
3 Dynamical similarity and the Reynolds Number

The velocity field u(x, t) depends on the lengthscale of the object, L, the velocity scale, U ,
the fluid density, ρ and the dynamic viscosity, µ. It is insightful to recast the variables into
dimensionless counterparts and to identify dimensionless groups that characterise the motion.
We write

x = Lx∗, t =
L

U
t∗, u = Uu∗ and p = ρU2p∗, (1)

where the variables denotes ∗ are dimensionless. In these definition, we have chosen an inertial
scaling for the pressure (ρU2), as opposed to a viscous one (µU/L). The dimensionless equations
are then

∇
∗.u∗ = 0, (2)

∂u∗

∂t∗
+ u∗.∇∗u∗ = −∇

∗p∗ +
1

Re
∇

∗2u∗, (3)

where the Reynolds number Re = ρUL/µ is a dimensionless variable characterising the flow.
The Reynolds number may be interpreted as the following ratio,

Re =
inertial forces

viscous forces
∼

ρU2/L

µU/L2
. (4)

The magnitude of the Reynolds number determines the type of flow. Two important regimes
emerge:

1. Re ≪ 1. The equations become 0 = −∇p + µ∇2u to leading order. This is linear and
instantaneous. This regime is applicable to small scales, slow or very viscous flows.

2. Re ≫ 1. The effects of viscosity are negligible in many parts of the fluid domain, but may
not be neglected throughout. Instead ‘thin’ structures develop near boundaries and these
influence the overall motion. The motion is typically turbulent. This regime is applicable
to large scales, fast and inviscid flows.

3.1 Channel flow with suction

y

x
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We analyse two-dimensional flow in a horizontal chan-
nel between porous boundaries, such that there is an im-
posed flow, V , perpendicular to the channel axis.

The velocity field is of the form u = (u(y), V ) and
thus mass conservation is satisfied automatically. The x-
component of the momentum equations is given by

ρV
∂u

∂y
= −

∂p

∂x
+ µ

∂2u

∂y2
, (5)

while the y-component of the momentum equation is given by

0 = −
∂p

∂y
. (6)

There are no slip boundary conditions at the edge of the channel u(0) = u(a) = 0.
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Figure 1: The axial velocity normalised by its maximum, u(y)/max(u(y)), as a function of
y/a for Re = 0.01, 1, 10, 100. (The flow profiles with higher Reynolds numbers are increasing
asymmetric.)

From (6), we deduce that p is only a function of x, and then from (5) we deduce that ∂p/∂x
must be constant as all the other terms are only functions of y. On writing ∂p/∂x = G (constant),
we find that

u(y)

V
= −

Ga

ρV 2

(

η −
(1− eReη)

(1− eRe)

)

, (7)

where Re = V a/ν and η = y/a. Here the Reynolds number measures the dimensionless strength
of the suction velocity.

1. When Re ≪ 1,
u(y)

V
= −

Ga

ρV 2

Re

2
η(1− η). (8)

In this regime, the velocity approaches a parabolic profile and u(y) becomes independent
of V .

2. When Re ≫ 1, if Re(1 − η) ≫ 1 (i.e. away from the channel boundary), then

u(y)

V
= −

Ga

ρV 2
η. (9)

However this linear profile does not hold as the boundary is approached. In particular,
note that this approximate solution does not even satisfy the no-slip boundary condition
at y = a. Thus the limit Re → ∞ is a singular limit.
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