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6 Stability

6.1 Introduction

We have encountered various steady solutions to the Navier-Stokes equations. But how do we
assess their stability”? In other words, if the solution is slightly perturbed from its steady state,
does it subsequent time-dependent evolution take the solution away from the steady state? One
approach is to assess the linear stability.

6.2 Instability of two-dimensional inviscid flow (p = constant)

The full governing equations in this scenario are
V.u=0, (1)

0
<a—ltl +u. Vu) = —Vp+pg. (2)

The basic steady state is assumed to be of the form u = uy = Uy(2)X and p = po(z) so that
0 = —0py/0z — pg. We introduce small perturbations to this steady state

u=ug+ eu and D =po + €p1,

where € is a small ordering parameter.
At O(e), the governing equations become

V.ul = 0, (3)

ou
<0—tl + Ug. Vul + u. VUQ> = —Vpl. (4)
This is the key step of linearisation. These are coupled equations for the velocity field, u; =

(u1,wy), and the pressure, p;, and we now derive a single governing equation for just one of these
fields. To this end, we note that

8U ow
2 o 0 1
Vipr = 8z o (5)
and then taking z. V? of (4), we find that
0 9\ o Uy Owy
(E + Uoﬁ_l’) \Y% wy, — 822 a—SL’ = 0. (6)

This is a linear equation for the vertical velocity field. The other perturbation fields can be
reconstructed from its solution. Since the equation is linear, we look for a solution of the form

Wl( ) ik(z— ct)’ (7)

and any more general expression can be composed from solutions of this form. Here k is the
wavenumber (= 27 /wavelength) and ¢ the wave speed. This solution grows in time if |e~*<|
increases in time. Writing the wave-speed c in real and imaginary parts, ¢ = ¢, 4 ic;, this implies
that the solution is (linearly) unstable if ¢; > 0.

From (6) & (7), we deduce the Rayleigh equation for the perturbation velocity field

4*W, Ul
_ k:2W _
dz2 Uy—c
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6.2.1 Three-dimensional perturbation
Suppose the perturbation were three-dimensional so that

u; = (ﬂh @1’ wl)e1(km+ly—kct) and p= ﬁlel(km—l—ly_kCt). (9)

Then under the Squire’s transformation, namely;,
BP=k+0?  ku=kiy+1lo, and  kp=kpi,

the 3-D problem is mapped to an equivalent 2-D problem. Thus treating the 2-D problem is
sufficient.

Squire’s Theorem for inviscid fluids: To each unstable three-dimensional disturbance, there cor-
responds a more unstable two-dimensional one.

The proof of this theorem follows immediately from Squire’s transformation. The growth rate of
the three dimensional disturbance is kc¢;, where ¢ is a function of ]27 because the problem can be
mapped to a two dimensional problem. However the growth rate in this two dimensional problem
is kc and this exceeds kc because k > k. Thus the 2-D problem has the higher linearised growth
rate.

6.2.2 Rayleigh inflexion point theorem

Starting from the Rayleigh equation (8), applied in z; < z < z; with Wi=0at z= 2,2, we

evaluate
4w Ul .
/ Wi ( L P — W1> dz =0, (10)
z1

d2 U()—C

where * denotes the complex conjugate. Integrating by parts and then taking the imaginary part

we find that
z2
C; / U

Thus if there is instability (¢; > 0) then Uj = 0 at some point within z; < z < zo. In other
words, the velocity field must have a point of inflexion in 2; < z < 2s.

2

! dz = 0. (11)

U()—C

6.2.3 Other properties

1. The Rayleigh equation (8) only involves k2, leading to a growth rate kc. The same solution
corresponds to k and —k, one of which leads to a positive growth rates, the other to a
negative growth rate. Henceforth we treat k > 0.

2. A stronger necessary condition for instability than §6.2.2 is U} (Uy — Us) < 0 for some z in
(21, 22), where Uy = Uy(zs) and U (z5) = 0.

3. By rewriting W = W, /(Uy — ¢), the Rayleigh equation becomes

Then we evaluate f: W*(...) dz and take the imaginary part to find

2¢;,(Ug — ¢) /: ('E 2

So for instability (¢; > 0), we require that min(Up) < ¢, < max(Up).

+ kﬂWP) dz = 0. (13)
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An unperturbed inviscid vortex sheet has veloc- Uo/2
ity and pressure fields given by
pl
% -~
110:{ 2U(;XA z>07 (14) 2= £
_T’X 2z <0 z="(x,t)
De — 192, 2>0
= 15
p {p* — pogz, 2 <0’ (15) U0/2

where p, is the pressure at the interface. There is
a velocity discontinuity at z = 0. The term ‘vortex
sheet’ arises because vorticity vanishes everywhere apart from at the interface z = 0. Viscosity
acts to thicken the interface. We focus on inviscid processes that operate on timescales much
faster than this viscous process.

In a perturbed state, the interface is no longer flat and its position is given by 1 = enge*@ =<4,
The perturbation velocity field is given by

up = (G (2), 11 (2))el M), (16)

while the perturbation pressure is p;(2)e'*(@=<) The basic velocity field, ug, is piecewise con-

stant and so the Rayleigh equation (8) reduces to

dz2 —k w1 = 0. (17)
Away from the interface the velocity field decays to zero and so we find
. Ae™%* 2 >0 . -1 [—kAe ™™ 2>0
W= { Bel* 2 <0 and T { kBek* 2 <0’ (18)

where A and B are constants to be determined from application of the boundary conditions. We
note that since the problem is linear, A and B are linearly proportional to the amplitude of the
perturbation, 7.

Interfacial boundary conditions:

1. Kinematic condition: fluid on the interface z = n(x,t) remains on the interface. This
implies that the material derivative of z = n vanishes on z = 7. Thus

oW om z=a (19)
This linearises to
o Uy 0 "
— = 2
<0t 5 8;):)77 wy on z2=0", (20)
o Uy 0
L _ Y7 - =0 21
(Ot 5 0:)3) n = w on 2=0", (21)

where the two expressions arise from approaching the interface from above and below,
respectively. Hence we deduce

k <7 — c) m=w  on z=0" (22)
ik <—% — c) Ny = Wy on z=0" (23)

(©University of Bristol 2017. This material is the copyright of the University unless explicitly stated otherwise. It is provided
exclusively for educational purposes at the University and is to be downloaded or copied for your private study only.



Advanced Fluid Mechanics: Page 36

2. Dynamic condition: the pressure is continuous at z = n(x,t). The pressure field p = po+ep;

and so 5
p(enoe™™=1) = p, + engetto=) ol 4 epr(0) + ...
0z |,_,
Thus demanding continuity of pressure at O(e) yields
apO Opo
re 1 (07) = —— 07).
2 en0)= 22 ()

(24)

(25)

From the perturbation equation for horizontal momentum, we can relate the horizontal

velocity field to the pressure and so
piik <% — c) U = —ikp; at =07,
poik (—% — c) U, = —ikpy at z=0".
This implies that continuity of pressure (25) is given by
—p1 (% - C) 41(07) + pe (—% - C) @1(07) = (p1 = p2)gmo.

On application of these boundary conditions, we find that

Uo(pz — U3 —
2y ol =p) U5 (p2—pi)g

p1+ 2 4 k(pr+p2)
This relationship may be interpreted in various settings:

1. No density difference (p; = p2).

(26)

(27)

¢ = +ilUy/2 and so the interface is unstable to disturbances of all wave lengths. Somewhat
worryingly, the growth rate (= kUy/2) increases as the wavelength decreases. This is
physically unreasonable as short wavelengths are stabilised by the action of viscosity and/or

surface tension.

2. No flow (Uy = 0)

> = (pa — p1)g/(k(p1 + p2)). There is no instability when denser fluid underlies less dense
fluid; instead there is wave-like motion. However if the denser fluid over-lies the less dense

then the interface is unstable and overturns.

3. Flow and density differences: Kelvin-Helmholtz instability.
The flow is linearly unstable if

pip2 U3

(30)

This means that long wavelength disturbances (small wave number) are stabilised by a

density difference.
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6.4 Thermal convection: Rayleigh-Bernard Convection

We analyse a fluid layer heated from below. Heat trans- T=TO
port in the absence of fluid motion is by molecular diffusion z=h 1
alone and through the calculation that follows, we address
the question: when will fluid motion be initiated so that the
heat transport is by convection rather than conduction? z=0 !

The problem set up is as follows: fluid of dynamic vis- T=TO+AT
cosity p and thermal diffusivity x lies between two horizontal boundaries at z = 0 and z = h.
The lower boundary is maintained at temperature T = Ty + AT, while the upper one is at
T =T,. (Here AT > 0.) The governing equations for the incompressible fluid motion are

V.u=0, (31)
ou 9
Po a+u.Vu = —Vp+pg + pnV-u, (32)
T
%—t +u. VT = kV?T, (33)

where in (32) we have made the Boussinesq approximation so that the density of the fluid is
treated as a constant (pg), apart from where it multiplies the gravitational term (pg). The
Boussinesq approximation is reasonable, provided the density differences are not large. To close
this system, we require an equation of state, linking the density of the fluid to its temperature.
Here we use a linear relationship with a constant coefficient of thermal expansion, «, such that

p/po=1—a(T —Ty). (34)

The steady, ‘conduction’ solution with no flow (u = 0) is given by

T=T=Ty+AT(1 - z/h), (35)
p=p=po(l—alT(l—z/h)), (36)
p=D=po— pog (1 — aAT)z + aATZ*/(2h)). (37)

This satisfies the governing equations and boundary conditions at z = 0, h.
The linear stability calculation then examines the temporal evolution of small perturbations
to this steady state. To this end we introduce,

T=T+T, p=p+p and p=p+p.

The linearised governing equations are then

V.u=0, (38)
0
Po <§ - VV2) u=-Vp +/'g, (39)
0 o\ v dT  wAT
(a—ﬂaV)T——w&——h : (40)
o= —poad. (41)
These can be manipulated into a single linear equation for the vertical component of the velocity
field
0 9 0 9 s apATg_,
Po (E—I/V) (a—HV)Vw—TVhw, (42)
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where V37 = 0%/02% + 0% /0y?. Tt is convenient to adopt dimensionless variables,

2
w:EVV, x = hX and t:h—T,
h K

and to seek a solution of the form

A

W(X) _ W(z)ei(lX-i-mY)—l-oT’

where k? = [2 +m?2. Then the governing equation becomes

a2 d2 d?
(a7 ) (@ 07e) () w=mawew s

where there are two dimensionless parameters, namely, Ra, the Rayleigh number and P, the
Prandtl number given by
_ aATgh?

RV

Ra and P = Z.
K

The governing equation (43) must be solved subject to boundary conditions. The easiest problem
is to assume that the boundaries are stress-free and have a fixed temperature. These conditions
demand

W d'w
dzz  dz*
Marginal stability occurs when o = 0 and then the solution

W =

=0 at Z=0,1. (44)

W(Z)=sinnnZ, n €z, (45)

exists provided
(n?r? + k2)?

Ra = 2

(46)

15000

10000

Ra

5000 Unstable

Figure 1: The Rayleigh number, Ra, as a function of the wavenumber, k, for marginal stability
(0 = 0) and mode n = 1,2. The critical Rayleigh number, Ra., below which the flow is linearly
stable is plotted with a dashed line.

This has a minimum at n = 1, k = 7/v/2, at which values Ra = Ra. = 277*/4. (see figure
1). Thus if Ra < Ra. there is no marginal stability solution to the governing equations and the
flow is linearly stable. Conversely, if Ra > Ra. = 658 then there exists a flow solution for some
wavelength and the flow is linearly unstable.
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