
4 Flows with negligible inertia (Re≪ 1)

If the inertia of the fluid motion is negligible then the equations of motion reduce to a balance
between the pressure gradient, viscous stresses and body forces. The governing equations are
given by

∇.u = 0, (1)

0 = −∇p + µ∇2u+ F. (2)

These are known as the Stokes equations. This requires that |µ∇2u| ≫ |ρu.∇u|, which implies
1 ≫ ρUL/µ. Also |µ∇2u| ≫ |ρ∂u/∂t|, which implies that 1 ≫ ρL2/[µT ] and often T ∼ L/U ,
which recovers the first regime.

The Stokes equations exhibit the following:

1. Instantaneous: the flow field responds immediately to changes in forcing and/or boundary
conditions.

2. Linear: independent solutions can be superposed.

3. Reversible: the absence of inertia (acceleration) implies that a reversal in forcing (F → −F)
generates a reversal in velocity u → −u.

4.1 Properties of Stokes flow

4.1.1 Uniqueness

Let u1 and u2 be two different solutions of Stokes equations that satisfy the same boundary
conditions. Thus

0 = −∇p1 + µ∇2u1 + F, ∇.u1 = 0, u1 = U on S, (3)

and
0 = −∇p2 + µ∇2u2 + F, ∇.u1 = 0, u2 = U on S. (4)

We define V = u1 − u2 and P = p1 − p2 and find that

0 =

∫

V

V.
(

−∇P + µ∇2V
)

dV =

∫

S

−PVini + µVi
∂Vi
∂xj

nj dS −
∫

V

µ|∇V|2 dV. (5)

But V = 0 on S and thus the remaining volume integral vanishes. But this is positive semi-
definite and can only vanish if |∇V| = 0, which in turns implies that V = 0 by virtue of the
boundary conditions. Thus the two solutions u1 and u2 are equal.

4.1.2 Minimum dissipation

Let u be a solution of Stokes equations with no body forces and with given boundary conditions
and let euij be the associated rate of strain tensor. Let v satisfy the same boundary conditions
and ∇.v = 0 and let evij be the associated rate of strain tensor. Then

∫

V

2µevije
v
ij dV ≥

∫

V

2µeuije
u
ij dV. (6)

This implies that Stokes flow has the minimum dissipation.
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Proof: Let v = u+w so that

evije
v
ij = euije

u
ij + ewije

w
ij + 2euije

w
ij .

Then we can show that
∫

V

euije
w
ij dV =

∫

V

euij
∂wi

∂xj
dV (7)

=

∫

S

nje
u
ijwi dS +

∫

V

wi
1

2

∂2ui
∂x2j

dV (Integrating by parts) (8)

= −
∫

S

1

2
wipni dS (Using governing equations for ui & wi) (9)

= 0 (Using boundary condition for wi) (10)

Thus
∫

V

2µevije
v
ij dV =

∫

V

2µ
(

euije
u
ij + ewije

w
ij

)

dV ≥
∫

V

2µeuije
u
ij dV. (11)

This implies that Stokes flow produces the minimum dissipation.

4.1.3 Reciprocal theorem

Velocity fields u1 and u2 both satisfy Stokes equations subject to body forces f1 and f2, respec-
tively, within a domain of volume V and bounding surface S with outward pointing unit normal
n. Then

I =

∫

S

u1iσ
2
ijnj dS +

∫

V

u1i f
2
i dV −

∫

S

u2iσ
1
ijnj dS −

∫

V

u2i f
1
i dV = 0. (12)

Proof: Using divergence theorem and Stokes equations

I =

∫

V

σ2
ij∇ju

1
i − σ1

ij∇ju
2
i dV (13)

=

∫

V

2µe2ij
(

e1ij + Ω1
ij

)

− 2µe1ij
(

e2ij + Ω2
ij

)

dV (14)

= 0. (15)

4.2 Flow past a sphere

We consider uniform flow past a sphere and solve Stokes equations

0 = −∇p+ µ∇2u and ∇.u = 0, (16)

subject to u = 0 on r = a and u → U as r → ∞. Since the governing equations are linear and
the problem is axisymmetric, we seek the following representation of the solution

u = Uf(r) + (U.x)xg(r) and p = µ (U.x)h(r), (17)

where r = |x| and f, g and h are to be determined. Substituting into the expression of mass
conservation gives

∇.u = U.x

(

f ′1

r
+ 4g + rg′

)

= 0. (18)

The momentum equation becomes

−∇p + µ∇2u = µU

(

−h + f ′′ + 2f ′1

r
+ 2g

)

+ µU.x

(

g′′ + 6g′
1

r
− h′

1

r

)

= 0. (19)
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Eliminating between (18) and (19), we find

r2g′′′ + 11rg′′ + 24g′ = 0, (20)

which has solution

g(r) = A+B
a3

r3
+ C

a5

r5
, (21)

where A, B and C are constants to be determined. Also we find that

f = −2r2A+B
a3

r
− C

a5

3r3
+D and h = −10A + 2B

a3

r3
, (22)

where D is another constant. These functions (f, g, h) give the general solution for the velocity
and pressure fields. We then apply the boundary conditions to find that

u = U

(

1− 3a

4r
− a3

4r3

)

+ x (U.x)
3

4a2

(

−a
3

r3
+
a5

r5

)

, (23)

p = −3µa

2

U.x

r3
. (24)

The stress tensor may be evaluated directly from this expression. On the surface of the sphere,
we find

σijnj =
3µ

2a
Ui on r = a. (25)

Then the drag force, Fi, exerted on the sphere is given by

Fi =

∫

r=a

σijnj dS = 6πaµUi. (26)

Stokes settling velocity emerges from the steady balance between viscous drag and submerged
gravitational weight. Thus for a spherical particle of density ρs submerged in fluid of density ρf
settling with velocity ws, the vertical force balance gives

4

3
πa3 (ρs − ρf ) g = 6πµaws.

Thus we deduce that

ws =
2(ρs − ρf )ga

2

9µ
. (27)

4.2.1 Geometrical bounding

This is an application of the minimum dissipation theorem to address the question: what is the
drag on a cube of side length 2L?

The Stokes flow, uS, around the cube satisfies no-slip on its surface (uS = 0) , uniform flow
in the far field (uS → U) and generates a drag force F. Thus the dissipation is F.U.

We now consider the flow around a sphere of radius a =
√
3L which circumscribes the cube.

This generates a drag 6πµ
√
3LU.

a
2LU

Suppose we have have a flow which is Stokes flow outside the
circumscribing sphere, but vanishing inside, then it certainly sat-
isfies no-slip on the cube surface, the far-field condition and it
is divergent-free. The rate of dissipation for this flow is then
6πµ

√
3LU.U. But it is no longer a solution to Stokes equations.

Thus the true Stokes flow around the cube has a smaller rate of
dissipation and so

6πµ
√
3LU.U ≥ F.U. (28)
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2LU LNow consider an inscribing sphere of radius L. By a similar
construction

F.U ≥ 6πµLU.U. (29)

Hence we have found both an upper and lower bound for the
dissipation and thus for the settling velocity. This produces the
general rule that the settling velocity of a non-spherical particle
is bounded by those of the larger circumscribing sphere and the
smaller inscribing sphere.

4.3 Flow past a spherical bubble

Provided the surface tension is sufficient strong to maintain the bubble in a spherical shape,
we may use the solutions from §4.2 to calculate the flow field, pressure and drag on a bubble.
We further assume that the motion of gas in the bubble can be neglected so that the boundary
conditions on the velocity field are u → U as r → ∞, while on the surface of the bubble

u.n = 0 at r = a (No normal velocity) (30)

tiσijnj = 0 at r = a (No tangential shear stress), (31)

where ti and ni are respectively tangential and normal vectors to the surface r = a. Enforcing
these boudnary conditions, we find that

u = U
(

1− a

2r

)

+ x
(U.x)

a2

(

− a3

2r3

)

, (32)

p = −µaU.x
r3

. (33)

The surface stress can then be shown to be

σijnj =
3µ

a3
U.xxi, on r = a (34)

Since

∫

r=a

xixjdS =
4

3
πa4δij . This implies that the drag force, Fi, is

Fi = 4πµaUi, (35)

and so the rise speed of a bubble of gas of density ρg < ρf is (ρf − ρg)ga
2/(3µ).

4.4 Two-dimensional flow in corners

When the flow is two-dimensional we may introduce a streamfunction u = ∇∧ψ(x, y)ẑ. In such
situations the vorticity is ω = −∇2ψẑ. We take the curl of the Stokes equations to find that

0 = ∇2
ω = ∇4ψẑ. (36)

Thus the streamfunction satisfies the bi-harmonic equation.
We look for separable solutions in polars coordinates ψ(r, θ) = rλf(θ), which leads to

∇4ψ = rλ−4

(

d4f

dθ4
+ ((λ− 2)2 + λ2)

d2f

dθ2
+ (λ− 2)2λ2f

)

= 0. (37)

Thus the general solution is

f(θ) = A cosλθ +B sinλθ + C cos(λ− 2)θ +D sin(λ− 2)θ, (38)

where A, B, C and D are constants. If λ = 0, 1, 2 then the solution is different and given by

f = A cos θ +B sin θ + Cθ cos θ +Dθ sin θ if λ = 1, (39)

f = A cos 2θ +B sin 2θ + C +Dθ if λ = 0, 2 (40)
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4.4.1 Scraper

Viscous fluid is dragged over a rigid boundary by a scraper inclined at angle α to the boundary.
In a frame moving with the scraper, the boundary conditions are

u = −U r̂ on θ = 0 and u = 0 on θ = α. (41)

In terms of the streamfunction ψ(r, θ) these conditions correspond to

1

r

∂ψ

∂θ
= −U and

∂ψ

∂r
= 0 θ = 0, (42)

1

r

∂ψ

∂θ
= 0 and

∂ψ

∂r
= 0 θ = α. (43)

Using the general solution (39) and applying the boundary conditions, we find that

ψ(r, θ) = Ur
(θ sinα sin(α− θ)− α(α− θ) sin θ)

α2 − sin2 α
. (44)

x

y

0 1 2 3 4 5
0

1

2

3

4

5

Figure 1: The streamlines in a frame moving with the fluid for α = π/2 and U = 1.

4.4.2 Corner flows: Moffatt eddies

θ=−α

θ=0

θ=αThe flow in a corner of angle 2α is forced by motion away from
the corner.

We seek a solution that is symmetric in the line θ = 0 and
write the streamfunction as

ψ = rλ(A cosλθ + C cos(λ− 2)θ). (45)

The no-slip boundary condition at θ = ±α requires that f(α) = 0
and df/dθ(α) = 0 and so

A cosλα+C cos(λ−2)α = 0 and Aλ sinλα+C(λ−2) sin(λ−2)α = 0.
(46)

Thus for a non-trivial solution, we require

(λ− 2) tan(λ− 2)α = λ tanλα. (47)
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But are there real solutions for λ to (47)? This is most easily assessed by writing λ = 1+ β and
then (47) becomes

sin Λ

Λ
= −sin 2α

2α
, (48)

where Λ = 2βα. The function (sin Λ)/Λ has a minimum value of −0.217 and so we require that
(sin 2α)/(2α) < 0.217. This implies that there are real solutions provided α > α∗ = 73.2◦.

For α < α∗, there are complex solutions for λ. Writing λ = a+ ib and fr + ifi, this gives the
streamfunction as

ψ = ra (fr cos(b ln r)− fi sin(b ln r)) . (49)

This means that for fixed angle, θ, the sign of the streamfunction oscillates as r is varied. Thus
the motion has eddies with successive different directions of circulation.

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 2: The streamlines for flow in a corner (α = π/6). Note the counter-rotating Moffatt
eddies.

4.5 Lubrication theory: Flows in thin films

Lubrication flows are characterised by one spatial dimension being much smaller than another.
For example, consider the flow between two nearby solid surfaces or spreading of a droplet.

To develop the leading order description of the flow, we assume that the extensive direction is
parallel with the x-axis, while the relatively thin direction is parallel with the z-axis. We denote
the lengthscales in each of these directions by L and h and we require that h/L≪ 1.

First, incompressibility demands that ∇.u = 0 and for a 2-D flow with u = (u, w), this
implies that the two velocity scales are related by W ∼ hU/L.

Next we assess the magnitude of terms in the x-momentum equations,

ρ
Du

Dt
= −∂p

∂x
+ µ

(

∂2u

∂x2
+
∂2u

∂z2

)

. (50)

Given that h/L ≪ 1, we deduce that |∂2u/∂x2| ≪ |∂2u/∂z2|. Further |∂2u/∂z2| ≫ |ρDu/Dt|
if (h/L)2Re ≪ 1, where the Reynolds number Re = ρUL/µ. The only residual term in (50) is
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the streamwise pressure gradient and this is required to drive the flow. Thus the scale of the
pressure P ∼ LµU/h2.

Using these scalings, we may now assess the magnitude of terms in the z-momentum equation,

ρ
Dw

Dt
= −∂p

∂z
+ µ

(

∂2w

∂x2
+
∂2w

∂z2

)

.

We find that ρDw/Dt ∼ ρhU2/L2, ∂p/dpz ∼ µLU/h3 and µ∂2w/∂z2 ∼ µU/(hL). Thus we find
that the pressure gradient ∂p/∂z is much larger than all of the other terms.

Thus the leading order lubrication equations are

0 = −∂p
∂x

+ µ
∂2u

∂z2
, (51)

0 = −∂p
∂z
. (52)

4.5.1 Thrust bearing

x=L

h(x)
d1

d2

x=0 U

We consider motion of a thin layer of fluid between a stationary
planar bearing above a moving horizontal surface. The thickness
of the gap between the bearing and the surface is given by

h(x) = d1 +
d2 − d1
L

x, (53)

where |h/L| ≪ 1, so that the motion can be analysed in the lubrication regime.
The lubrication equations (51)-(52) imply the pressure p ≡ p(x) and that the velocity field is

given by

u = − 1

2µ

dp

dx
z(h− z)− U

(h− z)

h
, (54)

which is constructed to satisfy no slip conditions u(h) = 0 and u(0) = −U . Then the volume
flux of fluid per unit width is

Q =

∫ h

0

u dz = −Uh
2

− h3

12µ

dp

dx
. (55)

Since this flow is in a steady-state, Q must be constant. Integrating to find the pressure and
equating the pressure at x = 0 and x = L then yields

0 =

∫ L

0

Q+ 1
2
Uh

h3
dx which gives Q = − Ud1d2

d1 + d2
. (56)

It is noteworthy that the pressure reaches a maximum when Q + Uh/2 = 0 and this occurs at
x = Ld1/(d1 + d2). The shear stress at the wall, τ , is given by

τ = µ
∂u

∂z
= µ

U

h

(

4 + 6
Q

hU

)

. (57)

and so the shear stress vanishes at h = −3Q/(2U) = 3d1d2/(2(d1 + d2)).
The total normal and tangential forces on the lower plate per unit width, denoted by N and

T , respectively, are given by

N =

∫ L

0

σzz dx =
6µL2U

(d2 − d1)2

(

ln

(

d2
d1

)

− 2(d2 − d1)

d2 + d1

)

(58)

T =

∫ L

0

σxz dx =
2µLU

d2 − d1

(

2 ln

(

d2
d1

)

− 3(d2 − d1)

d1 + d2

)

. (59)

Thus T/N ∼ (d2 − d1)/L ≪ 1. This means that this is a low friction bearing. The fluid
‘lubricates’ the motion.
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4.5.2 Cylinder approaching a wall

x=0

V

h(x)

A cylinder of radius a approaches a wall with speed V . When
the centreline gap d is small (d ≪ a), the motion may be treated
using lubrication theory.

The gap size, h(x), is given by

h(x) = a+ d− (a2 − x2)1/2 = d

(

1 +
x2

2ad
+ . . .

)

. (60)

We truncate this expansion at O(x2) and analyse the fluid motion on vertical lengthscales d and
horizontal lengthscales

√
ad. The lubrication equations (51)-(52) then imply that p ≡ p(x) and

u = − 1

2µ

dp

dx
(h− z)z, (61)

where the velocity field is constructed to satisfy no-slip conditions: u(0) = 0 and u(h) = 0. The
volume flux per unit width, Q, is given by

Q =

∫ h

0

u dz = − h3

12µ

dp

dx
. (62)

Mass conservation gives

∂

∂x

∫ h

0

u dz − u(h)
∂h

∂x
+ w(h) = 0, which implies

∂Q

∂x
= V and so Q = V x. (63)

Substituting into (62) allows the pressure field to be deduced

p− p∞ =
6µV a

d2
(

1 + x2

2ad

)2 , (64)

where p∞ is the far-field pressure. Thus the normal force on the cylinder per unit width is given
by

F =

∫ ∞

−∞
(p− p∞) dx = 3

√
2πµV

(a

d

)3/2

. (65)

We now identify that the approach velocity is V = −dd/dt. Thus the force balance implies

π∆ρga2 = −3
√
2πµ

(a

d

)3/2 dd

dt
,

which may be integrated to show that

d(t) =
a

(

c+ ∆ρagt

6
√
2µ

)2 , (66)

where c is a constant. Thus d ∼ t−2 as t→ ∞.
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4.5.3 Gravitationally spreading drop

h(x,t)
u(x,t)

g

L(t)

y

x

We analyse a low aspect ratio drop (h/L ≪ 1)
spreading gravitationally over a horizontal surface.
The lubrication equations now include gravity so
that they are given by

0 = −∂p
∂x

+ µ
∂2u

∂z2
(67)

0 = −∂p
∂z

− ρg (68)

The pressure is therefore in hydrostatic balance and
is given by

p = p0 + ρg(h− z), (69)

where p0 is atmospheric pressure at the free-surface. Gradients of this field drive the horizontal
motion. The horizontal velocity is then given by

u = −ρg
2µ

∂h

∂x
z(2h− z). (70)

This satisfies conditions on no-slip at the underlying plane (u(0) = 0) and no stress at the free
surface (∂u/∂z(h) = 0). The volume flux per unit width is

Q =

∫ h

0

u dz = −ρgh
3

3µ

∂h

∂x
. (71)

From mass conservation we deduce that

0 =
∂

∂x

∫ h

0

u dz − u(h)
∂h

∂x
+ w(h) =

∂Q

∂x
+
∂h

∂t
, (72)

using the kinematic condition on the free surface (D(z − h)/Dt = 0 at z = h). Thus we derive
the following nonlinear diffusion equation governing the evolution of h(x, t),

∂h

∂t
=

∂

∂x

(

ρgh3

3µ

∂h

∂x

)

. (73)

This is to be solved subject to the conditions: (i) there is no flow at x = 0, ∂h/∂x = 0; (ii) the
height vanishes at the front h(L(t), t) = 0; and (iii) the volume per unit width of material in the
current is V

∫ L(t)

0

h dx = V. (74)

We seek a similarity solution to (73) of the form h(x, t) = tβH(x/tα) and L = Ctα, where the
constant α, β and C and the function F are to be determined.

From (73) we find that 2α− 3β = 1 and from (74) that β + α = 1. Thus α = −β = 1/5 and
that the solution is given by

h = V

(

9µ

10ρgV 3t

)1/5

Γ−2/5

(

1− x2

L(t)2

)1/3

(75)

L(t) = Γ−3/5

(

10ρgV 3t

9µ

)1/5

(76)

where η = x/L(t) and Γ =
∫ 1

0
(1− η2)1/3 dη = 0.8413.
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Figure 3: The height of the spreading droplet as a function of distance for t = 0.1, 1, 10. In this
plot V = 1 and 10ρgV 3/(9µ) = 1.
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