingNewton's second law,with the change in verticalmomen-
tum balancing the buoyancy force,

d
ds

ρU2L2 sinθ
� �

¼ ρA � ρð ÞgL2: ð5Þ

Here it is assumed that non-hydrostatic pressure gradients and stresses
are negligible, assumptionswhich are justified based on the relative slender-
ness of the plume. The horizontal momentum of the column changes only
due to theentrainmentoffluid fromthewindyenvironment, so conservation
of momentum in the x and y directions can be written as

d
ds

ρU2L2 cosθ cosψ
� �

¼ 2ρAUeLV cosψA; ð6Þ

d
ds

ρU2L2 cosθ sinψ
� �

¼ 2ρAUeLV sinψA; ð7Þ

respectively,whereψA is the angle of thewind vector from the axis x=0.
The conservation of energy in the plume equates the change in total

energy (given by the sum of the bulk enthalpy, kinetic energy and po-
tential energy) in the plume to the total energy of the fluid entrained
from the atmosphere and the energy released when water changes
phase in the plume. This is expressed symbolically as

d
ds

ρUL2 CpT þ U2

2
þ gz

 ! !
¼ 2ρALUe CATA þ U2

e

2
þ gz

 !

þ Lc0
d
ds

ρL2U ϕ−ϕvð Þ
� �

; ð8Þ

where Cp and CA are the specific heat capacities at constant pressure of the
bulk plume and the atmospheric air, respectively, ϕ is the mass fraction of
liquid water and water vapour in the column, and ϕv is mass fraction of
water vapour in the column. Note, in Eq. (8) turbulent dissipation is
neglected. Inmodelling the condensation ofwater vapour in Eq. (8), the la-
tent heat of condensation, Lc(T) (measured in J kg-1), is approximated by

Lc Tð Þ ¼ Lc0 þ Cv � Cwð Þ T � 273ð Þ; ð9Þ

for temperature, T, measured in Kelvin, where Lc0=2.5×106 J kg-1 is
the latent heat of vaporisation at 273 K (Rogers and Yau, 1989), and
Cv and Cw are the specific heat capacities at constant pressure of water
vapour and liquid water, respectively, measured in J K-1 kg-1.

Weassume that thegas releasedat thevent is composedentirelyofwater
vapour released frommagmain theconduitandwatervapour fromtheevap-
oration of groundwater.Water vapour is entrained into the eruption column
from the moist atmosphere and is advected with the bulk flow. Therefore
conservation of water in the column can be written as
d
ds

ϕρUL2
� �

¼ 2ρAUeLϕA; ð10Þ

whereϕA is themass fractionofwater vapour in the atmosphere (i.e. the spe-
cific humidity of the atmosphere).

Condensation is assumed to occur rapidly once the eruption column
has become saturated with respect to water vapour, such that the
column remains saturated. Thus, once saturated, the mass fraction of
gas in the column which is composed of water vapour, denoted by w,
remains at a value such that the partial pressure of water vapour, Pv,
is equal to the saturation vapour pressure in the column, es(T), so Pv=
es(T) (Koyaguchi and Woods, 1996). Note, ϕv=nw where n is the
mass fraction of gas (dry air andwater vapour) in the column. Assuming
the gas phase is a mixture of water vapour and dry air, and each
component can be considered an ideal gas, the partial pressure of
water vapour is given by

Pv ¼ w
ρg

ρv
PA ¼ wRv

wRv þ 1�wð ÞRa
Pa; ð11Þ

whereρg is thedensityof thegasphase,ρv is thedensityofwatervapour,Rvand
Raare thespecificgasconstantsofwatervapouranddryair, respectively, andPA
is thepressure in the columnwhich is assumed toadjust instantaneously to the
local atmospheric pressure. Herewe adopt an empirical approximation for the
saturation vapour pressure (Alduchov and Eskridge, 1996):

es Tð Þ ¼ 610:94 exp
17:625 T � 273:15ð Þ

T � 30:01

� �
; ð12Þ

for temperature, T, measured in Kelvin.
The bulk density of the column is given by

1
ρ
¼ n

ρg
þ ϕw

ρw
þ 1� n� ϕw

σ
; ð13Þ

whereρw is thedensityof liquidwater(assumedconstant in theatmosphere)
andϕw=ϕ-ϕv is themass fraction of liquidwater in the plume. The density
of the gas phase is given by

ρg ¼ Pa

RgT
; ð14Þ
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where the bulk gas constant of the column is given by

Rg ¼ wRv þ 1�wð ÞRa: ð15Þ

The bulk specific heat capacity at constant pressure is

Cp ¼ nCg þ ϕwCw þ 1–n� ϕwð ÞCs; ð16Þ

where Cs is the specific heat capacity at constant pressure of the solid
pyroclasts, and Cg=wCv+(1-w)Ca is the specific heat capacity at con-
stant pressure of the gas phase,withCA denoting the specific heat capac-
ity at constant pressure of dry air.

The system of equations is augmented by boundary conditions that
prescribe conditions at the volcanic vent. PlumeRise requires the speci-
fication of two of the source mass flux Q0, the source momentum flux
M0, the radius of the vent L0 and the exit velocity U0. Additionally, the
magmatic temperature at the vent T0, the mass fraction of gas at the
vent n0 and the altitude of the vent z0 are required.

The system of equations are solved numerically using a fourth-order
Cash–Karp Runge–Kutta scheme with automated step-size adjustment
for error control (Press et al., 2007). The algebraic equations are differ-
entiated to produce a coupled system of fourteen ordinary differential
equations that can be efficiently integrated numerically.

Typically the atmospheric profiles have a much coarser vertical res-
olution than the steps taken in the numerical integration. The atmo-
spheric profiles are therefore interpolated, with linear interpolation
for all fields except the atmospheric pressure for which an exponential
form is used to reproduce the expected hydrostatic pressure profile in
the atmosphere (Gill, 1982). There are occasionswhere the atmospheric
data do not extend to the height reached by the plume. In this case the
atmosphericfields are extrapolatedusing spatially constant values, with
the exception of the pressure field for which an exponential function is
used. The extrapolation of the atmospheric data introduces significant
uncertainty into the model predictions if the plume rises to altitudes
above levels at which atmospheric data is given.

The integral plume model has short execution times, with ‘forward’
model evaluations (i.e. an integration from specified initial conditions to
the point ofmaximum rise) taking less than 0.5 s on a desktop comput-
er. The model is therefore well suited for use in rapid hazard assess-
ment, and to facilitate this use of the model during volcanic crises, we
have developed the PlumeRise web-tool. The web-tool is freely avail-
able at www.plumerise.bris.ac.uk. A screen-shot of the main page of
the web-tool is shown in Fig. 1.

The ‘inverse’ problem of determining the source mass flux by
matching the plume height to a specified value can be solved by
iteratively adjusting the source conditions and performing forward
model runs. We note that there is not necessarily a unique solution of
the inverse problem, as variations in one of the source conditions can
be compensated by changes in another. Woodhouse et al. (2013);
Woodhouse and Behnke (2014) used a simple inversion strategy, in
which a single source boundary value was adjusted, to estimate the
source mass flux from observations of the plume height. However,
these studies did not carefully consider uncertainty in the observations
and themodel formulation.Woodhouse et al. (2015) demonstrated that
uncertainty in observations and model parameters strongly constrains
the inferences that can be made from inversion studies.

The possibility of column collapse, where there is insufficientmixing
of ambient air to allow the initially dense jet to become buoyant before
the vertical momentum of the material ejected at the vent is expended,
means that there is not always a solution of the inverse problem. In the
PlumeRise web-tool we implement an inversion scheme, adjusting the
exit velocity for a specified vent radius to vary the source mass flux. In
this study, the exit velocity is specified so the vent radius is adjusted
in the inversion calculation. To assess the possibility of column collapse,
we first perform forward model evaluations on a coarse sample of
points across a wide range of the exit velocity, which indicates whether
a solution is possible, and then use bisection to refine the source
estimate. The rapid forward evaluationsmeans that the inversion calcu-
lation typically completes in a few seconds.

3. Methods for the analysis of sensitivity of the PlumeRise model

For nonlinearmathematical models with numerous inputs it is often
difficult to anticipate the response of themodel output to changes in the
inputs. Complicated interactions of physical processes mean that vary-
ing one input parameter at a time does not adequately characterise
the range of model outputs that are possible, although the one-at-a-
time analysis may be valuable as a preliminary screening exercise. A
comprehensive sensitivity analysis must examine the response of the
model to changes in all parameters across their range of values; this is
known as global sensitivity analysis (Saltelli et al., 2008).

The PlumeRisemodel can be considered as a function thatmaps a set
of input values onto a set of outputs, written symbolically as

y ¼ f x; θð Þ; ð17Þ

where y is a vector of model outputs, x is a vector of model inputs, θ is a
vector of model parameter values, and f is a vector function
representing the PlumeRise model. The model inputs, x, in the
PlumeRise model are the boundary conditions for the system of ordi-
nary differential equations that represent the conditions at the volcanic
vent. In addition, themodel requires the specification of a number of pa-
rameter values that characterise the physical properties and processes
that occur in the volcanic plume. For examples, parameters are required
to characterise the turbulentmixing and the thermodynamic properties
of the constituent phases in the plume. Furthermore, there are addition-
al inputs into themodel that determine the solutions. In particular in the
PlumeRise model, profiles representing the state of the atmosphere are
required. In Woodhouse et al. (2015) we refer to the atmospheric pro-
files as the ‘model forcing’ as these inputs are typically fixed, as is the
uncertainty they introduce into the model predictions. Here, in our ab-
straction of themodel, we include themodel forcing as amember of the
set of model parameters.

As part of the eruption columnmodel inter-comparison study (Costa
et al., 2016), we have performed a sensitivity analysis of the PlumeRise
model to a subset of the model inputs as specified by the exercise facil-
itators. The exercise required the assessment of the sensitivity of the
model outputs to a range of model inputs and parameters. Some of
these inputs can take values on a continuous interval, while others are
discrete ‘switches’ that determine whether some physical processes
are included in the model. For convenience, we reclassify the inputs to
the model as described in Eq. (17); the model inputs x will henceforth
refer to the set of boundary conditions and parameters that are varied
in the sensitivity analysis, while the inputs θ will denote the set of pa-
rameter values and atmospheric profiles that held fixed in the analysis.
Table 1 gives the model inputs that are examined in this study.

To examine the sensitivity of the model to changes in the wind
speed, a wind speed scale factor (denoted by λ) is introduced. The
wind speed input into the model is then taken as λV(z) where V(z) is
themeasured wind speed.We also consider cases where thewind is re-
moved from the model inputs (i.e. we fix λ=0). When λ=0 the wind
entrainment coefficient kw and the wind speed scale factor λ do not in-
fluence the model results, and can therefore be removed from the
analysis.

In the sensitivity study reported in the inter-comparison exercise,
the model output was a scalar quantity, and we denote this output by
y in the abstraction of the model. However, two modes of application
of the model were required: (i) ‘forward modelling’ where the source
mass flux (mass eruption rate) at the vent was specified and the prima-
rymodel outputwas the plume height, taken to be themaximumheight
of the centreline of the plume, at which point the vertical component of
the velocity at the plume centreline vanishes; and (ii) ‘inverse

http://www.plumerise.bris.ac.uk


Table 1
Model inputs varied in the sensitivity analyses. For inputs that can vary continuously, the range of parameter values for the weak and strong plume cases are given.

Parameter (symbol) Range of values

Weak eruption Strong eruption

No-wind entrainment coefficient (ks) 0.05–0.15 0.05–0.15
Wind entrainment coefficient (kw) 0.1–1.0 0.1–1.0
Source mass flux (Q0) 3×105–7.5×106 kg/s 3×108–7.5×109 kg/s
Plume height (Htop) 6–9 km 30.8–46.2 km
Exit velocity (U0) 94.5–175.5 m/s 192.5–357.5 m/s
Source temperature (T0) 1173–1373 K 953–1153 K
Source gas mass fraction (n0) 0.01–0.05 0.03–0.07
Wind scale factor (λ) 0.8–1.2 0.8–1.2
Phase change of water ‘On’ or ‘off’ ‘On’ or ‘off’
Atmospheric moisture ‘On’ or ‘off’ ‘On’ or ‘off’
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modelling’where the plumeheightwas specified and amodel inversion
was required to determine the source mass flux.

We note that, as there are inputs to the model that are not varied in
this analysis, this study should be considered as a partial sensitivity
analysis. In particular, the parameters that specify the physical and ther-
modynamic properties of the constituent phases of the plume are not
varied from specified values. However, these parameters are uncertain
in applications, and in Woodhouse et al. (2015) we demonstrated that
variations in the thermodynamic parameters can strongly influence
the model output, with the changes in the specific heat capacity of
solid pyroclasts effecting the variance of the model outputs to a similar
extent as the entrainment coefficients. Furthermore, there are boundary
conditions that are fixed in the analysis, and the profiles of the atmo-
spheric conditions are not varied (with the exception of a scaling of
the wind speed). To examine the effect of these constraints, two case
studies were considered, representing an eruption with a relatively
low sourcemass flux (referred to as a ‘Weak eruption’) and an eruption
with a relatively high source mass flux (referred to as a ‘Strong
eruption’), with different atmospheric conditions for each case (Fig. 3).
We note in particular that the atmospheric profile used in the weak
eruption hasmuch higher wind speeds than the profile for the strong
eruption, but that the water vapour loading of the atmosphere is
substantially greater for the strong eruption. Details of these case
studies and their meteorological conditions are given in Costa et al.
(2016).

A challenge in global sensitivity analysis is to provide summaries of
the variation in the model outputs as the input parameters are varied.
Here we take two approaches.We display graphically the dependencies
Fig. 3.Meteorological conditions for theweak (blue) and strong (red) eruption cases,with a pre
sea level.
of themodel outputs on the input parameters using parallel coordinates
plots (Wegman, 1990), a useful visualisation method for multidimen-
sional data. To quantify the sensitivity of the outputs of the model to
variations in the input parameters we use variance-based sensitivity
indices that provide summary statistics.

3.1. Parallel coordinates plots

Visualising a function of many variables is challenging. For a func-
tion of a single variable, plotting the independent and dependent
variables on orthogonal Cartesian coordinate axes is ubiquitous,
and the interpretation of the resulting plot is usually straight-
forward. The use of Cartesian coordinate axes is also possible for
functions of two variables, although we often must carefully select
appropriate projections of the three-dimensional space onto the
two dimensions of the page. For functions with more than two inde-
pendent variables, the use of orthogonal Cartesian coordinates is
more problematic. In some cases we can identify variables that
allow us to reduce the dimension of the visualisation (for example,
using contours to represent a three-dimensional surface on a two-
dimensional plane), but as the number of variables increases the dif-
ficulties in using orthogonal coordinate axes grow.

An alternative approach is to arrange the coordinate axes in parallel,
known as parallel coordinates plots (Wegman, 1990). By connecting
points on the parallel coordinates with line segments, a trajectory
through the coordinates axes demonstrates the relationship between
the variables, and plotting a sequence of trajectories allows the depen-
dencies in the model to be examined. It can be shown that no
ssure,b temperature, c specific humidity anddwind speed as functions of the height above



Fig. 4. Solutions of the PlumeRisemodelwith the reference input values for theweak eruption scenario. The vent is specified to be at an altitude of 1.5 km asl. In a–d the sourcemass flux is
set atQ0=1.5×106 kg/s (case i). In e–h the plume height is specified to beH=7.5 km asl (case ii). a and e illustrate the plume trajectory and radius. The vertical velocity (b and f), plume
temperature (c and g), and the density difference between the plume and atmosphere (d and h) as functions of the elevation above sea level are shown.
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information is lostwhen a parallel coordinates plot is used inplace of or-
thogonal Cartesian coordinates (Wegman, 1990). Furthermore, the par-
allel coordinates plots allow multiple dependent variables to be
examined together. Examples of parallel coordinates plots are given in
Appendix A.

Parallel coordinates plots are useful for visualisation in global
sensitivity analyses, as the dependencies of several model outputs on
multiple simultaneously varying inputs can be examined. Wegman
(1990) gives a detailed introduction to the interpretation of parallel
coordinates plots. When inspecting parallel coordinates plots, the eye
is often drawn to connections between neighbouring axes. This gives
prominence to first-order (and, to a lesser extent, second-order)
interactions. As an abstract example, if we denote the three inputs to a
model by x1, x2 and x3 and the output by y, and make a parallel
coordinates plot with the axes in this order, then it is easy to infer the
dependence of y on x3 (i.e. the first-order interaction of x3 and y),
while we must make more effort to trace trajectories through the co-
ordinate axes to examine the dependence of y on x1. By permuting
the ordering of the axes so that each of the model input axes is a
neighbour of the output axis, we can more easily recognise the
first-order dependence of the model output to variations of the in-
puts. Here we use the permutation algorithm of Wegman (1990).
In addition, colouring the line segments assists in the visualisation.
Examples of parallel coordinates plots, with coloured line segments
and permuted ordering of the axes are shown in Figs. 5–8, 10, 11,
13 and 14.
3.2. Variance-based sensitivity indices

The difficulty in visually representing the sensitivity for models with
large numbers of inputs motivates the construction of summary statis-
tics. Numerous methods have been proposed to summarise the results
of global sensitivity analyses (Saltelli et al., 2008; Pianosi et al., 2015)
and here we adopt variance-based sensitivity indices (Sobol’, 2001;
Saltelli et al., 2010) as these have been widely used and are relatively
easy to compute. In this approach, the variance in the model output is
decomposed into contributions from changes in individual input
parameters, pair-wise interactions (i.e. two input parameters varying si-
multaneously) and the sets of higher-order interactions (Sobol’, 2001).
Normalised measures, called sensitivity indices, are calculated. While
the sensitivity indices are often useful summary statistics, the character-
isation of the sensitivity of themodel through the variance of themodel
output can be misleading if the distribution of model outputs is highly
skewed or multi-modal (Pianosi et al., 2015).

The first-order sensitivity index, denoted by Si for model input xi
where the index i=1…N with N denoting the number of elements of
the vector x (i.e. the number of inputs to the model that are varied in
the sensitivity analysis), is given (in the notation of Saltelli et al.,
2010) by

Si ¼ Vxi Ex�i yjxið Þ� �
=V yð Þ; ð18Þ



Fig. 5. Parallel coordinates plots for the weak eruption case with wind included and the source mass flux specified. The entrainment coefficients ks and kw, exit velocity U0 (measured in
m/s), magmatic temperature T0 (K), volatile mass fraction n0, wind speed scale factor λ, and the source mass flux Q0 (kg/s) are varied using a Latin hypercube design with 50 sampling
points. The plume height H (km) is calculated. Note Q0 is plotted on a logarithmic scale. The height at which condensation occurs in the plume, Hc (km), is also plotted, with Hc=0 if
no condensation occurs. Trajectories through the coordinate axes represent individual model evaluations, and these are coloured using the plume height H. In each row, the same
numerical output is plotted but the ordering of the axes are permuted to aid with the visual interpretation of the sensitivity to input values.
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where x~ i denotes the set of all model inputs excluding xi, Ex~i
(y |xi)

represents the expected value of y taken over all possible values of x~i
with xi fixed, Vxi denotes the variance taken over all values of the input
xi, and V(y) is the variance in the model output when all inputs are
varied (Saltelli et al., 2010). Si is a normalised measure (i.e. 0≤Si≤1) of
Table 2
First-order (upper panel) and total effects (lower panel) sensitivity indices for the weak
eruptionwithwind and specified sourcemass flux. A 95% confidence interval is estimated
by a bootstrap of the sampled values.

Parameter (symbol) First-order
sensitivity index

95% Confidence
interval

Entrainment coefficient due to
wind (kw)

5.9×10-1 [5.7× 10-1,5.9×10-1]

Source mass flux (Q0) 3.5×10-1 [3.5× 10-1,3.6×10-1]
Wind speed scale factor (λ) 1.8×10-2 [1.4×10-2,1.8×10-2]
Entrainment coefficient in
absence of wind (ks)

1.6×10-2 [1.6×10-2,2.0×10-2]

Magmatic temperature (T0) 4.5×10-3 [3.9×10-3,5.5×10-3]
Mass fraction of gas (n0) 2.0×10-4 [-5.8×10-5,2.9×10-4]
Exit velocity (U0) 6.2×10-5 [-1.5×10-4,4.7×10-5]

Total effects
sensitivity index

95% Confidence
interval

Entrainment coefficient due to
wind (kw)

6.1×10-1 [6.1×10-1,6.1×10-1]

Source mass flux (Q0) 3.7×10-1 [3.7 × 10-1,3.7×10-1]
Entrainment coefficient in
absence of wind (ks)

2.5×10-2 [2.5×10-2,2.5×10-2]

Wind speed scale factor (λ) 1.9×10-2 [1.9×10-2,1.9×10-2]
Magmatic temperature (T0) 4.7×10-3 [4.7 × 10-3,4.8×10-3]
Mass fraction of gas (n0) 2.2×10-4 [2.1 ×10-4,2.2×10-4]
Exit velocity (U0) 7.2×10-5 [7.1 ×10-5,7.2×10-5]
the effect of the variation of the input xi marginalising the effect of
other inputs on themodel output (Saltelli et al., 2010), whichwe subse-
quently refer to as a first-order dependence. Equivalently, Si quantifies
the expected reduction in variance in the model output that would be
achieved if the input xi were fixed (Saltelli et al., 2010). Second-order
sensitivity indices are normalised measures of the contribution to the
variance in model output due to variations in a pair of parameters;
higher order sensitivity indices are similarly constructed (Sobol’,
2001). As the number of sensitivity indices grows exponentially with
the number of model parameters, rather than compute the sensitivity
indices of second-order and higher, it is typical to compute instead the
total effects indices (Saltelli et al., 2010).

The total effects index of model input xi, denoted by STi, is given by
(Saltelli et al., 2008, 2010)

STi ¼ Ex�i Vxi yjx�ið Þ� �
=V yð Þ ¼ 1� Vx�i Exi yjx�ið Þ� �

=V yð Þ; ð19Þ

where Vxi(y |x~i) and Exi(y |x~i) are the variance and expectation, respec-
tively, of the model output taken over all values of the input xi with the
other inputs fixed, and Ex~i and Vx~i are the expectation and variance, re-
spectively, taken over all inputs except xi (Saltelli et al., 2010). STi is a
normalised measure (0≤STi≤1) of the total contribution from variation
in xi (first-order and higher-order effects) to the variance in the model
output (Saltelli et al., 2010). Equivalently, STi measures the expected
variance in model outputs that would remain if all inputs other than xi
are fixed (Saltelli et al., 2010). The variance-based sensitivity indices
allow the variation in the model output to be apportioned to the
model inputs, but additional analysis and visualisation must be per-
formed to understand the distribution and overall uncertainty of the
model outputs.



Fig. 6. Parallel coordinates plots for theweak eruption case withwind included and the plume height specified. The entrainment coefficients ks and kw, exit velocity U0 (measured inm/s),
magmatic temperature T0 (K), volatilemass fraction n0, wind speed scale factor λ, and the plume top heightH (km) are varied using a Latin hypercube designwith 50 sampling points. The
sourcemass fluxQ0 (kg/s) is determined through an inversion calculation. Note Q0 is plotted on a logarithmic scale. The height at which condensation occurs in the plume,Hc (km), is also
plotted, withHc=0 if no condensation occurs. Trajectories through the coordinate axes represent individualmodel evaluations, and these are coloured using the inferred sourcemass flux
Q0. In each row, the same numerical output is plotted but the ordering of the axes are permuted to aid with the visual interpretation of the sensitivity to input values.
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The calculation of the sensitivity indices requires the evaluation of
multidimensional integrals over themodel input space, and is therefore
computationally expensive for a model with a large number of inputs.
Saltelli et al. (2010) gives estimators of the integrals required to
compute the sensitivity indices that can be obtained from a random,
Table 3
First-order (upper panel) and total effects (lower panel) sensitivity indices for the weak
eruption with wind and specified plume height. A 95% confidence interval is estimated
by a bootstrap of the sampled values.

Parameter (symbol) First-order sensitivity
index

95% Confidence
interval

Entrainment coefficient due to
wind (kw)

7.0×10-1 [6.3×10-1,9.6×10-1]

Plume top height (H) 2.6×10-1 [1.7×10-1,3.7×10-1]
Wind speed scale factor (λ) 1.1×10-2 [-1.7×10-2,4.3×10-2]
Magmatic temperature (T0) 6.4×10-3 [-1.4×10-2,1.5×10-2]
Entrainment coefficient in absence
of wind (ks)

4.3×10-3 [-2.4×10-2,3.4×10-2]

Mass fraction of gas (n0) 1.3×10-4 [-1.9×10-3,3.5×10-3]
Exit velocity (U0) -1.6×10-4 [-2.4×10-4,1.3×10-3]

Total effects
sensitivity index

95% Confidence
interval

Entrainment coefficient due to
wind (kw)

7.0×10-1 [6.9×10-1,7.1×10-1]

Plume top height (H) 2.5×10-1 [2.5×10-1,2.5×10-1]
Wind speed scale factor (λ) 2.4×10-2 [2.3×10-2,2.4×10-2]
Entrainment coefficient in absence
of wind (ks)

2.1×10-2 [2.1×10-1,2.2×10-2]

Magmatic temperature (T0) 5.6×10-3 [5.5×10-3,5.6×10-3]
Mass fraction of gas (n0) 1.9×10-4 [1.9×10-4,1.9×10-4]
Exit velocity (U0) 8.8×10-5 [8.6×10-5,8.9×10-5]
space-filling sampling of the parameter space. Here we use a Latin
hypercube design with a maximin criteria, iteratively adjusting the
placement of sampling points in the Latin hypercube to maximise the
minimum distance between points (Morris and Mitchell, 1995). The
model inputs in each sample are drawn from uniform distributions
defined on the intervals given in Table 1. Confidence intervals on the
first-order and total effect sensitivity indices are estimated by a boot-
strap of the Latin hypercube samples (Archer et al., 1997; Yang, 2011).

The convergence of the sensitivity indices (particularly the first-
order indices) corresponding to model inputs with little influence (i.e.
when Si≪1 and ST≪1) can be extremely slow. As these inputs are of lit-
tle further interest we are content to leave unconverged values of the
sensitivity indices where they do not prevent the identification of the
model inputs that strongly influence the model. The forward model ap-
plications (case i) are computationally cheap and therefore large sample
sizes (in excess of 100,000 points in the Latin hypercube) are used. In
contrast, the model inversion calculations (case ii) require several for-
ward model evaluations (typically around 20 evaluations), and there-
fore the computational cost increases. We therefore take smaller
samples of 10,000 points in the Latin hypercube for case (ii) but assess
the convergence of the estimators of the sensitivity indices.

4. Results

4.1. Weak eruption with wind

We consider first the weak eruption scenario with the atmospheric
wind included in the atmospheric profiles. The PlumeRisemodel results
using the specified ‘reference’model inputs are shown in Fig. 4. For case
(i) the sourcemass flux is fixed atQ0=1.5×106 kg/s and the plume top



Fig. 7. Parallel coordinates plots for the weak eruption case without wind and the source mass flux specified. The no-wind entrainment coefficient ks, exit velocity U0 (m/s), magmatic
temperature T0 (K), volatile mass fraction n0, and the source mass flux Q0 (kg/s) are varied using a Latin hypercube design with 50 sampling points. The plume height H (km) is
calculated. Note Q0 is plotted on a logarithmic scale. The height at which condensation occurs in the plume, Hc (km), is also plotted, with Hc=0 if no condensation occurs. Trajectories
through the coordinate axes represent individual model evaluations, and these are coloured using the plume height H. In each row, the same numerical output is plotted but the
ordering of the axes are permuted to aid with the visual interpretation of the sensitivity to input values.
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height is found to be H=3.27 km above the vent which is 1.5 km asl.
For case (ii) the plume top height is fixed at H=6 km above the vent
and the source mass flux is found to be Q0=1.08×107 kg/s using the
reference values for model inputs.

The influence of variations in the model inputs on the plume top
height when the source mass flux Q0 is specified is visualised in parallel
coordinates plots in Fig. 5. A relatively small sample of 50 input sets is
drawn using a Latin hypercube design, as taking a larger sample results
in plots that are more difficult to display. However, the dependencies
displayed are consistent with those found when larger samples are
used. Each trajectory corresponds to one set of inputs (the entrainment
coefficients ks and kw, exit velocityU0,magmatic temperature T0, volatile
mass fraction n0, wind speed scale factor λ, and the sourcemass fluxQ0)
from the sample, and the corresponding model outputs which in this
case are the plume top height H and additionally the height at which
condensation occurs in the plume (denoted byHc, withHc=0 if no con-
densation of water vapour occurs). The trajectories are coloured using
the value for the source mass flux.

Fig. 5 demonstrates a strong dependence of the model prediction of
the plume heightH on the value taken for the sourcemass flux Q0, with
larger values of H when Q0 has values at the upper end of the specified
range. Indeed, the colour scale on the H-axis is almost reproduced on
the Q0 axis. Therefore there is a strong first-order dependence of H on
Q0. Similarly, there is a strong first-order dependence of H on the
value of the wind entrainment coefficient kw, with larger values of H
predicted when kw takes values at the lower end of the range. The line
segments connecting the kw and H axes form an “X” and the colour
scale on the H-axis is inverted on the kw-axis. Indeed, this relationship
appears to be stronger than that between Q0 and H.

No other prominent first-order interactions of model inputs with H
are apparent, but there is evidence in Fig. 5 of second-order interactions.
While there is no strongfirst-order dependence ofH on the no-wind en-
trainment coefficient ks, variation in ks does have an influence on H
through an interaction with kw. In particular, the highest values of H
are achieved when both kw and ks take values at the lower end of their
ranges. Increasing ks while leaving kw (approximately) fixed results in
smaller values of H.

By including the height at which condensation occurs as a coordi-
nate axis, we are able to examine the control of the model inputs on
the phase change of water vapour in the plume and the influence of
this on the plume height. Fig. 5 shows that there is a threshold on the
plume height of approximately 8.2 km below which condensation
does not occur for any of the sampled inputs. However, the strong
first-order dependence of the plume height on both of the source
mass flux Q0 and the wind entrainment coefficient kw means that
there is no clear criteria for the source conditions that results in
condensation.

It is notable in Fig. 5 that there are fewer trajectories passing through
the upper half of the plume height axis than those passing through the
lower half of this axis. This indicates a skewed distribution of plume
heights (with a relatively long upper tail) even though all model inputs
are sampled from uniform distributions. Furthermore, as the relatively
high rising plumes are more likely to encounter conditions for which
condensation of water vapour can occur, there is evidence that the
long upper tail is due to the effects of moisture on the plume dynamics.

In Table 2 we report the first-order and total effects sensitivity indi-
ces for case (i)where the sourcemass flux is specified and plumeheight
is calculated. The values of the sensitivity indices confirm the inferences
that were drawn from the parallel coordinates visualisation (Fig. 5),
although much larger sampling designs are constructed to compute
converged values of the sensitivity indices. The variance in the distribu-
tion of plume heights is dominantly due to variation in the wind



Fig. 8. Parallel coordinates plots for the weak eruption case without wind and the plume height specified. The no-wind entrainment coefficient ks, exit velocity U0 (m/s), magmatic
temperature T0 (K), volatile mass fraction n0, and the plume top height H (km) are varied using a Latin hypercube design with 50 sampling points. The source mass flux Q0 (kg/s) is
determined through an inversion calculation. Note Q0 is plotted on a logarithmic scale. The height at which condensation occurs in the plume, Hc (km), is also plotted, with Hc=0 if no
condensation occurs. Trajectories through the coordinate axes represent individual model evaluations, and these are coloured using the inferred source mass flux Q0. In each row, the
same numerical output is plotted but the ordering of the axes are permuted to aid with the visual interpretation of the sensitivity to input values.
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entrainment coefficient kw (i.e. the magnitude of the sensitivity indices
corresponding to kw are the largest within this set of model inputs) and,
furthermore, this is predominately a first-order dependence since the
total effects index does not differ substantially from the first-order index.
Therefore, if thewind entrainment coefficientwas held fixed, then the varia-
tion in theplumeheightwouldbe greatly reduced. Additionally,wenote that
thevariationof theplumeheight alsohas a strongfirst-order influenceon the
variance of the sourcemassflux. The no-wind entrainment coefficient ks and
thewind scale factorλ have a smaller influence on the variance of the plume
height, and we note that the total effects index corresponding to ks is larger
than the corresponding first-order index. Therefore, the no-wind
Table 4
First-order (upper panel) and total effects (lower panel) sensitivity indices for the weak
eruption without wind and specified source mass flux. A 95% confidence interval is esti-
mated by a bootstrap of the sampled values.

Parameter (symbol) First-order sensitivity
index

95% Confidence
interval

Source mass flux (Q0) 5.0×10-1 [5.0×10-1,5.1×10-1]
Entrainment coefficient in absence
of wind (ks)

4.6×10-1 [4.6×10-1,4.6×100]

Magmatic temperature (T0) 4.8×10-3 [4.8×10-3,5.2×10-3]
Exit velocity (U0) 7.7×10-4 [7.1×10-4,8.8×10-4]
Mass fraction of gas (n0) 5.5×10-4 [4.7×10-4,6.4×10-4]

Total effects
sensitivity index

95% Confidence
interval

Source mass flux (Q0) 5.3×10-1 [5.3×10-1,5.3×10-1]
Entrainment coefficient in absence
of wind (ks)

5.0×10-1 [5.0×10-1,5.1×10-1]

Magmatic temperature (T0) 5.4×10-3 [5.4×10-3,5.4×10-3]
Exit velocity (U0) 8.4×10-4 [8.4×10-4,8.4×10-4]
Mass fraction of gas (n0) 8.4×10-4 [8.4×10-4,8.4×10-4]
entrainment coefficient acts in combinationwithothermodel inputs to result
in variations in the predicted plume height. The sensitivity indices for the re-
mainingmodel inputsareofmuchsmallmagnitude, indicating thatvariations
in these inputs make only a small contribution to the variance in the predic-
tion of the plume height. The skewness of the distribution of themodel pre-
diction of the plume heights is not revealed in the sensitivity indices,
highlighting the importance of visualisation alongside the calculation of the
summary statistics.

In Fig. 6 we show the parallel coordinates plots when the plume top
height is specified and the source mass flux is inferred through an in-
verse calculation. We observe a strong first-order dependence of the source
Table 5
First-order (upper panel) and total effects (lower panel) sensitivity indices for the weak
eruptionwithoutwind and specified plume height. A 95% confidence interval is estimated
by a bootstrap of the sampled values.

Parameter (symbol) First-order sensitivity
index

95% Confidence
interval

Entrainment coefficient in absence
of wind (ks)

4.9×10-1 [2.4×10-1,1.1×100]

Plume top height (H) 4.7×10-1 [1.7×10-2,8.8×10-1]
Magmatic temperature (T0) 3.8×10-3 [-2.5×10-2,8.1×10-2]
Mass fraction of gas (n0) 3.6×10-4 [-7.3×10-3,1.7×10-2]
Exit velocity (U0) -2.8×10-4 [-5.7×10-3,1.8×10-2]

Total effects
sensitivity index

95% Confidence
interval

Entrainment coefficient in absence
of wind (ks)

5.1×10-1 [4.9×10-1,5.3×10-1]

Plume top height (H) 4.9×10-1 [4.7×10-1,5.0×10-1]
Magmatic temperature (T0) 7.7×10-3 [7.5×10-3,8.1×10-3]
Exit velocity (U0) 4.0×10-4 [3.8×10-4,4.1×10-4]
Mass fraction of gas (n0) 3.8×10-4 [3.6×10-4,3.9×10-4]



Fig. 9. Solutions of the PlumeRisemodelwith the reference input values for the strong eruption scenario. The vent is specified to be at an altitude of 1.5 kmasl. In a–d the sourcemassflux is
set atQ0=1.5×109 kg/s (case i). In e–h the plumeheight is specified to beH=38.5 kmasl (case ii).a and e illustrate theplume trajectory and radius. Thevertical velocity (b and f), plume
temperature (c and g), and the density difference between the plume and atmosphere (d and h) as functions of the height are shown.
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mass flux Q0 on the wind entrainment coefficient kw, with relatively high
values of the sourcemassfluxwhen kw takes relatively large values (demon-
strated by line segments that connect these variable axes that are almost or-
thogonal to the axes). While the source mass flux is related to the plume
height, with typically high plumes resulting in high values of the source
mass flux, it is notable that the highest plume height in this sample does
not lead to the largest source mass flux as the greatest Q0 value occurs
when kw≈1.0 (i.e. the greatest value of kw in the sample).

Fig. 6 also identifies a threshold on the plume height of approximately
8.2 kmbelowwhich condensation does not occur for any of the sampled in-
puts. However, exceeding this height does not always result in condensation,
as thereare twotrajectories thatexceed the thresholdheightyethavenocon-
densation (i.e.Hc=0). Tracing these trajectorieswe find that both have rela-
tively low values for both the volatile mass fraction n0 and the magmatic
temperature T0. The height at which condensation occurs does not appear
to be strongly related to the predicted value of the source mass flux Q0.

The sensitivity indices for case (ii)where the plumeheight is specified
and the sourcemassflux is determinedby inversemodelling are reported
in Table 3. The magnitude of the indices are similar to those found when
the source mass flux is specified (Table 2), and therefore the ranking of
the model inputs by their influence on the variance of the model output
is similar. Note the negative value of the first-order sensitivity index for
the exit velocity indicates incomplete convergence of the sampling esti-
mator for this quantity. This slow convergence indicates the low first-
order influence of the exit velocity on the inferred source mass flux.

4.2. Weak eruption without wind

When the wind is removed from the inputs to the weak eruption
case study, the plume rises vertically and the entrainment is reduced.
Therefore, for specified source conditions, the plume reaches higher al-
titudes than are found in thewindy environment. For case (i) the source
mass flux is fixed at Q0=1.5×106 kg/s and the plume top height is
found to beH=9.16 km above the vent, which is a factor of three great-
er than the height attained when the wind is included. For case (ii)
when the plume top height is fixed at H=6 km above the vent the
source mass flux is found to be Q0=1.9×105 kg/s using the reference
values for model inputs, a value two orders of magnitude smaller than
the sourcemass flux predicted by themodel when thewind is included.

Figs. 7 and 8 show parallel coordinates plots indicating the model
dependencies for case (i) and case (ii), respectively. When the source
mass flux is specified (Fig. 7) the predicted plume height is most sensi-
tive the values taken for the no-wind entrainment coefficient ks and the
source mass flux Q0. Similarly, when the plume height is specified
(Fig. 8) the predicted value of the sourcemass flux is strongly controlled
by the no-wind entrainment coefficient ks and the height of the plume
H. The remaining source variables have little influence on the source
mass flux determined by the model. The tabulated values of the sensi-
tivity indices in Tables 4 and 5 are in support of these inferences.

There is no clear relationship between the height at which conden-
sation occurs in the plume and the plume heightwhen the latter is spec-
ified as a model input (Fig. 8). In contrast, when the source mass flux is
specified (Fig. 7), the height at which condensation occurs is strongly
coupled to the plume height (and so the source mass flux), and is also
influenced by the value taken for the entrainment coefficient ks. This
demonstrates that the height at which condensation occurs in the
plume is related to the source conditions and the efficiency of mixing
of ambient air. Note that in this case, condensation is predicted to
occur in the plume for all of the conditions in this sample.

4.3. Strong eruption with wind

We consider next the strong eruption scenario with the atmospheric
wind included in the atmospheric profiles. The PlumeRisemodel results



Fig. 10. Parallel coordinates plots for the strong eruption casewith wind included and the sourcemass flux specified. The entrainment coefficients ks and kw, exit velocity U0 (measured in
m/s), magmatic temperature T0 (K), volatile mass fraction n0, wind speed scale factor λ, and the source mass flux Q0 (kg/s) are varied using a Latin hypercube design with 50 sampling
points. The plume height H (km) is determined. Note Q0 is plotted on a logarithmic scale. The height at which condensation occurs in the plume, Hc (km), is also plotted, with Hc=0 if
no condensation occurs. Trajectories through the coordinate axes represent individual model evaluations, and these are coloured using the inferred source mass flux Q0. Dashed line
segments indicate a model input set that leads to column collapse. In each row, the same numerical output is plotted but the ordering of the axes are permuted to aid with the visual
interpretation of the sensitivity to input values.
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using the specified ‘reference’model inputs are shown in Fig. 9. For case
(i) the sourcemassflux is fixed atQ0=1.5×109 kg/s and the plume top
height is found to be H=35.7 km above the vent which is 1.5 km asl.
For case (ii) the plume top height is fixed at H=37 km above the vent
Table 6
First-order (upper panel) and total effects (lower panel) sensitivity indices for the strong
eruptionwithwind and specified sourcemass flux. A 95% confidence interval is estimated
by a bootstrap of the sampled values.

Parameter (symbol) First-order
sensitivity index

95% Confidence
interval

Exit velocity (U0) 2.9×10-1 [2.9×10-1,3.0×10-1]
Magmatic temperature (T0) 7.5×10-2 [7.0×10-2,8.2×10-2]
Mass fraction of gas (n0) 5.8 × 10-2 [5.3×10-2,6.6×10-2]
Entrainment coefficient in absence
of wind (ks)

1.3×10-2 [1.2×10-2,1.5×10-2]

Wind speed scale factor (λ) -1.1×10-3 [-3.2×10-3,7.9×10-4]
Source mass flux (Q0) -1.3×10-3 [-8.0×10-3,6.3×10-3]
Entrainment coefficient due to
wind (kw)

-5.1×10-3 [-8.9×10-3,-2.8×10-4]

Total effects
sensitivity index

95% Confidence
interval

Exit velocity (U0) 7.7×10-1 [7.6×10-1,7.7×10-1]
Source mass flux (Q0) 4.1×10-1 [4.1×10-1,4.1×10-1]
Mass fraction of gas (n0) 3.6×10-1 [3.5×10-1,3.6×10-1]
Magmatic temperature (T0) 2.9×10-1 [2.8×10-1,2.9×10-1]
Entrainment coefficient due to
wind (kw)

1.5×10-1 [1.5×10-1,1.6×10-1]

Wind speed scale factor (λ) 3.4×10-2 [3.3×10-2,3.5×10-2]
Entrainment coefficient in absence
of wind (ks)

2.2×10-2 [2.2×10-2,2.3×10-2]
and the sourcemassflux is found to beQ0=1.8×109 kg/s using the ref-
erence values for model inputs.

Parallel coordinates plots for a sample of 50 sets of model inputs are
shown in Fig. 10 for case (i) where the source mass flux is specified. In
contrast to the weak eruption scenarios, we find that column collapse
can occur in this setting. Model input sets that lead to column collapse
are identified as dashed lines segments in Fig. 10.

Fig. 10 shows that, for those input sets that produce buoyant plumes,
the plume heights are predicted to be high in the stratosphere, and the
value predicted for H is strongly controlled by the source mass flux Q0,
with higher plumes for larger values of the source mass flux, and weakly
by the entrainment coefficients ks and kw, with the highest plumes
occurring when both entrainment parameters take low values. There is
evidence that the source temperature has an influence on the plume
height, typically with higher source temperatures leading to greater
plume heights, although the dependence on T0 is weaker than for Q0, ks
and kw as indicated by the input set with the highest source temperature
which produces the lowest buoyant plume for this sample set. The re-
maining model inputs do not strongly influence the calculated values of
the plume heights for conditions where the plume becomes buoyant.

Column collapse is found to occur for relatively high values of the
source mass flux (Fig. 10). When collapse occurs, the exit velocity U0

(most strongly), gas mass fraction n0 and magmatic temperature
(least strongly) determine the collapse conditions. This is consistent
with the values of the total sensitivity indices in Table 6. However, the
occurrence of column collapse results in a strongly bi-modal distribu-
tion of the calculated plume heights (as seen in Fig. 10), so the use of
variance-based sensitivity indices can be misleading. Furthermore,
convergence of the indices requires substantially larger samples. For
example, the indices reported in Table 6 are calculated from a sample



Fig. 11. Parallel coordinates plots for the strong eruption case with wind included and the plume height specified. The entrainment coefficients ks and kw, exit velocity U0 (measured in
m/s), magmatic temperature T0 (K), volatile mass fraction n0, wind speed scale factor λ, and the plume top height H (km) are varied using a Latin hypercube design with 50 sampling
points. The source mass flux Q0 (kg/s) is determined through an inversion calculation. Note Q0 is plotted on a logarithmic scale. The height at which condensation occurs in the plume,
Hc (km), is also plotted, with Hc=0 if no condensation occurs. Trajectories through the coordinate axes represent individual model evaluations, and these are coloured using the
inferred source mass flux Q0. Grey dashed line segments indicate a input set where the inversion calculation failed, so the target height could not be attained. In each row, the same
numerical output is plotted but the ordering of the axes are permuted to aid with the visual interpretation of the sensitivity to input values.
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of 100,000model input sets and thefirst-order indices corresponding to
kw, Q0 and λ have not yet converged (as negative values are found).
Therefore, the visualisation in Fig. 10 together with the sensitivity
indices in Table 6 is needed to gain insight into the model sensitivities.
Fig. 12. Parallel coordinates plots of model inputs leading to column collapse for the strong erup
ks and kw, exit velocity U0 (measured inm/s), magmatic temperature T0 (K), volatile mass fracti
hypercube design with 500 sampling points. In this sample, 54 input sets result in column co
coordinate axes and connected by line segments. In each row, the same numerical output is p
the sensitivity to input values.
Parallel coordinates plots for case (ii) where the plume height is
specified as amodel input and the sourcemass flux is predicted through
a model inversion are shown in Fig. 11. For the strong eruption case the
model inversion can fail to find solutions due to column collapse, where
tion casewithwind included and the plume height specified. The entrainment coefficients
on n0, wind speed scale factor λ, and the plume top height H (km) are varied using a Latin
llapse and the values of ks, kw, U0, T0, n0 and λ in these input sets are plotted on parallel
lotted but the ordering of the axes are permuted to aid with the visual interpretation of



Fig. 13. Parallel coordinates plots for the strong eruption casewithoutwind and the sourcemassflux specified. The no-wind entrainment coefficient ks, exit velocityU0 (measured inm/s),
magmatic temperature T0 (K), volatilemass fraction n0, and the sourcemass fluxQ0 (kg/s) are varied using a Latin hypercube designwith 50 sampling points. The plume heightH (km) is
determined. Note Q0 is plotted on a logarithmic scale. The height at which condensation occurs in the plume, Hc (km), is also plotted, with Hc=0 if no condensation occurs. Trajectories
through the coordinate axes represent individual model evaluations, and these are coloured using the calculated plume height H. Dashed line segments indicate a model input set that
leads to column collapse. In each row, the samenumerical output is plotted but the ordering of the axes are permuted to aidwith the visual interpretation of the sensitivity to input values.
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the eruptedmaterial does not become buoyant.Model input sets that lead to
failure of the inversion calculation are identified as grey dashed lines seg-
ments in Fig. 11. Note we plot points for the source mass flux in these cases
in order to avoid breaking the line segments on the parallel coordinates
plots. The failureof the inversioncalculationmeans that the sensitivity indices
associated with the determination of the source mass flux from a specified
plume height cannot be calculated in this case. However, the visualisation al-
lows us to assess the sensitivity to variations in the model inputs.

The predicted source mass flux is strongly related to the specified
height of the plume (Fig. 11), with higher values of Q0 when the
plume top height is large. The no-wind entrainment coefficient ks has
Table 7
First-order (upper panel) and total effects (lower panel) sensitivity indices for the strong
eruption without wind and specified source mass flux. A 95% confidence interval is esti-
mated by a bootstrap of the sampled values.

Parameter (symbol) First-order sensitivity
index

95% Confidence
interval

Exit velocity (U0) 4.3×10-1 [4.3×10-1,4.4×10-1]
Magmatic temperature (T0) 7.3×10-2 [7.3×10-2,7.6×10-2]
Mass fraction of gas (n0) 6.6×10-2 [6.5×10-2,6.8×10-2]
Source mass flux (Q0) 2.0×10-2 [2.0×10-2,2.3×10-2]
Entrainment coefficient in absence
of wind (ks)

7.2×10-3 [7.0×10-3,7.7×10-3]

Total effects
sensitivity index

95% Confidence
interval

Exit velocity (U0) 8.0×10-1 [8.0×10-1,8.0×10-1]
Source mass flux (Q0) 3.5×10-1 [3.5×10-1,3.5×10-1]
Mass fraction of gas (n0) 2.9×10-1 [2.9×10-1,3.0×10-1]
Magmatic temperature (T0) 2.4×10-1 [2.4×10-1,2.4×10-1]
Entrainment coefficient in absence
of wind (ks)

1.6×10-2 [1.6×10-2,1.6×10-2]
relatively more influence on the predicted source mass flux than the
wind entrainment coefficient kw, in contrast to the weak eruption
case. The source mass flux is predicted to take large values when ks
has values towards the upper end of its range, but there is evidence of
a second-order interaction between ks and kw (e.g. low values of one
of these parameters can be compensated by high values of the other).
There is a weak dependence of the source mass flux on the value of
the source temperature, typically with larger values of Q0 when T0 has
relatively low values. There is no clear systematic influence of the
other model inputs on the predicted source mass flux when the plume
becomes buoyant.

From the fewmodel input sets shown in Fig. 11 that lead to failure of the
inversion calculation, and inspection of similar plots for larger sample sizes
(Fig. 12), the influenceof the source conditions on columncollapse canbeex-
amined. Figs. 11 and 12 show that the value taken for the exit velocity U0

strongly determines column collapse, with low values of U0 leading to erup-
tion columns that do not become buoyant. Relatively high values of the exit
velocity only result in collapse if either or both of the entrainment coefficients
take relatively high values. Furthermore, relatively low values of both the
magmatic temperature T0 and source gas mass fraction n0 are found for
those plumes that collapse. The values of the temperature and exit velocity
are also linked, with relatively high exit velocities only resulting in collapse
if the temperature is low and vice versa.

4.4. Strong eruption without wind

We now consider the strong eruption with the atmospheric wind re-
moved from the model forcing. Parallel coordinates plots for a sample of
50 model input sets for case (i), when the source mass flux is specified
and the plume height is calculated is shown in Fig. 13. The strong
dependence of the plume height H on the source mass flux Q0 is again



Fig. 14. Parallel coordinates plots for the strong eruption case without wind and the plume height specified. The no-wind entrainment coefficient ks, exit velocity U0 (measured in m/s),
magmatic temperature T0 (K), volatilemass fraction n0, and the plume topheightH (km) are varied using a Latin hypercube designwith 50 sampling points. The sourcemassfluxQ0 (kg/s)
is determined through an inversion calculation. Note Q0 is plotted on a logarithmic scale. The height at which condensation occurs in the plume,Hc (km), is also plotted, with Hc=0 if no
condensation occurs. Trajectories through the coordinate axes represent individual model evaluations, and these are coloured using the inferred source mass flux Q0. Grey dashed line
segments indicate a input set where the inversion calculation failed, so the target height could not be attained. In each row, the same numerical output is plotted but the ordering of
the axes are permuted to aid with the visual interpretation of the sensitivity to input values.
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observed for input sets that result in buoyant plumes. The no-wind en-
trainment coefficient ks also has a strong control, with the plume height
predicted to be higher when ks has relatively low values. There is some
evidence in Fig. 13 that the magmatic temperature T0 influences the
plume height,with higher plumes occurringwhen the source is relatively
hot. Interestingly, the model predicts that a substantial proportion of the
high rising plumes do not have condensation during the ascent.

Column collapse is predicted to occur for 14 of the 50 model input
sets (denote by dashed lines in Fig. 13). These collapsing conditions in-
clude a larger range of the source mass flux Q0 than is found when the
atmospheric wind is included (see Fig. 10). Column collapse is typically
found when the exit velocity U0 is relatively low.

The sensitivity indices for case (i) of the strong plume examplewith-
outwind included are reported in Table 7. As the distribution of the pre-
dicted plume height is strongly bi-model, the variance-based sensitivity
indices do not comprehensively reveal the model dependencies for this
case, and are slowly converging; in Table 7 the indices are calculated
from a sample of one million model inputs. The sensitivity indices give
particular prominence to the exit velocity, indicating the importance
of U0 in determining whether the column becomes buoyant.

Parallel coordinates plots for case (ii) where the plume height is
specified and the source mass flux determined, are shown in Fig. 14
and illustrate the strong relationship between the plume height H and
source mass flux Q0. There is also a strong dependence of the predicted
value of the sourcemass flux on the no-wind entrainment coefficient ks.
In contrast to the strong eruption with wind included, condensation is
predicted to occur for all inputs sets that result in buoyant plumes.
Three of the 50 model input sets lead to a failure of the inversion calcu-
lation, denoted by dashed grey lines on the figure, and so we do not
compute the corresponding sensitivity indices.
5. Discussion

The global sensitivity analysis for each of the scenarios considered
demonstrates the importance of a relatively small set of the inputs to
the model on the predictions. Variations in the source mass flux Q0

and the entrainment coefficients ks and kw have the dominant control
on the plume height when forward model calculations are performed
in the considered ranges for the input parameters. If inverse model cal-
culations are performed, with the plume height specified, then varia-
tions in the plume height H and ks and kw are dominant in controlling
the prediction of the source mass flux. The other inputs have less influ-
ence on the model predictions.

As the PlumeRise model is a coupled nonlinear system of equations,
it is difficult to anticipate these sensitivities directly from themodel for-
mulation. However, for buoyant plumes of a single phase of incompress-
ible fluid that issues from a point source into a linearly stratified
quiescent ambient, dimensional analysis suggests a fundamental
relationship between the height of the plume, denoted by h for this
idealised setting, and the source buoyancy flux, F0, with

h ¼ cN�3=4 F1=40 ð20Þ

where N is the buoyancy frequency of the atmosphere, defined by

N2 ¼ � g
ρ0

dρA

dz
; ð21Þ

which is assumed to be a positive constant, and c is a dimensionless
constant (Morton et al., 1956). This relationship has been used to moti-
vate the formulation of scaling relationships for volcanic plumes.



Table 8
The change in the sourcemass fluxQ0 (measured in kg/s) inferred from the plume heightwhen the specified heightH0 (km asl) is changed by±20% for each of the eruption scenarios. The
other model inputs are held fixed at their reference values.

Eruption scenario H0 Q0 for H=H0 Q0 for H=0.8H0 Q0 for H=1.2H0

(% change) (% change)

Weak eruption with wind 7.5 1.08×107 4.89×106 (-55%) 2.69×107 (+149%)
Weak eruption without wind 7.5 1.94×105 7.00×104 (-64%) 5.47×105 (+182%)
Strong eruption with wind 38.5 1.81×109 6.00×108 (-67%) 4.93×109 (+172%)
Strong eruption without wind 38.5 8.71×108 2.68×108 (-69%) 2.32×109 (+166%)
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Sparks et al. (1997) and Mastin et al. (2009) impose a relationship H=
αQβ and use observational data to calibrate the dimensional prefactor α
and the exponent β, and both studies find β≈0.25. Other studies (see
e.g. Wilson et al., 1978; Settle, 1978; Woods, 1988; Sparks et al., 1997;
Degruyter and Bonadonna, 2012) have incorporated the atmospheric
buoyancy frequency and used source and atmospheric thermodynamic
parameters to express the source buoyancy flux in terms of the source
mass flux. Here we use the expression given in Degruyter and
Bonadonna (2012); Woodhouse et al. (2013) as an estimate of the
height of a volcanic plume in a quiescent atmosphere, H0, with

H0≈
0:0013ffiffiffiffiffi

ks
p g Cp0T0 � CATA0

� �
ρA0CATA0

� �1=4

N�3=4Q1=4; ð22Þ

forH0 measured in km. Note that for volcanic plumes, the compressibil-
ity of the atmosphere is important (as plumes typically rise to heights
comparable with the scale height of the atmosphere), and therefore
the buoyancy frequency should be calculated using the potential
temperature of the atmosphere (Gill, 1982).

For plumes rising in a wind field, the plume height is significantly
reduced compared to an equivalent plume rising in quiescent atmo-
sphere. Degruyter and Bonadonna (2012); Woodhouse et al. (2013)
have proposedmodifications of the algebraic relationship Eq. (22) to ex-
plicitly account for the atmospheric wind. The relationships proposed
by Degruyter and Bonadonna (2012); Woodhouse et al. (2013) each
have the form,

Q0 ¼ 25=2πk2s
z41

ρA0CATA0

g Cvn0 þ Cs 1� n0ð Þð ÞT0 � CATA0ð Þ
	 


N3H4 f Wð Þ; ð23Þ

where z1 is a calibration parameter Morton et al. (1956) give z1=2.8
from numerical solutions of an integral model of pure plumes, i.e. with
boundary conditions corresponding to a point source of buoyancy
with no flux of mass or momentum, while Woodhouse et al. (2013)
take z1=2.67 from numerical solutions of an integral model of volcanic
plumes in a quiescent Standard Atmosphere). Note, here we have
inverted the expression presented in Woodhouse et al. (2013) to give
the source mass flux as a function of the plume height. The effect of
wind is described by the function f ðWÞwhich is a monotonic increasing
function of a dimensionless measure of the wind speed W. The models
Table 9
The change in the sourcemass fluxQ0 (measured in kg/s) inferred from the plume height when
scenarios. The other model inputs are held fixed at their reference values.

Eruption scenario T0 Q0 for T=

Weak eruption with wind 1273 1.08×107

Weak eruption without wind 1273 1.94×105

Strong eruption with wind 1053 1.81×109

Strong eruption without wind 1053 8.71×108
differ in the specification of the dimensionless wind speed W, and the
form of the function f. Degruyter and Bonadonna (2012) propose

f Wð Þ ¼ 1þ z41
25=2 :

k2w
6k2s

W;with W ¼ v�

N
�
H
; ð24Þ

while Woodhouse et al. (2013) suggest

f Wð Þ ¼ 1þ bW þ cW2

1þ aW

 !4

;withW ¼ 1:44
_γ
N
: ð25Þ

Here v� and N
�
are the wind speed and buoyancy frequency averaged

over the plume height (Degruyter and Bonadonna, 2012), _γ is represen-
tative of the shear rate of the atmospheric wind, and a=0.87+0.05kw/
ks, b=1.09+0.32kw/ks and c=0.06+0.03kw/ks (Woodhouse et al.,
2013). The functional form Eq. (24) is obtained by Degruyter and
Bonadonna (2012) from a linear combination, with equal weights, of
the plume rise height relationship of Morton et al. (1956) for plumes
in a quiescent ambient (when W ≡ 0) and the asymptotic expression
of Hewett et al. (1971) for the rise height of a pure plume in a uniform
crosswind that is appropriate forW≫1(Hewett et al., 1971). In contrast,
the more complex functional form in Eq. (25) emerges as Woodhouse
et al. (2013) fit an algebraic expression for the plume height as a func-
tion of the sourcemass flux (i.e. the inverse of the expression 23) to nu-
merical solutions of the integral plumemodel in a standard atmosphere
over a range of values of Wb5 that is typical of wind-blown volcanic
plumes rather than employing a combination of the relationships ap-
propriate in the asymptotic regimesW≪1andW≫1. However, thephys-
ics captured by the algebraic relationships of Degruyter and Bonadonna
(2012) and Woodhouse et al. (2013) are essentially identical; the rise
height of the plume decreases as the shear rate of the wind increases
for a fixed source mass flux, due to enhanced mixing.

The algebraic relationships are simplified descriptions of the dynam-
ics of eruption columns; they can be considered as surrogates of the
nonlinear system of ordinary differential equations (in Costa et al.,
2016 these relationships are described as 0th-degree models). The use
of source parameters and representative atmospheric parameters
means that these algebraic relationships do not capture the complexity
of behaviour found when solving the system of differential equations.
For examples, the effects of different stratification in the troposphere
the specifiedmagmatic temperature T0 (K) is changed by±100 K for each of the eruption

T0 Q0 for T=T0+100 Q0 for T=T0-100

(% change) (% change)

9.50×106 (-12%) 1.23×107 (+14%)
1.72×105 (-11%) 2.21×105 (+14%)
1.38×109 (-23%) 2.90×109 (+60%)
6.84×108 (-21%) 1.28×109 (+47%)



Fig. 15. Profiles of the plume temperature, T, vertical velocity, Uz, and mass fraction of
liquid water, ϕw, as functions of height for the strong eruption with wind included and a
specified plume top height of 38.5 km asl. Three values of the source temperature are
specified: T0=953 K (blue), T0=1053 K (green) and T0=1153 K (red). The black
dashed line shows the temperature profile of the ambient atmosphere.
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and stratosphere (Woods, 1988; Glaze and Baloga, 1996), change of
phase of water vapour (Woods, 1993; Glaze et al., 1997; Woodhouse
et al., 2013), and local variations in the wind speed with height
(Bursik, 2001; Bursik et al., 2009), cannot be exploredwith the algebraic
relationships. Nonetheless, they doprovide insight into the sensitivity of
the plume height to variations in source conditions.

It is apparent fromEq. (23) that, when inferring the sourcemass flux
using the model, there is a strong dependence on variations in the
plume height. If only the plume height is varied, with all parameters
held fixed, then we find from Eq. (23) that the change in the source
mass flux, δQ, is given by

δQ ¼ 1þ δH
H

� �4

� 1

" #
Q0; ð26Þ

where Q0 is the source mass flux found when the plume rises to height
H, and δH is the change in the plume height. Therefore, when the
heights are increased by 20% the source mass flux would be expected
to increase by a factor of 2, whereas a decrease of the height by 20%
would be expected to reduce the source mass flux by a factor 0.4. How-
ever, these estimates assume that the atmospheric conditions, quanti-
fied in Eq. (23) by the representative values of the buoyancy
frequency N and the wind strength parameter W, do not change when
the height is varied. However, the atmospheric structure may be such
that relatively small changes in the plume height result in substantial
changes to the representative (e.g. column averaged) buoyancy
Fig. 16. Regime diagram for buoyant (red) and collapsing (blue) plumes.
Source conditions, parameter values and atmospheric conditions for the strong
plume case are adopted. The curve Γ1=5(1+Γ2/0.6) well describes the transition
between conditions that result in buoyant plumes and those leading to column
collapse.
frequency (e.g. if the change in height takes the plume into the strato-
sphere) or the representative shear rate of the atmospheric wind (e.g.
if the change in height results in the plume rising into a regionwith a lo-
cally highwind speed such as jet streams). Table 8 reports the change in
the sourcemass flux inferred by inversionwhen the plume height alone
is changed by±20% for each of the scenarios studied, and indicates that
the algebraic approximation Eq. (26) gives an under-estimate of the
change in the source mass flux when there is a variation in the plume
height. This demonstrates the importance of dynamical processes oc-
curring above the vent that are not explicitly included in the algebraic
relationships.

In a weak wind field (such as that used for the strong eruption case
study), the wind parameter W is small and f ðWÞ≈1, so the predicted
source mass flux depends on the no-wind entrainment coefficient ks,
but only weakly on the wind entrainment coefficient kw. In contrast,
in a strong wind field (such as that used for the weak eruption case
study),WN0, and a dependence of the sourcemass flux on the wind en-
trainment coefficient kw can be anticipated through the function f ðW:Þ

Eq. (23) anticipates theweak dependence of themodel output (i.e. ei-
ther the plume height or the sourcemass flux) on themagmatic temper-
ature, T0, and the source gas mass fraction, n0. Indeed, Eq. (23) suggests
that these thermodynamics variables influence the plume properties
through the difference in internal energy between the eruption column
and the atmosphere relative to the internal energy of the atmosphere.
The variations of the source gas mass fraction n0 (Table 1) alone change
the bulk heat capacity at the vent by only ±1%, so do not result in signif-
icant changes to the heat content of the plume at the vent. The variations
in T0 alone result in changes of approximately±8% to the heat content at
the vent. Taken together, variations in T0 and n0 change the heat content
of the plume at the vent by±10%. Eq. (23) then suggests the sourcemass
flux would vary by approximately ±10% when the magmatic tempera-
ture changes by ±100 K (approximately ±10% of the reference temper-
ature) for a fixed plume height. While this is consistent with the model
solutions for the weak eruption scenario, changes in the source tempera-
ture have a greater effect for the strong eruption (Table 9). This suggests
that changes in the source temperature have an important effect on the
plume dynamics that is not captured by Eq. (23).

Examining profiles of properties of the plume for the strong eruption
scenario (Fig. 15) for different values of the source temperature, we note
that changing the source temperature results in significant changes to the
vertical velocity profile.While all three of the plumes in Fig. 15 are super-
buoyant (i.e. there is an acceleration phase as the column becomes buoy-
ant above the vent, Woods, 1988), the low source temperature results in
a significantly lower velocity in the lower part of the plume. This reduces
the entrainment of ambient air (as, in this weak wind field, the entrain-
ment is approximately linearly proportional to vertical velocity) and
therefore the temperature in the plume is reduced less rapidly (Fig. 15).
The plume with low source temperature can therefore heat entrained
air to greater heights, remaining buoyant when the higher source tem-
perature plumes have becoming negatively buoyant. This behaviour is
not found for the weak eruption scenario, where the plume is not
super-buoyant and changes to the source temperature do not substan-
tially alter the vertical velocity profiles (not shown).

The exit velocity is not included in Eq. (23). However, models of pure
plumeswith a sourcemomentumflux (known as forced plumes) suggest
that the evolution in the momentum-driven jet region does not strongly
influence the behaviour beyond a few source radii downstream of the
vent. For plumes that become buoyant, the jet-like region typically
represents a small proportion of the total rise height of the plume
(Woods, 1988), and the exit velocity is therefore not expected to strongly
affect the rise height of the plume. However, the exit velocity is important
in determining whether the eruption column becomes buoyant or col-
lapses (Woods, 1988; Sparks et al., 1997; Degruyter and Bonadonna,
2013).

Degruyter and Bonadonna (2013) identify two dimensionless
parameters that allow a regime diagram for buoyant and collapsing
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eruption columns to be constructed. For plume rising in a quiescent
atmosphere, the transition from buoyant to collapsing plumes is deter-
mined by the condition (Degruyter and Bonadonna, 2013)

Γ1NΓ1c; where Γ1 ¼ � ρA0 � ρ0

ρA0

� �
Q0

πρ0U0

� �1=2 g

ksU
2
0

; ð27Þ

and where Γ1c is a threshold whose value depends on the remaining
source conditions, with typical values of 5–10 (Degruyter and
Bonadonna, 2013). In a windy atmosphere, the parameter Γ2=kwV/
ksU0 is defined, and the buoyant/collapsing regimes are separated by a
curve that is approximated as

Γ1
Γ1c

¼ 1þ Γ2
Γ2c

; ð28Þ

with collapsing plumes to the right of this curve in the (Γ1,Γ2)-plane,
andwhere the value of Γ2c≈0.6 isweakly dependent on the source con-
dition (Degruyter and Bonadonna, 2013).

From these transition criteria, the occurrence of the collapsing col-
umns found in the global sensitivity analysis of the strong eruption
case can be understood. When the wind is removed from the atmo-
spheric profiles, the criterion Eq. (27) indicates that collapsing plumes
will occur for high source mass flux, low exit velocity and low values
of the no-wind entrainment coefficient, to give values of Γ1 exceeding
the threshold value. These dependencies are observed in Figs. 13 and 14.

When the wind is included in the atmospheric profiles, the criterion
Eq. (28) suggests additional dependencies on thewind entrainment co-
efficient kw, the magmatic temperature T0 and the exsolved gas fraction
n0 (which affect the plumedensity at the vent) and thewind speed scale
factor λ. These dependencies are observed in Figs. 10, 11 and 12. Fig. 16
illustrates the buoyant and collapsing plume regimes for a sample 500
source conditions and parameter values in the strong eruption case,
plotted on the Γ1-Γ2 plane. The criterion Eq. (28)with Γ1c=5adequately
describes the transition in regimes.

For the atmospheric conditions considered in the two scenarios of
this study, the moisture content of the plume does not strongly influ-
ence the dynamics. Indeed, for the strong plume case, some of the
highest rising plumes found in our sampling of the model input space
do not have a phase change ofwater vapour occurring.When condensa-
tion does occur in the plumes for the strong eruption it is likely that la-
tent heat of condensation provides only a small proportion of the total
energy of the plume. In the weak eruption case, we observe that the
highest plumes in our sampling have a phase change of water occurring
during the ascent. However, the relative humidity of the atmosphere is
less than 35% for this scenario, so littlemoisture is entrained from the at-
mosphere. In other settings, the influence of moisture can be much
greater (Woods, 1993; Glaze et al., 1997; Mastin, 2007; Woodhouse
et al., 2013), and modelling the condensation of water vapour is impor-
tant to understandother processes that occur in the plume such as light-
ning (e.g. Behnke et al., 2014; Woodhouse and Behnke, 2014) and
aggregation of ash (e.g. Brown et al., 2012; Van Eaton et al., 2012, 2015).

5.1. Analyses of sensitivity and uncertainty

The analyses conducted in this study provide insight into the
sensitivity of the model output to variations in the inputs to the
model. This is an important component of an uncertainty analysis. The
sensitivity analysis can be used to identify those inputs whose uncer-
tainty must be included and propagated through themodel when com-
paring predictions to observations. However, there are other essential
requirements of an uncertainty analysis.

Uncertainties in making measurements of physical processes in the
environment can be significant and these observational uncertainties
must be quantified and included when models are applied to draw
inferences from observations. Furthermore, idealisations in the model
introduce uncertainties, known as structural uncertainties, and these
must also be quantified and included in uncertainty analyses
(Woodhouse et al., 2015). A crucial component of this is quantifying
the influence of physical processes that are not included in the model
(Woodhouse et al., 2015). The comparison of the results of sensitivity
analyses applied to models that include different physical processes is
a useful approach to quantifying structural uncertainty.

Global sensitivity analyses, where model inputs are simultaneously
varied across their domains, are crucial as one-at-a-time sensitivity
analyses do not fully explore connections between variables (Saltelli
et al., 2008). For example, this study demonstrates that while variations
in the source temperature alone can have a pronounced effect, when
uncertainty in other model inputs are also considered, the models out-
puts are less sensitive to the source temperature than the source mass
flux and entrainment coefficients. However, the analysis performed
here is a partial sensitivity analysis, with themodel boundary conditions
and a subset of the model parameters varied. In particular, the thermo-
dynamic parameters (heat capacities of the constituent phases) are not
changed from default values, but the values of these parameters are
uncertain in volcanic settings. Furthermore, variations in one of the
source temperature, gas mass fraction and heat capacities can be offset
by changes in another of these inputs. Therefore, it is unlikely that an in-
version study using uncertain observations of the plumeheight could be
used to predict the source temperature or volatile content (Woodhouse
et al., 2015).

Often uncertainty analyses adopt a Bayesian statistical approach (e.g.
Kennedy and O'Hagan, 2001; Craig et al., 2001), constructing posterior
probability distributions by refining specified prior distributions using
observations (see e.g. Denlinger et al., 2012; Anderson and Segall, 2013;
Madankan et al., 2014). For a model with a large number of inputs, the
calculation of the posterior probability distribution canbe computational-
ly demanding. Woodhouse et al., 2015 demonstrates an alternative ap-
proach to uncertainty analysis, known as history matching, that can be
performed in a similar way to the global sensitivity analysis conducted
in this study. The values of uncertain model inputs are sampled from de-
fined prior distributions using a space-filling Latin hypercube design to
propagate their uncertainty through the model. The model outputs are
then assessed against observations by defining implausibility measures
that incorporate observational, parameter and structural uncertainties
(Vernon et al., 2010; Woodhouse et al., 2015). In both the Bayesian
calibration and historymatching uncertainty analyses, preliminary sensi-
tivity analyses are extremely valuable as non-influential parameters can
be eliminated, even if there is substantial uncertainty in their values
(Woodhouse et al., 2015).

6. Conclusions

We have conducted a global sensitivity analysis of the PlumeRise
model of moist, wind-blown volcanic plumes. The dependence of the
model output to variations in the conditions representing the volcanic
source and a subset of the model parameters is examined in two erup-
tion scenarios. Our analysis shows that the model predictions are most
sensitive to the values specified for the source mass flux (in forward
model computations) or the plume height (when a model inversion is
performed to estimate the sourcemass flux) and to the entrainment co-
efficients. Variance-based sensitivity indices can be used to quantify the
dependence of the model to its inputs, but these can be misleading
when the distribution of the model output is multi-modal, as found
here for the strong eruption scenario when column collapse can occur.
Visualisation of themodel input and output space through parallel coor-
dinates plots is an effective tool for examining the model sensitivities.

This work has been conducted as part of an inter-comparison of
models of volcanic plumes. By examining the predictions and sensitivity
of differentmodels in this structured exercise, the results can be used to
learn about the sources of structural uncertainty in the models and to
quantify these uncertainties.



Fig. A.18. Scatter plots for the function y ¼ ðx1 � 1
2Þ

2 þ 0:1x2 for 0≤x1,x2≤1, with a sample
of size 1000 from a Latin hypercube design.
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Appendix A. Visualising multivariable data using parallel coordi-
nates plots

Parallel coordinates plots are a powerful visualisation technique for
multivariable data and are widely used in sensitivity analyses (for
example, the SAFE toolbox (Pianosi et al., 2015) for performing and
examining sensitivity analyses inMatlab includes a parallel coordinates
plotting routine). The mathematical foundations of parallel coordinates
are well-established (see Inselberg, 1985, 2009), and there are
numerous papers on the application and extension of the methodology
to a variety of problems in data analysis, data mining and visualisation.

The basic parallel coordinates plot consists of a set of line segments
connecting vertices that are placed on a sequence of parallel aligned
coordinate axes; such a visualisation is easy to construct. However, for
large data sets that are typically required to explore the sensitivity of a
model with a large number of input variables, a simple parallel coordi-
nates plot can appear to be a complicated web of tangled lines weaving
across the coordinate axes. Examining parallel coordinates plots for
Fig. A.17. Parallel coordinate plots for functions of one variable y= f(x), with (a) f(x)=2x-1 fo
(e) f(x)=1/x for x∈(0,1], (f) f(x)=ex for x∈[0,1], (g) f(x)=e-x

2
for x∈[-3,3], (h) f(x)= sin

respectively, of the output y.
simple example functions, where the dependence of the variables is
clear, allows us to identify patterns and so to make inferences in appli-
cations for which the underlying functional form is not known explicit-
ly. Fig. A.17 shows examples of parallel coordinates plots for eight
functions of a single variable, y= f(x).

On a parallel coordinates plot, a linear functionwith positive slope is
represented by parallel lines that are orthogonal to the axes when the
y-axis is scaled to be the same length as the x-axis (Fig. A.17a,
Inselberg, 1985) which is typical on parallel coordinates plots. In
contrast, a linear function with negative slope is represented on a
parallel coordinates plot by a sequence of lines that all cross at a single
point (Fig. A.17b, Inselberg, 1985). Power-law functions y=xr, such as
y=x2 (Fig. A.17c), y=x1/4 (Fig. A.17d) and y=1/x (Fig. A.17e), are
identified on parallel coordinate plots using the separation between
neighbouring line segments; two line segments initiating at x0 and
x0+δx on the x-axis are separated by δy≈rx0

r-1δx on the y-axis. An ex-
ponential function appears similar to a power-law function on a parallel
r x∈[0,1], (b) f(x)=1-2x for x∈[0,1], (c) f(x)=x2 for x∈[0,1], (d) f(x)=x1/4 for x∈[0,1],
x for x∈[0,4π]. Colour is used in (g) and (h) to highlight the symmetry and periodicity,



Fig. A.19. Parallel coordinates plots for the function y ¼ ðx1 � 1
2Þ

2 þ 0:1x2 for 0≤x1,x2≤1,
with a sample of size 50 from a Latin hypercube design. Line segments are coloured by
the value of the model output y.

Fig. A.21. Parallel coordinates plots for the function y ¼ ðx1 � 1
2Þ

2 þ 0:1x2 þ 1
4 ð1� tanhð1

0x1ÞÞ cosðπx3Þwith 0≤xi≤1 for i=1,2,3, with a sample of size 50 from a Latin hypercube
design. Line segments are coloured by the value of the model output y.
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coordinates plot (Fig. A.17f), however, for two line segments initiating
at x0 and x0+δx on the x-axis, the separation on the y-axis is δy≈ex0δx.
The exponential function can, of course, be very easily distinguished
from a power-law function by transforming a linear y-axis into a
logarithmically scaled axis.

The use of colour to distinguish lines greatly aids the visualisation of
some functions. For example, for a function that is symmetric about
some point on the x-axis, colouring the line segments by the value of
y= f(x) highlights the symmetry (e.g. Fig. A.17g illustrates a parallel co-
ordinates plot for a Gaussian function, f(x)=e-x

2
). Similarly, the identifi-

cation of a periodic function (such as y= sinx, as shown in Fig. A.17h) is
much easier when line segments are coloured according to the value of
y. Colour is particularly useful when there are several coordinate axis, as
close neighbours on one pair of the axes can be distinguished if they di-
verge on another of the axes.When a continuous colour scale that is tied
to one of themodel inputs or outputs is used to colour line segments it is
possible to reduce by one the number of coordinate axes. However, in
our study we retain the coordinate axis that is also used to colour the
line segments.
Fig. A.20. Scatter plots for the functiony ¼ ðx1 � 1
2Þ

2 þ 0:1x2 þ 1
4 ð1� tanhð10x1ÞÞ cosðπx3Þ

with 0≤xi≤1 for i=1,2,3, with a sample of size 1000 from a Latin hypercube design.
Colour can also be usefully applied categorically on parallel coordi-
nates plots. For example, in our study we might be interested in identi-
fying the source conditions that result in plumes rising above 10 km, so
one could highlight those line segments where themodel prediction for
the plume height exceeds 10 km in a different colour from the other
model results. Further alteration of the properties of the lines can be
used to convey additional information. For example, transparency of
the line segments greatly aids the visualisation of very large data sets.
For additional extensions of the parallel coordinatevisualisation see
e.g. Heinrich and Weiskopf (2013).

A great benefit of parallel coordinates plots is their ability to convey
information on the interconnections between model variables and as-
sess the combined influence of variations in several inputs on the pre-
dictions of a model. Furthermore, several model outputs can be
examined together (e.g. in our study we examine the sensitivity of
both the plume height and condensation height to variations in the
model inputs). The ‘first-order’ sensitivity of a model output to one of
the model inputs is most easily examined when the axis for the model
Fig. A.22. Scatter plots for the functiony ¼ ðx1 � 1
2Þ

2 þ 0:1x2 þ 1
4 ð1� tanhð10x1ÞÞ cosðπx3Þ

with 0≤xi≤1 for i=1,2,3, with a sample of size 50 from a Latin hypercube design.
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input of interest is a neighbour of the axis alongwhich themodel output
is plotted. This can only be achieved for all of the model inputs by per-
muting the axes (Wegman, 1990). ‘Second order’ interactions (i.e. the
influence of combined variations in a pair ofmodel inputs on an output)
can be easily visualised by arranging the axes so that the two inputs of
interest and the model output are grouped together. This also requires
permuting the axes in order to examine all possible second-order
interactions.

Parallel coordinates plots are particularly easy to interpret when
there is a monotonic and nearly linear relationship between the
model inputs and the model output. However, we find that nonlinear
relationships can also be identified in parallel coordinates plots. Using
the example function

y ¼ f x1; x2ð Þ ¼ x1 � 1
2

� �2

þ 0:1x2; ðA:1Þ

with 0≤x1 ,x2≤1, (suggested to us by Dr. M. de' Michieli Vitturi) we
anticipate a strong nonlinear dependence of y on the input x1 and a
weaker linear dependence of y on x2. These dependencies are seen in
scatter plots (Fig. A.18).

The dependencies of the model output y and the sensitivity to vari-
ation in the inputs (x1,x2) can also be observed in a parallel coordinates
plot (Fig. A.19).

The non-monotonic dependence of y on x1 can be easily identified,
with trajectories for both x1≈0 and x1≈1 linking to relatively large
values of y. The dependence of y on x1 is symmetric about the mid-
point value for x1 (i.e. x1=1/2) since the colouring of lines on the x1-
axis is symmetric about the mid-point. Thus, with further analysis
(e.g. changing the colour scale from linear to quadratic ) one might be
able to learn more about the nonlinear form of the function. The weak
dependence of the output y on x2 (i.e. low sensitivity to x2) can be in-
ferred from the unclear pattern of trajectories through the x2-axis.

The example function (A.1) is of a particularly simple form; the func-
tional dependencies on x1 and x2 occur separably. In general, of course,
this is not expected, and to illustrate this pointwe analyse a different ex-
ample function with non-separable dependencies. Identifying interac-
tions between model inputs is a particular strength of the parallel
coordinatevisualisation. A second example function, a modification of
(A.1) to include an interaction term, can be used to demonstrate this.
We take a function

y ¼ f x1; x2; x3ð Þ ¼ x1 � 1
2

� �2

þ 0:1x2

þ 1
4

1� tanh 10x1ð Þð Þ cos πx3ð Þ; ðA:2Þ

with 0≤xi≤1 for i=1,2,3, noting that the interaction term has a form
such that the new input x3 contributes when x1≈0 and most substan-
tially when x3≈0. The scatter plots for this function are shown in
Fig. A.20.

From the scatter plots we infer (i) that the output y is most sensitive
to the value of x1 and (ii) that there is similar sensitivity to x2 and x3.
However, it is difficult to determine inter-connections between the in-
puts, although some interaction between x1 and x3 can be anticipated
for x1≈0 and x3≈0.

If we examine a parallel coordinates plot for this function, shown in
Fig. A.21, the strong nonlinear dependence of y on x1 is apparent, with
much less sensitivity to the other inputs.We can further examine the in-
teractions by tracing trajectories across the axes. We see, for example,
that the three largest values of y occur for x1≈0 and x3 taking relatively
low values, and, furthermore, that there is a clear ordering with y
increasing as x3 decreases with x1≈0. We also note that when x1≈1
there is no discernible dependence of y on x3.

We note also that the inferences drawn using parallel coordinates
plots can be made with many fewer model evaluations that the scatter
plots. For example, if we examine the scatter plots for the example func-
tion (A.2) using the same 50 sample points as used in the parallel coor-
dinates plot (Fig. A.22) then it is difficult to draw firm conclusions.

For these example functions (and for our plumemodel) the compu-
tational cost is small, so that many evaluations can be made, but for
computationally expensive models there is a great advantage in
visualisations that allow detailed analyses but require few evaluations.
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