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This study investigates the gravitationally driven dynamics of dense granular mate-
rials, released from rest and allowed to flow down a slope until they stop moving.
Laboratory experiments were performed in which a measured volume of material
was released from rest in a cylindrical tube and spread across an unconfined rigid
plane inclined at angles less than the angle of repose. Upon release, the particles
initially spread outward radially. However, up-slope motion is rapidly suppressed
while down-slope motion is promoted, which leads to an approximately ellipsoidally
shaped deposit once the flow has been fully arrested. The flows were modeled under
the shallow layer approximation and integrated numerically to capture the motion
from initiation to final arrest. In modeling, two types of Coulomb-type friction mod-
els were employed. One had a constant friction coefficient, and another had a friction
coefficient that depends upon the dimensionless inertial number of the motion. When
the initial aspect ratio of a granular mass is small and the slope angle is low (<5◦),
the model with a constant friction coefficient can capture the shape of the deposit.
However, when the slope angle is increased, the friction model that is dependent
on inertial number becomes more important. For granular columns of initially high
aspect ratios, the shallow water model fails to reproduce some aspects of the exper-
imental observations. Finally, the dependence of the shape and depth of the deposit
upon dimensionless parameters that characterize the system is examined under the
constant friction coefficient model, demonstrating that the deduced scaling arguments
are borne out by the numerical simulations and laboratory data. C© 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4792707]

I. INTRODUCTION

Dense granular flows generated by the slumping of granular materials are often encountered in
industrial processes that involve the transport and deposition of grains such as seeds, cereals, and
tablets. They also occur in geophysical systems, such as pyroclastic flows caused by the collapse of a
lava dome or volcanic explosions, snow avalanches, and landslides. Recently, the dynamics of granu-
lar flows caused by the slumping of a fixed mass has been studied theoretically and experimentally.1–8

In these studies, a granular mass was instantaneously released from a cylindrical tube on a horizontal
plane,1, 2 a spherical cap on an unconfined rough inclined plane,3, 4 and a box-shaped space behind
a lock-gate on chutes.5–8

Constructing a numerical model to capture the major characteristics of spreading granular
materials is a significant challenge because the mechanics of the grains and their interactions are
incompletely understood at a fundamental level. One approach has been to exploit the thinness of
the flows relative to their length by employing a depth-averaged description in which the flow is
assumed to have a constant bulk density. Equations are developed to represent mass and momen-
tum conservation. Previous studies3–6, 9–14 have suggested that key features, such as the variation
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in thickness of deposits resulting from slumping, can be captured well by this approach. Another
approach involves discrete element modeling to reproduce the motion and deposit characteris-
tics of granular slumping onto a horizontal plane.15–17 However, in the latter case, computational
time, memory, and complexity place some limits on their application to large-scale geophysical
applications. The depth-averaged approach can describe not only steady uniform granular flows in
laboratory scale but also unsteady non-uniform ones on complex terrains, as encountered in the
field.18

A key issue is the granular friction law that is introduced into depth-averaged models. This
problem has been investigated for laboratory-scale granular flows but remains under debate.4, 6, 12, 19

A classical model for dense granular flows5 uses a Coulomb-type friction model in which a single
constant friction coefficient is adopted. Then, under the shallow water assumption and when the
initial aspect ratio of a granular mass is low, this approach can approximately capture the deposit
shape of a collapsing granular column on a horizontal plane.20 For flows down an inclined plane,
friction laws, which depend on flow properties, such as thickness, velocity, and grain-size, become
important.4, 21

Recent laboratory experiments and numerical simulations of dense granular flows suggest that
rheology can be described by a friction coefficient, which corresponds to the ratio of the shear
to normal stress. Variation of this coefficient with shear rate and pressure is captured through a
dimensionless inertial number (I), defined below.22, 23 Under the shallow water assumption, however,
how well this friction model works remains unclear when applied to unsteady flows. In this paper,
we compare a constant friction model with a model that makes use of a friction law within the
inertial number framework, and show the benefits of the latter for unconfined slumping of granular
materials on slopes.

This paper is organized as follows. In Sec. II, an unsteady two-dimensional (2D) shallow layer
model is formulated, in which a Coulomb-type friction model with a friction coefficient that is
either constant or a function of inertial number (I) is introduced. In Sec. III, the experimental setup
and observation of granular slumping on unconfined horizontal and inclined planes are reported. In
Sec. IV, a shallow water model is applied to the configuration of the laboratory experiment, using
the two friction models. Thus, the validity of the models is assessed. In Sec. V, the dependence of
the shape and depth of the deposit upon dimensionless parameters that characterize the system is
examined using the constant friction coefficient model. In Sec. VI, the main findings are discussed
and summarized.

II. MODEL DESCRIPTION

The shallow layer model for dense granular flows is based upon the thickness of the flow being
much less than its extent on an inclined plane, so that the acceleration perpendicular to the slope is
negligible. The model is identical to previous studies,5, 10, 11, 24 but the handling of friction laws is
somewhat different. A Cartesian coordinate system is defined in which the x-axis points down the
slope and is inclined at a constant angle, θ , to the horizontal, the y-axis points across the slope, and
the z-axis points upward and normal to the slope. Because of the shallowness of the flow, the pressure
is given by p = ρg(h − z)cosθ , where ρ denotes the bulk density, which is assumed constant, g is the
gravitational acceleration, and h is the thickness of the flowing layer. The depth-integrated governing
equations, which represent conservation of mass and momentum balance down- and cross-slope,
may be written in the following form:

∂h

∂t
+ ∂

∂x

h∫
0

ũdz + ∂

∂y

h∫
0

ṽdz = 0, (1)

∂

∂t

h∫
0

ũdz + ∂

∂x

h∫
0

ũ2dz + ∂

∂y

h∫
0

ũṽdz + ∂

∂x

(
1

2
gh2 cos θ

)
= gh sin θ − Tx

ρ
, (2)
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∂

∂t

h∫
0

ṽdz + ∂

∂x

h∫
0

ũṽdz + ∂

∂y

h∫
0

ṽ2dz + ∂

∂y

(
1

2
gh2 cos θ

)
= −Ty

ρ
, (3)

where h is the flow thickness, ũ and ṽ are the flow velocities in the x and y directions, respectively,
(Tx, Ty) is the boundary shear stress between the flowing layer and the underlying plane, and t is the
time. The velocity fields are replaced with their depth-averaged counterparts

vh =
h∫

0

ṽdz and uh =
h∫

0

ũdz. (4)

To close the model, the integrals of ũ2, ũṽ, and ṽ2 are represented in terms of depth averaged
counterparts. Thus,

h∫
0

ũ2dz = �1u2h,

h∫
0

ũṽdz = �2uvh, and

h∫
0

ṽ2dz = �3v
2h, (5)

where �i are shape factors that account for shear in the velocity profiles. It can be shown that �i

≥ 1 for all velocity profiles. However, as is common in most studies that employ the shallow layer
equations, �i = 1. This is an assumption that is only strictly valid when there is plug flow. Hogg and
Pritchard25 present an analysis of the effects of keeping shape factors in the governing equations and
illustrate that in some fluid flows, especially close to the front where the fluid depth becomes small,
the effects may be non-negligible. In Sec. IV, the effect of shape factors on final deposit shapes is
examined for these granular flows. The governing equations are given by

∂

∂t

⎡
⎣ h

hu
hv

⎤
⎦ + ∂

∂x

⎡
⎣ hu

hu2 + 1
2 gh2 cos θ

huv

⎤
⎦ + ∂

∂y

⎡
⎣ hv

huv

hv2 + 1
2 gh2 cos θ

⎤
⎦ =

⎡
⎣ 0

gh sin θ − Tx / ρ

−Ty / ρ

⎤
⎦ .

(6)
Complex processes such as effects of pore pressure have been neglected, although these are rec-
ognized as important in debris flows.24 Recent studies are followed in assuming that the normal
stresses are isotropic, so that the “earth pressure coefficient” is unity.4, 26 Then a simple Coulomb-
type formulation is adopted for the basal shear stress, T, in the following form:

[
Tx

Ty

]
= μρgh cos θ√

u2 + v2

[
u
v

]
, (7)

where μ is a friction coefficient. In this study two different friction models are examined. One is a
model with a constant angle of friction between the grains, in which the boundary has the following
form:

μ = tan δ, (8)

where δ is the basal friction angle of the granular material. In the other model, the friction coefficient
is a function of a dimensionless inertial number, I, as expressed in the following form:22

μ (I ) = μs + μ2 − μs

I0/I + 1
, (9)

where I0 is a constant that is empirically determined by experimental studies. A typical value of I0 for
glass beads is ∼0.3 as discussed by GDR MiDi.27 The inertial number, I, is defined as γ̇ d /

√
P / ρp,

where γ̇ is the shear rate (the second invariant of the deformation rate tensor), P is the confining
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pressure, and d and ρp are the particle diameter and density, respectively.27, 28 The friction coefficient
starts from a critical value of μs (=tanδs) at zero shear rate and tends to a limiting value μ2 (=tanδ2)
at high values of I. The force balance for steady uniform flows on horizontal or inclined planes
implies that the ratio between shear stress and normal stress is constant. As a result, the equation
of μ(I) means that the dimensional shear rate I is constant across the layer.22, 27 The shear rate
then varies with depth as the square root of the pressure (and, therefore, as the square root of the
depth), because the pressure increases with depth as P = ρg(h − z)cosθ (with an average value P̂
= ρghcosθ /2). Velocity varies as (depth)3/2, if it is assumed that there is no-slip at the base of the
flowing layer. An average velocity gradient is given by the mean velocity, V̂ , divided by the flow
depth, h. So, the average of I can be estimated as

Î = 5

2

V̂ d

h
√

gh cos θ
, (10)

where the factor 5/2 arises from the Bagnold-like velocity profile.27 In the shallow water model, this
relationship between Î , mean flow speed, and layer depth is used.

The above system of partial differential equations (6) is solved using a finite volume method
for hyperbolic problems29 where the first order Godunov method is incorporated to capture the dis-
continuous solutions appearing in the system. The basic numerical calculation procedure, especially
the determination of the source term in the Eq. (6), is mostly the same as in Doyle et al.,14 but we
use an HLLC Riemann Solver for wet-dry dam break problems30 instead of a Roe solver to avoid a
non-physical assumption of a small amount of mass in the “vacuum” part of the flow (a “pre-wetted”
layer). The dimensional grid size is 2.5 mm and the area calculated is a 800 × 480 grid (2 m and
1.2 m for x- and y-directions, respectively). The time step is variable and automatically selected
based on a Courant number condition to ensure stability.

Stopping criteria for the granular material are introduced based on a Coulomb threshold.11 The
threshold value of the shear stress, σ c, has the following form on an inclined plane:

σc = μρgh cos θ. (11)

After solving the hyperbolic equations on the left side of Eq. (6), in which the source term on the
right side is assumed to equal to zero, the admissible basal shear stress T̃ at the node i and time t
+ 1 is evaluated using the solution for [hu, hv]. Here, T̃ can be written in the following form:[

T̃x

T̃y

]t+1

i

=
[

hu

hv

]t+1

i

+ 	t

[
g sin θx h

g sin θyh

]t+1

i

, (12)

where 	t is a time step. When
∣∣T̃ ∣∣ < σ c, i.e., the basal shear stress is less than the threshold value

and the flow velocity [u, v] is set to be zero. When
∣∣T̃ ∣∣ > σ c, the whole system represented by

Eq. (6) is solved using the basal shear stress T in Eq. (7).

III. LABORATORY EXPERIMENTS

A. Method

Dry granular material (glass ballotini with mean diameters, d, of 100 and 400 μm) was released
from a cylindrical tube (with an initial radius r0 = 5 cm) down a wooden plane (Fig. 1) inclined
to the horizontal at angles θ = 0◦, 5◦, 10◦, and 15◦. Care was taken to ensure that the particles
were relatively free of any residual moisture by bubbling air through them in a fluidized bed for
several minutes prior to their release. Removing surface moisture reduces cohesive effects, which
could play a significant role for small particles. The initial masses of granular material, M, were
0.5, 1.0, 1.5, 2.0, and 2.5 kg, which correspond to initial aspect ratios of the granular column, here
defined as the ratios of initial heights to the initial radii, A = 0.86, 1.7, 2.6, 3.4, and 4.3, with a
measured bulk density of 1.4 g/cm3. Granular material was poured into the tube, the top surface
was carefully smoothed to ensure it was parallel with the slope, its elevation, h0, was measured,
and then the confining tube was rapidly lifted using a pneumatic trigger to initiate the flow down
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FIG. 1. Experimental configuration. The axisymmetric granular column is released by rapidly removing the confining
cylindrical tube. Granular material flows down an unconfined wooden slope. Definitions of variables are shown.

the plane. Once the material had come to rest, the resulting deposit was measured to determine its
perimeter. Additionally, the thickness variation, h, was measured at various locations down-slope
and across-slope by carefully inserting thin pins throughout the grains so that they were minimally
disturbed. Snapshots and video footage of slumping materials were taken.

A dynamic basal friction angle, δ, and the internal friction angle (repose angle), ϕ, of the
granular material was measured in this experimental setup and the values are listed in Table I. The
roughness of the wooden plane generates a dynamic friction angle that is comparable to the angle of
repose of the grains and thus it is probable that the flowing layers do not simply slide over the plane
without internal deformation. Lube et al.1 studied collapses of granular columns on three different
surfaces: a smooth wooden plane, a smooth transparent plastic plane, and a rough plane made of
sand paper. They found no significant differences between the deposit shapes. This suggests that the
interaction of the granular flow with the substrate makes little difference to the runout in this type of
experimental configuration.

B. Observations

For slumps on horizontal planes (initial aspect ratio A > 0.86) the granular material initially
collapsed and spread radially. Avalanching eroded the entire initial column surface leaving a con-
ical pile. The final deposit had a steep central cone and an axisymmetric tapering frontal region
(Fig. 2(a)), a result similar to other laboratory studies.1, 2

As the slope angle is increased, the collapse and spreading behavior of the granular material
is similar to that observed on a horizontal plane, but the runout distance is not axisymmetric
(Figs. 2(b)–2(d)). Up-slope motion is rapidly arrested, motion down the incline is enhanced, and there
is some limited cross-flow spreading, leading to an ellipsoidally shaped deposit. Enduring contact
between the particles leads to frictional forces arresting the motion. These basic characteristics of
the flow motion were the same for all slope angles. Small-scale surface features sometimes formed
during the final phases of emplacement (Fig. 2). These may be residual features of moisture-induced
cohesion and were not observed in the experiments with the larger grains.

Cross sections of deposits for up- and down-slope directions are shown in Fig. 3. The deposit
shape is characterized by a peaked top, as observed in experiments on a horizontal plane. However,

TABLE I. Material properties of the granular materials: mean particle diameter d, grain density ρb, angle of repose ϕ,
dynamic bed friction angle δ.

Material d (μm) ρb (g/cm3) ϕ (◦) δ (◦)

Ballotini 70-110 (ave. 100) 2.5 23 ± 1 24 ± 1
Ballotini 400-800 (ave. 400) 2.5 22 ± 1 17 ± 1
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FIG. 2. Final deposit shapes for various slope angles (θ ) using initial granular mass of 2.0 kg. (a) θ = 0◦, (b) 5◦, (c) 10◦,
and (d) 15◦. Down-slope direction is to the left.

for the cases using a 15◦ slope, the highest position, which is defined as h∞, is located slightly up
slope and is lowered. As a result, the deposit is characterized by a horseshoe shaped morphology
defined by a semi-circular rim in the up-slope direction. This shape becomes much prominent for
larger masses (M > 1.5 kg) as seen in Figs. 2(c) and 2(d). The runout along the centerline (x = 0) is
systematically increased in the down-slope direction and decreased in the up-slope direction as the
inclination of the plane is increased for both 100 and 400 μm diameter grains.

Variations in the perimeter of the ellipsoidally shaped deposits with mass released, M, and
inclination, θ , are summarized in Fig. 4. A steep slope results in a more elongated deposit. The
shape can be characterized by the ratio of the maximum width in the cross-slope direction (y∞) to
maximum extent in the down-slope direction (x∞), which decreases systematically as the slope angle
increases (Fig. 5). The maximum runout distance in the down-slope direction (xd) systematically
increases with both M (or aspect ratio, A) and θ (Fig. 6). We observe that for the granular slumps
on a horizontal plane there is a small systematic divergence from the motion being purely radial,
which would lead to y∞/x∞ = 1. Measurement error of the boundary or of the inclination of the
plane could account for some of this discrepancy, but we are unable to identify clearly its cause. Of
much greater importance, however, is the more substantial decrease in y∞/x∞ as the inclination of
the underlying boundary increases.

For different initial masses of granular material, the runout distance of the flow is plot-
ted as a function of time, taking examples from a slope angle of 15◦ using the 100 μm grains
(Fig. 7). Granular flows show a primary acceleration phase (convex downward) in the initial 0.2 s,
followed by a phase of constant velocity and a final deceleration phase (convex upward). The
same time-distance relationship is observed in other laboratory experiments.1, 2, 7 The maximum
speed is observed in the second phase, which contrasts with theoretical analyses on dam-break
flows.12, 20, 25
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FIG. 3. Cross sections of final deposits in laboratory experiments for particles with an average diameter of 100 μm. Left:
x-direction profile taken along the line of y = 0; right: y-direction profile taken across the line of x = 0. The mass in the
release is given for each plot in the captions.

IV. APPLICATION OF THE MODEL TO LABORATORY RESULTS

Two different Coulomb-type friction models were applied to laboratory experiments, namely,
the constant friction coefficient model and the I-dependent friction model. These laws require the
specification of friction angles: for the Coulomb model, there is a single friction angle, δ, whereas
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FIG. 4. Perimeter of the deposits using grains with diameters of (a) 100 μm and (b) 400 μm in laboratory experiments.
Radial distances are in cm.
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FIG. 5. The relationship between slope angle (θ ) and axial ratio (y∞/x∞) of an elliptically shaped deposit for initial granular
mass (M) with grain diameters of (a) 100 μm and (b) 400 μm.

for the I-dependent model there are two friction angles, δs and δ2, as well a constant, I0, which here
is taken to be 0.3.27 Although previous studies have suggested appropriate values for δ, δs, and δ2

for glass beads (see, for example, GDR MiDi27), here in our numerical simulations we examine the
results for a small range of friction angles spanning the previously reported values (Table II). We
also examined the effects of shape factors on the distribution and extent of the deposit for slumps
over a horizontal plane.

A. Horizontal plane

Numerical results show good agreement with laboratory data when the model is applied to a
granular column with a low initial aspect ratio (A = 0.86, M = 0.5 kg) using a constant friction
angle (δ) of 30◦ (Fig. 8). Although different constant friction angles (δ = 28◦, 30◦, and 32◦)
were examined, δ = 30◦ produced the best-fit result. When the I-dependent friction law is used,
where δs is changed over the range from 22◦ to 26◦ and δ2 is fixed at 30◦, the model predicts a
longer runout distance (characterized as a perimeter) and a lower deposit height than observed.

FIG. 6. The maximum down-slope runout distance (xd) as a function of the mass of granular material released (M), for slope
inclinations θ = 0◦ to 15◦. Grain diameter is 100 μm.
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FIG. 7. A time-distance plot of the flow front position in a down-current direction for an initial mass of granular material
(0.5 to 2.5 kg). Slope angle θ is 15◦. Grain diameter is 100 μm.

For larger mass releases, deposit characteristics cannot be reproduced by either of the friction
models; runout distance is overestimated by 10% to 20% for M = 1.5 kg and 20% to 35% for
M = 2.5 kg (Fig. 8). This result indicates that the model is not applicable for high aspect ratio
cases, because the initial vertical accelerations and velocities during release become significant and
the confining pressure is non-hydrostatic.1, 2 When a time-distance relationship for the flow front
position is plotted, the initial acceleration phase of slumping cannot be captured by the shallow water
approximation.

Under Coulomb’s law with a constant angle of friction, there is no velocity shear and so
it is appropriate to set the shape factors, �i, to unity. However, for the Pouliquen flow rule
(Eqs. (9) and (10)), velocity shear is anticipated, and in its simplest form, when there is no-slip
at the base, this implies that �i = 5/4. The effects of the shape factors on the final deposit shapes
were examined for a granular collapse on a horizontal plane.

An increase of �i with a fixed friction angle (δ = 30◦) leads to a little more material deposited
near the center of the pile and slightly increased runout, but the final shape is not very significantly
affected. The range of results (±8% error for the final deposit height) is approximately the same
as the error caused by the uncertainty in the dynamic friction angle (δ = 30 ± 2◦) (Fig. 9). Given
the impossibility of measuring the velocity profiles in the experimental setup, and being unable to
measure the shape factors directly, all shape factors were set to unity, noting that this approximation
is applied in most shallow layer models of granular flows.5, 10, 11, 24

B. Inclined planes

The quasi-elliptical shape of the deposits is largely captured by the numerical model, but a
detailed comparison between observation and numerical results reveals some discrepancies in the

TABLE II. Friction angles of granular material used in numerical simula-
tion: dynamic bed friction angle δ, minimum critical friction angle δs, and
maximum friction angle δ2.

Model Friction angles (◦)

Constant friction δ 28, 30, 32
I-dependent friction δs 22, 24, 26

δ2 26, 28, 30, 32
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FIG. 8. Cross section of flow deposits in the x-direction from numerical simulation and observation for M = 0.5 kg,
1.5 kg, and 2.5 kg with θ = 0◦ (upper), and M = 0.5 kg with θ = 5◦, 10◦, and 15◦ (bottom). For a constant friction coefficient
model, δ = 28◦ (thin solid line, black), 30◦ (medium solid line, red), and 32◦ (thick solid line, orange) were examined. For
the I-dependent (varying friction coefficient) model (s), δs was set to be 22◦ (long dashed line, green), 24◦ (medium dashed
line, blue), or 26◦ (short dashed line, purple) with a constant value of δ2 = 30◦.

profiles of the deposits (Figs. 8, 10, and 11). For small mass releases with a low initial aspect ratio (M
= 0.5 kg, A = 0.86), deposit cross sections in the x-direction produced by numerical simulation and
experimental observation are compared for each slope angle and each friction model (Fig. 8). For a
constant friction coefficient of δ = 30◦ and a slope angle of 5◦, numerical simulations overestimate
the maximum deposit height, h∞, and underestimate the runout distance, xd, both by ∼20%. If the

FIG. 9. The depth of the final deposit as a function of the radial distance from release for a friction angle of 30◦ and for
various shape factors � = 1.0 (thin solid line, black), 1.1 (medium solid line, red), and 1.25 (thick solid line, orange). Also
plotted are the deposit for friction angles 28◦ (short dashed line, blue) and 32◦ (long dashed line, purple) with � = 1.0. The
initial conditions consist of a 1.0 kg mass of particles held within a cylinder of radius 5 cm. The flow was computed over a
horizontal boundary.



023302-12 Maeno et al. Phys. Fluids 25, 023302 (2013)

FIG. 10. Cross sections of flow deposits in the x-direction from observation (open squares) for M = 0.5 kg with θ = 15◦ and
numerical simulation using the I-dependent friction model where δs was set to be 22◦ (solid line), 24◦ (long dashed line), or
26◦ (short dashed line) and δ2 was set to be 26◦, 28◦, 30◦, or 32◦. A model with δs = δ2 = 26◦ is equal to a constant friction
coefficient model with δ = 26◦.

constant friction model with δ = 28◦ or the I-dependent friction model with δs = 26◦ and δ2 = 30◦

is applied, numerical results agree well with laboratory data (within 7% error for both xd and h∞).
In the cases of δs = 22◦ and 24◦, the simulation estimates xd within 10% error but underestimates
h∞ by 15% to 20%.

With increasing slope angle, the discrepancy between the numerical simulations using the
constant friction coefficient model and observation becomes more evident. The deposit height is
overestimated by 20% to 40%. Results using the I-dependent friction model, however, are consistent
with observations for steeper slopes. The lower value of δs = 22◦ gives well fitting results for 15◦

angle when δ2 ∼ 30◦, although xd is underestimated and the central part of the down-current profile is
also not well produced (Fig. 8). When different maximum friction angles (δ2 = 26◦ to 32◦) are used,
the runout distance, xd, is changed (Fig. 10), but the deposit height, h∞, is only negligibly changed.
(It exhibits an approximate 5% variation.) For smaller values of δ2 (26◦ and 28◦), a higher δs is
required to capture the runout distance, but the deposit height cannot be reproduced simultaneously.
After some tests using different friction angles (as listed in Table II), the pairing of δs = 22◦ to
24◦ and δ2 = 30◦ to 32◦ gives best-fit results for the higher slope angles (Fig. 10). Then, both
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FIG. 11. Cross sections of flow deposits in the x-direction from numerical simulation and observation for M = 1.0 to 2.5 kg
and θ = 15◦. Legend is the same as in Fig. 8.

models reproduce the observation that the runout distance in the up-slope direction decreases with
an increase of slope angle (Fig. 2).

For cases using a larger mass with a higher initial aspect ratio (M > 1.0 kg, A > 2), it is difficult
to reproduce the cross-sectional profiles in the experiments, although the maximum deposit height
is captured by the I-dependent friction model. Numerical examples using a slope angle of 15◦ are
shown in Fig. 11. Here, xd is overestimated by ∼15% and ∼20% for 2.0 and 2.5 kg, respectively,
when δs = 22◦. The central part of the down-slope profile is underestimated and difficult to reproduce
in all cases. This feature also occurs at lower slope angles.

Comparison of xd in the down-current direction for numerical simulations and laboratory ob-
servations is shown in Fig. 12. For smaller masses (<1.5 kg), the constant friction model fits
the observed runout distance, xd, for small slope angles, but the I-dependent model is better for
steeper slopes. Simultaneously, h∞ and its position are also consistent with observations when the
I-dependent model is used (Fig. 8). For larger masses (2.0 and 2.5 kg), xd is overestimated by ∼25%,
even for small slope angles. The constant friction model with δ = 30◦ or 32◦ gets close to observa-
tions for larger slope angles (within 20% error), but h∞ is overestimated by 40% to 60% (Figs. 11
and 12). The ratio of the maximum lateral extent (y∞) to the maximum streamwise extent (x∞) for
the ellipsoidally shaped deposit decreases with the slope but it is not significantly affected by mass
(Fig. 13). This relative independence upon mass of release is what was observed in the experimental
results (Fig. 5). However, there are quantitative differences between the theoretical predictions and
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FIG. 12. Comparison of the maximum runout distance in the down-current direction for laboratory observation (open
squares) and numerical simulation for a constant friction coefficient model (solid circles, solid squares, and diamonds) and
the I-dependent model (upward/downward triangles and open circles). Colors in legend corresponding to the friction models
are the same as in Fig. 8.

the experiments: for the larger slope inclinations, the differences become up to ∼20%, because the
cross-slope runout is overestimated by the numerical model.

Figure 14 shows the relationship between runout time, t/t∞, and runout distance, (x − r0)/xd,
non-dimensionalised by observation data. Here, t∞ is the emplacement time of the granular flows.
The numerical simulations do not capture the initial acceleration phase. The speed of the major

FIG. 13. Relationships between slope angle (θ ) and axial ratio (y∞/x∞) for elliptically shaped deposit consisting of different
initial granular mass (M). Open squares are laboratory data; closed circles are numerical results for two different friction
models using different friction angles.
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FIG. 14. Comparison of time-distance plots of the flow front position in the down-current direction. Initial mass of granular
material is 0.5 to 2.5 kg). Slope angle θ is 15◦. A non-dimensional distance and non-dimensional time scale are used. They
are normalized by the maximum runout distance and the duration of flow observed in laboratory experiments, respectively.
Legend is the same as in Fig. 8.

propagation phase is consistent with observations after about 0.2 s for different friction models
and friction angles. Previous numerical and analytical studies also failed to capture the initial
phase.12, 20, 25 This is explained by the shallow water approximation not being appropriate during
the initial phases of the collapse when there is non-negligible vertical acceleration as the material
slumps upon release.

C. Effects of friction models

The I-dependent friction model gives an increasingly better fit to deposit shapes as slopes
increase. A major difference between the two friction models is apparent in the x-direction profile.
The laboratory deposits have a steeply curved front and are reproduced by only the I-dependent
friction model (Fig. 15).

The distribution and extent of the deposit produced from releases of initially small aspect
ratios are well reproduced by the numerical model with typical mismatches of less than 10% in the
predicted depth and extent. In Fig. 16, representative numerical results, using the best fit parameters
for releases with M = 0.5 kg, are shown for each slope angle. With an increase of slope angle, which
causes a longer runout distance, the model requires a lower friction angle of δs to reproduce the
experimental measurements. By choosing a best-fitting values of friction angle, δs, which is close
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FIG. 15. Magnification of cross section (x-direction) in the central (a) and the frontal (b) parts of the deposit from numerical
simulation and observation (M = 1.5 kg, θ = 15◦). For the maximum deposit height, h∞, the I-dependent friction model
(especially with δs = 22◦ and 24◦) shows a better agreement with observation than the constant friction coefficient model
does. The frontal shape is also reproduced well by the I-dependent model. Legend is the same as in Fig. 8.

to 22◦ (a typical value for glass beads4, 31), we find that we can produce quite good quantitative
agreement between the theoretical predictions and experimental observations, although the cross-
slope runouts are slightly overestimated. Figure 16 shows contours of the deposit and illustrates the
emergence of a crescent (or “horseshoe”) feature in the deposit as the inclination of the slope is
increased (see Fig. 2).

FIG. 16. Results of numerical simulation using M = 0.5 kg (initial column radius is 5 cm) on unconfined slopes. (a) θ = 0◦,
constant friction model (δ = 30◦), (b) θ = 5◦, I-dependent friction model (δ2 = 30◦, δs = 26◦), (c) θ = 10◦, I-dependent
friction model (δ2 = 30◦, δs = 24◦), (d) θ = 15◦, I-dependent friction model (δ2 = 30◦, δs = 22◦). Contour interval
is 1 mm.
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V. SCALING ANALYSIS

The dependence of the shape and depth of the deposit upon dimensionless parameters that
characterize the system is now examined. For this analysis and for simplicity, only the Coulomb
model of basal drag with a constant coefficient of friction, μ = tanδ, is investigated with numerical
simulations run over a wide range of initial condition and slope inclinations. We anticipate that
broadly similar results as those that follow could be produced for the I-dependent model of fric-
tion, but this is not analyzed here to ease the exposition. The following two dimensionless ratios
are defined:

ε = r0 (μ − tan θ )

h0
and λ = r0μ

h0
, (13)

where r0 and h0 are the initial radius and height of the cylinder of granular materials. Therefore,
h0/r0 (=A) is the initial aspect ratio.

A rescaled version of the governing equations can then be introduced by defining

{x, y, t, h, u, v} = {
λ−1/3ro X, λ−1/3roY, λ−2/3ro (g cos θh0)−1/2 T,

λ2/3h0 H, λ1/3 (g cos θh0)1/2 U, λ1/3 (g cos θh0)1/2 V
}
.

(14)

The governing equations are then given by
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(15)
subject to the initial condition H = λ−2/3 when X2 + Y2 < λ2/3. The only parameter appearing in the
governing equations is ε/λ, while λ is also in the initial conditions. The ratio ε/λ, which represents
the ratio of the net down-slope drag to the cross-slope drag, is expected to play a significant role in
determining the shape of the deposit. To this end, the aspect ratio of the final deposit, here defined
as the ratio of its maximum width (y∞) to its maximum length (x∞), is plotted as a function of ε/λ
(Fig. 17). This plot shows that an approximately universal curve can be obtained from the numerical
model with the deposit varying from approximately circular with ε ∼= λ, to being extended far down
slope when ε/λ � 1. In this plot 0.12 < λ < 0.72 and 0.05 < ε < 0.72 and the fact that the numerical
data clusters quite closely around a single curve when plotted as a function of ε/λ illustrates that the

FIG. 17. The shape of the final deposit, characterized by the ratio of its cross-slope to down-slope extent, y∞/x∞, as a
function of ε/λ. Circles show numerical data. Squares and triangles show experimental data with 100 and 400 μm-diameter
grains, respectively, assuming δ = 30◦. Typical deposit profiles at some values of ε/λ.
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aspect ratio of the deposit, y∞/x∞, depends only weakly on λ, which appears in the initial conditions,
but much more strongly on ε/λ, which appears in the governing equation. The experimental data
is also overlain on this plot and follows the same basic trends as in the numerical data, but with
some differences, as detailed in Sec. IV. In particular, the scatter in the experimental points at ε/λ
= 0.54 just corresponds to the scatter in the points at θ = 15◦ (Fig. 5(a)). In this section, we focus
on attempting to explain the numerically computed variation of y∞/x∞ and the final depth of deposit
relative to the initial depth (h∞/h0) with the dimensionless parameters ε and λ.

The scaling analysis described below follows results derived by Hogg6 for 2D slumps down
slopes, a study which provided a theoretical basis for some of the deductions for large aspect ratio
slumps made by Lajeunesse et al.2 and Kerswell.12 The analysis is based on the regime ε � λ � 1,
so that frictional effects are relatively weak and the slope relatively steep, thus extending the deposit
far down slope. However, as found for 2D slumps, the scaling results work rather robustly even in
regimes far outside their domain of validity.

Initially the granular material slumps and spreads radially, with its motion driven by a balance
between the radial pressure gradient and its inertia, before being progressively affected by friction
and down-slope acceleration. Eventually, friction overcomes the driving forces and the material
is arrested. Cross-slope spreading is inhibited first since down-slope friction is compensated by
a component of gravitational acceleration. The scales for the depth of the granular slump can be
determined during each phase by applying and modifying the analysis developed by Hogg.6 First,
during the initial radial spreading, the radius increases linearly with time, R = λ−1/3T, where the radial
velocity is related to the square root of the initial height of the release. Then since mass is conserved
H ∼ 1/R2 and thus we deduce that the depth can be described by H ∼ λ2/3/T 2 (cf. Hogg6). Friction
becomes important for the cross-slope momentum balance when the inertia and pressure gradient are
of comparable magnitude. This demands ∂V/∂T ∼ ∂ H/∂Y ∼ 1. Thus, similar to Hogg,6 we deduce
that since V ∼ Y/T , friction is non-negligible when Y ∼ T 2, H/Y ∼ 1, and so H ∼ λ1/3. In terms
of the original dimensional variables, the depth when cross-slope spreading is inhibited is given by
h/h0 ∼ λ. Subsequently, the granular material continues to flow, but its motion is now predominantly
down slope. The depth of the material is therefore scaled as H ∼ λ1/3/T , because in this regime
the cross-slope motion is inhibited, but the down-slope motion remains as X ∼ λ−1/3T . Final arrest
occurs when there is a subsequent balance between inertia, pressure gradient, and friction in the
down-slope momentum equation. This requires ∂U/∂T ∼ ∂ H/∂ X ∼ ε/λ and thus following Hogg6

H ∼ λ2/9 (ε/λ)2/3 is deduced. In terms of the original dimensional variables, h∞/h0 ∼ λ2/9ε2/3.
These scaling predictions can now be tested against the numerical simulations. When the flow

has arrested, the maximum depth of the deposit is plotted, scaled by the initial height of the released
cylinder of granular material as a function of λ (Fig. 18(a)) or as a function of λ2/9ε2/3 (Fig. 18(b)).
The simulations span a range of values of ε/λ from ∼0.2 to unity, and in these figures, those with ε/λ
greater than and less than 0.5 are distinguished from each other by different symbols. The scaling
analysis above requires that ε/λ � 1 for which h∞/h0 ∼ λ2/9ε2/3 is deduced. However, when
|1 − ε/λ| � 1 the motion is anticipated to be predominantly radial and thus h∞/h0 ∼ λ. There
is good support (Fig. 18) for both of these scalings from the numerical simulations; the arbitrary
division of the numerical data by ε/λ > 0.5 and ε/λ < 0.5 appears to work well.

The scaling analysis can also be applied to the laboratory data. When h∞/h0 ∼ λ is examined
for the deposit depth, there is some residual dependence upon ε/λ (Fig. 18(a)). The laboratory data
with ε/λ ∼ 1 are consistent with the relationship seen in the numerical results (ε/λ > 0.5), but as
anticipated this relationship no longer holds as ε/λ decreases. However, when the regime ε/λ � 1 is
examined, for which h∞/h0 ∼ λ2/9ε2/3, all the laboratory data are scaled in the same dimensionless
grouping and appear to follow the predicted scaling (Fig. 18(b)). However, the gradient of the linear
relationship is not the same as the numerical results (Fig. 18(b)).

Assessing the runout length scales through scaling analysis is more difficult than estimating the
depths,6 because the motion at the front may not be influenced by the motion in the bulk part of the
flow where motion stops first. However, it is possible to estimate the length scales such that mass
is conserved during each phase of the motion. Thus, for radial spreading, given that the height is
given by h∞/h0 ∼ λ, the cross-slope length scale is deduced to be y∞/r0 ∼ λ−1/2. When there is
significant down-slope spreading, given that h∞/h0 ∼ λ2/9ε2/3 and y∞/r0 ∼ λ−1/2, the down-slope



023302-19 Maeno et al. Phys. Fluids 25, 023302 (2013)

FIG. 18. (a) h∞/h0 as a function of λ. (b) h∞/h0 as a function of λ2/9ε2/3. Circles (red) for ε/λ ≥ 0.5 and diamonds (blue)
for ε/λ < 0.5 for numerical results. Squares and triangles (gray) show laboratory data with 100 and 400 μm-diameter grains,
respectively, assuming δ = 30◦. Some of the data are indicated with values of ε/λ. Solid lines indicate the scaling relationships
for numerical results, and broken lines indicate the scaling relationship for laboratory data.

length scale is found to be x∞/r0 ∼ λ5/18ε−2/3. Hence, the aspect ratio of the deposit is evaluated
as y∞/x∞ ∼ λ−1/9 (ε/λ)2/3 (Fig. 19). There is reasonable evidence of this behavior when ε/λ
� 1 in the data from the numerical simulations. Also plotted in Fig. 19 is the laboratory data, which
may exhibit a similar scaling relationship although the laboratory data may include measurement
errors and the range of ε/λ examined is relatively small. It is also noteworthy that the gradient
of the scaling relationships in Fig. 19 is not the same for both the numerical and experimental
results.

To summarize, the scaling relationships between the deposit thickness (h∞) and the shape
(y∞/x∞) of the deposit with appropriate combinations of the dimensionless parameters (ε and λ) are
reasonably supported well by the numerical simulations in the two regimes of substantial down-slope
spreading ε/λ � 1 and radial motion ε/λ = O(1). Furthermore, the arbitrary division of ε/λ > 0.5

FIG. 19. y∞/x∞ as a function of λ−1/9(ε/λ)2/3. Circles (red) for ε/λ ≥ 0.5 and diamonds (blue) for ε/λ < 0.5 for numerical
results. Squares and triangles (gray) show experimental data with 100 and 400 μm-diameter grains, respectively, assuming
δ = 30◦. Solid line indicates the scaling relationship for numerical results with ε/λ < 0.5. Broken line indicates the scaling
relationship for laboratory data.
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and ε/λ < 0.5 appears to capture each of the regimes. The apparent success of the scaling analysis in
identifying the variations exhibited by the experiments indicates that the sequence of initially radial
motion followed by arrest in the cross-slope, and then finally arrest in the down-slope direction,
may occur rather generally for our release conditions. The criterion for separating the numerical
simulations (ε/λ > 0.5), however, may not be more generally applicable. The shallow layer model
with a constant friction has been shown to overestimate h∞ and y∞/x∞, especially on steeper slopes
(Figs. 8 and 13) and this may account for the different gradients in the plots for the numerical and
experimental data (Figs. 18(b) and 19).

VI. DISCUSSION AND SUMMARY

This study has investigated the dynamics of dense granular materials, released from rest and
allowed to flow down a slope driven by gravitational forces and then coming to rest due to the
action of frictional forces. On release, the granular material initially spreads out radially, but up-
slope motion is rapidly arrested and motion down the incline is promoted, leading to a quasi-
ellipsoidal deposit once the flow has been fully arrested. The ratio of the across-slope to down-
slope extents (y∞/x∞) decreases systematically as the slope angle θ increases. These results share
the same characteristics for both experiments using 100 and 400 μm-diameter grains. Numerical
simulations using 2D shallow water models can capture aspects of this motion as well as the
distribution of the final deposits. The comparison of laboratory and numerical results indicates
that for these unsteady flows, the gross characteristics of such deposits can be predicted by the
models. The models, however, overestimate the ratio of the cross-slope to down-slope extents for
steeper slopes (Figs. 13 and 17). This result is the same for both types of friction model using
different friction angles. Contributing significantly to this consistent overestimation is that the
models overestimate the runout distance in the cross-slope direction (y∞). Pouliquen and Forterre4

examined similar situations in laboratory experiments where the granular material was released
from a spherical cap onto inclined planes and they also reported that the runout distance in the
cross-slope direction is overestimated when a depth-averaged flow model is applied. There are some
plausible reasons for this. First, it has been assumed that the normal stress tensor is isotropic – but
this was not directly measured in these experiments and the signature of anisotropy could be an
over-prediction of cross-slope runout. Further, the shallow layer model cannot capture the internal
processes of granular flows, such as a growing, static, basal layer, which was suggested to play
an important role in the experiments performed by Lube et al.1 Also, during the initial collapse,
non-hydrostatic effects will play a role on the horizontal component of flow and these might cause
for the discrepancy. However, it is noteworthy that for extended and relatively shallow flows down
inclined planes, the basal layer is likely to be less important than for flows over horizontal planes.
Moreover, slumps down slopes extend much further and flow in a relatively shallow state for a much
greater proportion of their time. Thus, it appears appropriate to employ a shallow water model for
these flows during much of their evolution, while their use during the very initial phases may be
questionable.

The differences between the two different friction models are noticeable. In the case of a
low aspect ratio (A = 0.78) granular mass on a low angle slope (θ ≤ 5◦), the constant friction
model (δ = 28◦ to 30◦) is better at capturing the granular flow motion and deposit characteristics.
When the slope θ increases, the flow is able to run down a much greater distance. Numerical
results for steeper slopes indicate that an I-dependent friction model produces results that are more
compatible with observations than a constant friction model, in terms of the final deposit shape,
although there is a discrepancy in the thickness profile. The friction angles of δ2 (30◦ to 32◦) and
δs (22◦ to 24◦) used in this situation are broadly in accord with previously measured properties
for glass beads.4, 27, 31 Considering these observations and comparisons, under the shallow water
approximation, we conclude that it appears to be more important to include a flow-dependent
friction angle for predictions on steeper slopes. Presumably, this reflects the observation that when
the slope is relatively steep, but still less than the friction angle so that the flows arrest, the motion
has extended periods during which the velocity is constant and thus close to the truly steady regimes
in which the I-dependent friction law was developed.
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The importance of a variable friction coefficient in the shallow water model has been discussed
previously in the context of a velocity-dependent friction coefficient.4, 19 Experimental observations
suggest that this type of friction law will play an important role in characterizing the morphological
features of granular deposits.31, 32 Most studies have focused on steady flows for slope angles higher
than the angle of friction of granular material. Our study investigated the situation on unconfined
slopes with lower slope angles (0◦ to 15◦). The I-dependent friction model works well, although a
constant friction model is still useful for capturing some aspects of unsteady granular flows. This
observation may be useful for situations in which there is a range of grain sizes. In this case, it may
be difficult to employ the I-dependent model because the model requires the specification of the
local grain size, which even if it is represented by a local average, may vary spatially and temporally.
The interplay between the segregation of material of different sizes and granular mobility appears
to be an important topic for future investigation.
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