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2 Simple flow fields

2.1 Poiseuille flow: Fully developed, steady pipe flow

zz
r

We construct the steady axial flow of fluid of dynamic
viscosity µ along a pipe of radius a. It is convenient to
adopt cylindrical polar coordinates (r, θ, z), with the z-axis
aligned with the axis of the pipe. The flow field is indepen-
dent of angle by the symmetry of the problem and thus we
seek a flow field of the form u = w(r)ẑ.

Mass conservation is automatically satisfied as ∇.u =
∂w

∂z
= 0.

The axial component of the momentum equation demands that

0 = −∂p

∂z
+ µ

1

r

∂

∂r

(

r
∂w

∂r

)

, (1)

while the radial component gives ∂p/∂r = 0. Thus the pressure is only a function of axial
distance and the pressure gradient is constant. We write ∂p/∂z = −∆P/L, where ∆P > 0 is
the pressure drop between parts of the pipe separated by an axial distance L. Integrating (1),
applying the no-slip boundary condition on the pipe boundary (w(a) = 0) and requiring that
w(r) remains bounded at r = 0, we find

w = − 1

4µ

dp

dz

(

a2 − r2
)

. (2)

The volume flux of fluid transport along the pipe, Q, is given by

Q =

∫ a

0

w2πr dr =
π∆Pa4

8µL
. (3)

The tangential shear stress exerted on the wall σrz is then given by

σrz = 2µerz(r = a) = µ
∂w

∂r

∣

∣

∣

∣

r=a

= −∆Pa

2L
. (4)

The rate of viscous dissipation is given by

2µ

∫

V

eijeij dV = µ

∫ L

0

∫ 2π

0

∫ a

0

(

∂w

∂r

)2

r drdθdz =
π∆P 2a4

8µL
= Q∆P. (5)

2.1.1 Dimensional analysis: Reynolds experiment

What pressure gradient is required to drive a volume flux of fluid, Q, of density ρ and viscosity
µ along a pipe of radius a?

This may be addressed using dimensional analysis to write the pressure gradient [∂p/∂z] =
ML−2T−2 as a function of the velocity, U = Q/a2, [U ] = LT−1, radius [a] = L, density [ρ] =
ML−3 and viscosity [µ] = ML−1T−1.

Dimensional analysis asserts that a dimensionally consistent relationship will feature a func-
tion of one dimensionless ratio because there are 3 independent dimensions, but 4 independent
parameters. Thus we may write

−∂p

∂z
=

ρU2

a
F

(

ρUa

µ

)

, (6)
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where F is an undetermined function and Re = ρUa/µ is a dimensionless ratio, known as the
Reynolds number. Poiseuille flow has established that

−∂p

∂z
=

8Uµ

πa2
=

ρU2

a

8µ

πaUρ
. (7)

Thus F (Re) = 8/(πRe). Reynolds found that this law was good for Re < 1000. For larger
Reynolds numbers, the flow becomes unsteady and turbulent.

2.2 Couette flow: flow between parallel translating plates

U/2

U/2

y
x

We consider two parallel planes, y = a/2 and y = −a/2,
which are translating at velocities u = ±(U/2)x̂ and de-
termine the flow field. The fluid motion is driven only by
the translating plates; there are no pressure gradients.

We seek a solution of the form u = u(y)x̂. This satisfies
mass conservation automatically (∇.u = 0), while the x
component of the momentum gives

0 = µ
∂2u

∂y2
. (8)

Integrating and applying no-slip boundary conditions at y = ±a/2, we find

u(y) =
Uy

a
. (9)

The shear stress σxy = µ∂u/∂y = µU/a. Thus the stress exerted on the upper plate where the

outward pointing normal n = ŷ is τ =
µU

a
x̂. The stress exerted on the lower plate where the

outward pointing normal n = −ŷ is τ = −µU

a
x̂.

The rate of viscous dissipation per unit area is given by 2µ

∫

V

eijeij dV = 2µ

∫ a/2

−a/2

U2

2a2
dy =

µU2

a
. This is balanced by the rate at which work is done at the boundaries (τ .u).

2.3 Oscillating flat plate

Ucosωt

A flat plate at y = 0 persistently oscillates and drives
fluid motion in the overlying semi-infinite domain. The
plate motion is given by U cosωtx̂ and there is no pres-
sure gradient as the fluid motion is solely driven by the
oscillations of the plate. We seek a solution of the form
u = u(y, t)x̂. This automatically satisfies ∇.u = 0. The
x-component of the momentum equation becomes

∂u

∂t
= ν

∂2u

∂y2
, (10)

which subject to boundary conditions u(0, t) = U cosωt and u(y, t) → 0 as y → ∞. The
governing equation (10) is a diffusion equation with the kinematic viscosity playing the role of a
diffusivity.
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We look for a solution by writing u = û(y)eiωt [take real part of solution]. This leads to

d2û

dy2
− iω

ν
û = 0, (11)

and noting that
√
i = ±(1 + i)/

√
2 and applying the boundary conditions, we find that the

velocity field is given by

u(y, t) = Ue−y
√

ω

2ν cos

(

ωt− y

√

ω

2ν

)

. (12)
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Figure 1: The velocity field, u(y, t), above an oscillating flat plate with velocity amplitude U = 1
and viscosity ν = 1 at times t = π/2, π, 3π/2 and 2π. The dotted line shows the envelope of the
maximum velocities at each elevation.

The velocity field decays exponentially with distance from the plate |u(y, t)| = Ue−y
√

ω

2ν . The
lengthscale of the decay is

√

2ν/ω, which is approximately 1mm in water oscillating at 1Hz.

The shear stress at the plate σxy = µ
∂u

∂y

∣

∣

∣

∣

y=0

= −µU

√

ω

ν
cos

(

ωt+
π

4

)

. It is thus π/4 out of

phase with the velocity field.
The time average viscous dissipation is given by

ω

2π

∫ π/ω

0

∫ ∞

0

µ

(

∂u

∂y

)2

dy =
1

2
√
2
µU2

√

ω

ν
. (13)

It may be shown that this is equal to the time average rate of working of the stress at the
boundary, namely

ω

2π

∫ 2π/ω

0

u(0, t)σxy(0, t) dt. (14)

2.4 Impulsively started flat plate

A flat plat is initially at rest and lies along the plane y = 0, with a semi-infinite fluid layer above
it. At t = 0, it is impulsively started and begins to move at constant velocity u = U x̂.
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We seek the velocity field for the fluid motion of the form u = u(y, t)x̂. This field auto-
matically satisfies ∇.u = 0 and since there is no imposed pressure gradient, the x-momentum
equation is given by

∂u

∂t
= ν

∂2u

∂y2
, (15)

subject to u(0, t) = U for t > 0 and u = 0 at t = 0. This governing equation is a diffusion
equation. It could be solved using Laplace transforms, but here we construct the solution directly
by seeking a similarity solution. Thus we pose u = UF (y/

√
νt) for an as yet undetermined

function F . On substitution into (15) and by writing η = (y/
√
νt), we find that

−ηU

2t
F ′ =

U

t
F ′′. (16)

This may be integrated directly to give F = B −A

∫ ∞

η

e−s2/4 ds, where A and B are constants.

Enforcing u = 0 at t = 0, implies that F → 0 as η → ∞. Thus B = 0. Then from u(0, t) = U ,
we deduce that

1 = −A

∫ ∞

0

e−s2/4 ds, which implies A = − 1√
π
. (17)

The flow field is then given by

u =
U√
π

∫ ∞

y/
√
νt

e−s2/4 ds = Uerfc

(

y

2
√
νt

)

, (18)

where erfc(x) is the complimentary error function.
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Figure 2: The velocity field, u(y, t), for an impulsively started flat plate with velocity U = 1 and
viscosity ν = 1 at times t = 0.1, 0.5, 1, 2 and 5.

This flow field is usefully considered in terms of its vorticity

ω = −∂u

∂y
=

U√
πνt

e−y2/(4νt). (19)

Initially there is no flow and so the vorticity vanishes throughout the domain. For t > 0, vorticity
is generated at the boundary (by virtue of the no-slip condition) and diffuses into the domain.
The lengthscale over which diffusion occurs is when y ∼

√
νt.
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2.5 Burger’s vortex

We consider flow that is purely in an angular direction. Adopting cylindrical polar coordinates,
we write the velocity field as u = v(r, t)θ̂ and so mass conservation is automatically satisfied
(∇.u = 0).

The radial component of the velocity field gives

−v2

r
= −1

ρ

∂p

∂r
. (20)

This implies that the gradient of the pressure field supplies the force that ensures circular motion.
The angular component of the velocity field gives

∂v

∂t
= ν

(

∂2v

∂r2
+

1

r

∂v

∂r
− v

r2

)

. (21)

This is the balance of angular momentum as the viscous forces exert torques on the the fluid.
Initially there is an inviscid line vortex at r = 0, given by v = C/(2πr), where C is the circulation
about it. We now integrate (21) to find the solution in t > 0.

We look for a similarity solution of the form v =
C

πr
F

(

r√
νt

)

. On substituting into (21),

writing η = r/
√
νt and simplifying, we find

2ηF ′′ − (2− η2)F ′ = 0. (22)

This may be integrated subject to the initial condition that F = 1 at t = 0 and that v is regular
at r = 0 for t > 0. Thus we find that

v(r, t) =
C

2πr

(

1− e−r2/(4νt)
)

. (23)
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Figure 3: The velocity field, v(r, t), for the Burger’s vortex with circulation C = 2π, and viscosity
ν = 1 at times t = 0.01, 0.1 and 1. The dotted line shows the initial velocity field.

The vorticity ω =
1

r

∂

∂r
(rv) =

C

4πνt
e−r2/[4νt]. Thus vorticity diffuses into the domain from the

initial state in which it is ‘concentrated’ at the origin. However the total circulation remains
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unchanged during the evolution. Note that at long times (νt ≫ r2)

v(r, t) =
C

8πνt
r + . . . , (24)

which corresponds to rigid body rotation sufficiently close to the origin.
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