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1 Governing equations of fluid motion

1.1 Terminology

There are three common states of matter, gas, liquid and solid, and the term fluid encompasses
both liquids and gases. The distinction between solids and fluids is the ease with which they
deform. A simple fluid is immediately deformed by a shear force, whereas a simple solid may
resist this deformation. Important examples of simple fluids are water and air.
A continuum model is used to describe the motion of fluids. This does not represent dynamics
at the molecular level, but rather at some much larger lengthscale.
Usually dependent variables are modelled using a Eulerian description and are treated as func-
tion of space x and time t. The rate of change of a quantity following a fluid element is the
material derivative

d

dt
=

∂

∂t
+ u.∇ (1)

This is often denoted by D/Dt.

1.2 Conservation of mass

The mass (M) contained within an arbitrary volume V , fixed in space, with boundary S and
outward pointing unit normal, n, is given by

M =

∫
V

ρ dV, (2)

where ρ(x, t) is the fluid density. The mass can only change by transport of fluid over the
bounding surface because there are no sources/sinks enclosed. Thus

dM

dt
≡ d

dt

∫
V

ρ dV = −
∫
S

ρu.n dS. (3)

Simplifying using the divergence theorem yields∫
V

∂ρ

∂t
+∇. (ρu) dV = 0. (4)

But the volume V is arbitrary and so the integrand must vanish and this gives the pointwise
expression of mass conservation as

∂ρ

∂t
+∇. (ρu) = 0. (5)

Equivalently this may be written
Dρ

Dt
+ ρ∇.u = 0. (6)

1.3 Rate of strain tensor

Close to x0, the velocity field may be expanded using a Taylor series as

ui(x)− ui(x0) = (xj − x0j)
∂ui
∂xj

∣∣∣∣
x=x0

+ . . . (7)
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and the velocity gradient tensor ∂ui/∂xj may be written as the sum of a symmetric and anti-
symmetric tensor.

∂ui
∂xj

∣∣∣∣
x=x0

=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(8)

= eij + Ωij, (9)

where eij and Ωij are termed the rate of strain and vorticity tensors, respectively. The rate of
strain tensor is symmetric eij = eji and the vorticity tensor is antisymmetric Ωij = −Ωji. The
vorticity tensor can be related to the vector Ωk by Ωij = εikjΩk and the vorticity of the flow
ω = ∇∧ u = 2Ω.
Example: for simple shear flows, u = (γy, 0, 0),

∂ui
∂xj

=

 0 γ 0
0 0 0
0 0 0

 =

 0 γ/2 0
γ/2 0 0
0 0 0

+

 0 γ/2 0
-γ/2 0 0

0 0 0

 . (10)

Thus u may be interpreted as the sum of a straining flow u1 = (γy/2, γx/2, 0) and a solid body
rotation u2 = (γy/2,−γx/2, 0) = (0, 0,−γ/2) ∧ (x, y, z). Note that the straining flow leads to
the separation of adjacent fluid elements, whereas the solid body rotation does not.

1.4 Stress tensor

Fluids experience both ‘body’ and ‘surface forces’. Body forces are long range, penetrate the
interior of the fluids and act on all fluid elements. Examples include gravity and electromagnetic
forces. Over a small volume, δV , the force is given by FV (x, t)δV . Surface forces are relatively
short range and have a direct molecular origin. They are proportional to the surface area of
between two fluid elements, δA, and are a function of space, time and possibly the orientation
of the surface, here specified by a unit normal n. It is thus given by FS(x, t,n)δA.

By Newton’s third law, we must have FS(x, t,n) = −FS(x, t,−n). This implies that FS is
an odd function of n.

We consider a small tetrahedron with vertices OABC, where the vectors OA, OB and OC are
denoted by the mutually orthogonal vectors n1, n2 and n3, respectively. Since the tetrahedron is
sufficiently small, body forces are negligible and in equilibrium, the surface forces must balance.

Force on OAB = FS(x, t,−n3)Area OAB (11)

= FS(x, t,−n3)
1

2

n3

|n3|
.n1 ∧ n2. (12)

But if the area of ABC is denoted by δA, −nδA = 1
2
(n3−n1)∧ (n2−n1) and thus 1

2
n3.n1∧n2 =

n3.nδA and so

Force on OAB = FS(x, t,−n3)
n3

|n3|
.nδA. (13)

The forces on OBC and OAC can be expressed analogously and thus the force balance is given
by

FS(x, t,n)δA+ FS(x, t,−n3)
n3

|n3|
.nδA+ FS(x, t,−n2)

n2

|n2|
.nδA+ FS(x, t,−n1)

n1

|n1|
.nδA = 0.

(14)
Since this can not depend upon th choice of basis vectors, we deduce

FSi(n) = σijnj, (15)
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where σij is the stress tensor. σij represents the ith component of force exerted across a plane
surface normal to the direction j at a position x at a time t. It is independent of n - it depends
only on properties of the fluid motion.
The stress tensor is symmetric σij = σji. This is deduced by considering the torque exerted on
the small tetrahedron

Torque Gi = εijk

∫
S

xjFSk dS = εijk

∫
S

xjσklnl dS (16)

= εijk

∫
V

∂

∂xl
(xjσkl) dV = εijk

∫
V

σkj + xj
∂σkl
∂xl

dV (17)

The first integral of this final expression is much larger than the second as the size of the
tetrahedron becomes small. Thus if the tetrahedron is torque-free, we deduce

εijkσkj = 0 (18)

and from this we deduce directly that the stress tensor is symmetric.
We write the stress tensor as follows

σij = −pδij + σ′ij, (19)

where the pressure is given by p = −1
3
σkk and the deviatoric stress tensor is denoted by σ′ij. The

latter is trace-free by construction.

1.5 The relationship between stress and rate of strain

In general a constitutive relationship provides the connection between the deviatoric stress tensor
and the rate of strain tensor. The latter provides a measurement of the rate of deformation of
the fluid elements. Importantly this is not a function of the velocity field - but rather its gradient
- because the velocity would change with the frame of reference. For simple fluids (‘Newtonian
fluids’) such as water and air, it is found experimentally that

• σ′ij is a linear function of ∂ui

∂xj

• σ′ij does not depend on displacement of fluid elements (ie no elastic effects)

• There are no ‘memory’ effects - the relationship is instantaneous

• The relationship is isotropic.

We therefore pose a linear relationship between the stress and velocity gradient tensors, which
can be written

σ′ij = Aijkl
∂uk
∂xl

, (20)

where Aijkl = αδijδkl +βδikδjl + γδilδjk (α, β, and γ constants) is a fourth order isotropic tensor.
The requirements that the deviatoric stress tensor is symmetric and trace-free lead to

σij = −pδij + 2µeij −
2

3
µekkδij, (21)

where eij is the symmetric rate of strain tensor (see §1.3) and µ is the dynamic viscosity, which is
a material property. The pressure p in the static state may be determined from thermodynamic
laws. In the flowing state it is potentially different - but this difference is negligible and will
henceforth be neglected.
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1.6 Conservation of momentum

The momentum of the fluid within an arbitrary volume V with bounding surface S and outward

point normal n is

∫
V

ρu dV . Momentum changes due to transport across the surface S and the

action of body forces F and surface stresses σij. Thus momentum balance is expressed by

d

dt

∫
V

ρu dV = −
∫
S

ρuu.n dS +

∫
V

F dV +

∫
S

σ.n dS. (22)

The volume V is fixed and on applying the divergence theorem∫
V

∂

∂t
(ρui) dV =

∫
V

− ∂

∂xj
(ρuiuj) + Fi +

∂σij
∂xj

dV. (23)

Since the volume V is arbitrary, the integrand must vanish and on simplifying using the expression
for mass conservation, we obtain the Cauchy momentum equation

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σij
∂xj

+ Fi. (24)

Finally for a Newtonian fluid we obtain

ρ

(
∂u

∂t
+ u.∇u

)
= −∇p+ µ∇2u +

1

3
µ∇ (∇.u) + F. (25)

1.7 Boundary conditions

1. The normal velocity (u.n) at a boundary/interface is continuous.

2. At a solid boundary, the tangential velocity is continuous. Denoting the boundary velocity
by V, this implies that

u− (u.n)n = V − (V.n)n. (26)

But since the normal velocity is continuous, this implies that u = V. This is known as the
no-slip boundary condition.

3. At a deformable interface in the absence of surface tension, the stress field is continuous
σijnj. Thus there are continuity conditions on both the normal stress and the tangential
stress. (The latter is often termed the shear stress.)

1.8 Incompressibility

A fluid is incompressible if the density of a fluid element does not change following the fluid
element. This implies that

Dρ

Dt
= 0. (27)

Then directly from mass conservation (6), we deduce that ∇.u = 0.
This approximation is good for: (i) flow speeds much less than the speed of sound; (ii) low

frequency motion; and (ii) relatively small changes in height so that there is no gravitational
compression.

Thus the incompressible Navier-Stokes equations are

∇.u = 0, (28)

ρ
Du

Dt
= −∇p+ µ∇2u + F. (29)
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The pressure in this system is not determined from an equation of state relating local conditions,
but rather from the global need to satisfy ∇.u = 0.

The vorticity of the flow is defined by ω = ∇ ∧ u. The vorticity equation is derived by
taking the curl of the momentum equation (29). If there are no body forces (F = 0) and the
density is constant then upon simplifying this gives

∂ω

∂t
+ u.∇ω = ω.∇u + ν∇2ω. (30)

Here the kinematic viscosity ν = µ/ρ. The terms may be readily interpreted: u.∇ω represents
advection of vorticity by the flow; ω.∇u represents stretching of the velocity field; and ν∇2ω
viscous diffusion of vorticity.

1.9 Energy equation for incompressible flows

The energy density is defined to be E = 1
2
ρu.u. Its evolution equation can be derived by taking

the dot product between the velocity field and the momentum equation. Then we find

∂E

∂t
+

∂

∂xj
(Euj − uiσij) = −2µeijeij + Fiui. (31)

We integrate this over a volume V with bounding surface S and unit outward pointing normal
n to find

d

dt

∫
V

E dV +

∫
S

E(u.n) dS =

∫
S

uiσijnj dS − 2µ

∫
V

eijeij dV +

∫
V

u.F dV. (32)

The terms in this equation respectively correspond to the rate of change of kinetic energy; the
transport of kinetic energy; the work done by surface stresses (τi = σijnj); viscous dissipation;
and the work done by body forces.

Importantly −2µ
∫
V
eijeij dV ≤ 0 and so viscous processes always cause the kinetic energy

to decay. Thus steady flows can only be maintained if there is energy input to match this
dissipation.
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