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6 Stability

6.1 Introduction

We have encountered various steady solutions to the Navier-Stokes equations. But how do we
assess their stability? In other words, if the solution is slightly perturbed from its steady state,
does it subsequent time-dependent evolution take the solution away from the steady state? One
approach is to assess the linear stability.

6.2 Instability of two-dimensional inviscid flow (ρ = constant)

The full governing equations in this scenario are

∇.u = 0, (1)

ρ

(

∂u

∂t
+ u.∇u

)

= −∇p + ρg. (2)

The basic steady state is assumed to be of the form u = u0 ≡ U0(z)x̂ and p = p0(z) so that
0 = −∂p0/∂z − ρg. We introduce small perturbations to this steady state

u = u0 + ǫu1 and p = p0 + ǫp1,

where ǫ is a small ordering parameter.
At O(ǫ), the governing equations become

∇.u1 = 0, (3)

ρ

(

∂u1

∂t
+ u0.∇u1 + u1.∇u0

)

= −∇p1. (4)

This is the key step of linearisation. These are coupled equations for the velocity field, u1 =
(u1, w1), and the pressure, p1, and we now derive a single governing equation for just one of these
fields. To this end, we note that

∇2p1 = −2ρ
∂U0

∂z

∂w1

∂x
, (5)

and then taking ẑ.∇2 of (4), we find that

(

∂

∂t
+ U0

∂

∂x

)

∇2w1 −
∂2U0

∂z2
∂w1

∂x
= 0. (6)

This is a linear equation for the vertical velocity field. The other perturbation fields can be
reconstructed from its solution. Since the equation is linear, we look for a solution of the form

w1 = Ŵ1(z)e
ik(x−ct), (7)

and any more general expression can be composed from solutions of this form. Here k is the
wavenumber (= 2π/wavelength) and c the wave speed. This solution grows in time if |e−ikct|
increases in time. Writing the wave-speed c in real and imaginary parts, c = cr +ici, this implies
that the solution is (linearly) unstable if ci > 0.

From (6) & (7), we deduce the Rayleigh equation for the perturbation velocity field

d2Ŵ1

dz2
− k2Ŵ1 −

U ′′
0

U0 − c
Ŵ1 = 0. (8)
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6.2.1 Three-dimensional perturbation

Suppose the perturbation were three-dimensional so that

u1 = (û1, v̂1, ŵ1)e
i(kx+ly−kct) and p = p̂1e

i(kx+ly−kct). (9)

Then under the Squire’s transformation, namely,

k̂2 = k2 + l2, k̂u = kû1 + lv̂1 and kp = k̂p̂1,

the 3-D problem is mapped to an equivalent 2-D problem. Thus treating the 2-D problem is
sufficient.
Squire’s Theorem for inviscid fluids: To each unstable three-dimensional disturbance, there cor-
responds a more unstable two-dimensional one.
The proof of this theorem follows immediately from Squire’s transformation. The growth rate of
the three dimensional disturbance is kci, where c is a function of k̂, because the problem can be
mapped to a two dimensional problem. However the growth rate in this two dimensional problem
is k̂c and this exceeds kc because k̂ ≥ k. Thus the 2-D problem has the higher linearised growth
rate.

6.2.2 Rayleigh inflexion point theorem

Starting from the Rayleigh equation (8), applied in z1 < z < z2 with Ŵ1 = 0 at z = z1, z2, we
evaluate

∫ z2

z1

Ŵ ∗
1

(

d2Ŵ1

dz2
− k2Ŵ1 −

U ′′
0

U0 − c
Ŵ1

)

dz = 0, (10)

where ∗ denotes the complex conjugate. Integrating by parts and then taking the imaginary part
we find that

ci

∫ z2

z1

U ′′
0

∣

∣

∣

∣

∣

Ŵ1

U0 − c

∣

∣

∣

∣

∣

2

dz = 0. (11)

Thus if there is instability (ci > 0) then U ′′
0 = 0 at some point within z1 < z < z2. In other

words, the velocity field must have a point of inflexion in z1 < z < z2.

6.2.3 Other properties

1. The Rayleigh equation (8) only involves k2, leading to a growth rate kc. The same solution
corresponds to k and −k, one of which leads to a positive growth rates, the other to a
negative growth rate. Henceforth we treat k > 0.

2. A stronger necessary condition for instability than §6.2.2 is U ′′
0 (U0 − Us) < 0 for some z in

(z1, z2), where Us = U0(zs) and U ′′
0 (zs) = 0.

3. By rewriting W = Ŵ1/(U0 − c), the Rayleigh equation becomes

d

dz

(

(U0 − c)2
dW

dz

)

− k2(U0 − c)2W = 0. (12)

Then we evaluate
∫ z2

z1
W ∗(. . .) dz and take the imaginary part to find

2ci(U0 − cr)

∫ z2

z1

(

∣

∣

∣

∣

dW

dz

∣

∣

∣

∣

2

+ k2|W |2
)

dz = 0. (13)

So for instability (ci > 0), we require that min(U0) < cr < max(U0).
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6.3 Instability of a vortex sheet

g

z=η(x,t)

z=0

U0/2

U0/2

ρ1

ρ2

An unperturbed inviscid vortex sheet has veloc-
ity and pressure fields given by

u0 =

{

U0

2
, x̂ z > 0

−U0

2
, x̂ z < 0

, (14)

p =

{

p∗ − ρ1gz, z > 0
p∗ − ρ2gz, z < 0

, (15)

where p∗ is the pressure at the interface. There is
a velocity discontinuity at z = 0. The term ‘vortex
sheet’ arises because vorticity vanishes everywhere apart from at the interface z = 0. Viscosity
acts to thicken the interface. We focus on inviscid processes that operate on timescales much
faster than this viscous process.

In a perturbed state, the interface is no longer flat and its position is given by η = ǫη0e
ik(x−ct).

The perturbation velocity field is given by

u1 = (û1(z), ŵ1(z))e
i(k(x−ct)), (16)

while the perturbation pressure is p1(z)e
i(k(x−ct)). The basic velocity field, u0, is piecewise con-

stant and so the Rayleigh equation (8) reduces to

d2ŵ1

dz2
− k2ŵ1 = 0. (17)

Away from the interface the velocity field decays to zero and so we find

ŵ1 =

{

Ae−kz z > 0
Bekz z < 0

and û1 =
−1

ik

{

−kAe−kz z > 0
kBekz z < 0

, (18)

where A and B are constants to be determined from application of the boundary conditions. We
note that since the problem is linear, A and B are linearly proportional to the amplitude of the
perturbation, η0.
Interfacial boundary conditions:

1. Kinematic condition: fluid on the interface z = η(x, t) remains on the interface. This
implies that the material derivative of z = η vanishes on z = η. Thus

Dη

Dt
= w on z = η. (19)

This linearises to
(

∂

∂t
+

U0

2

∂

∂x

)

η = w1 on z = 0+, (20)

(

∂

∂t
− U0

2

∂

∂x

)

η = w1 on z = 0−, (21)

where the two expressions arise from approaching the interface from above and below,
respectively. Hence we deduce

ik

(

U0

2
− c

)

η0 = ŵ1 on z = 0+, (22)

ik

(

−U0

2
− c

)

η0 = ŵ1 on z = 0−. (23)
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2. Dynamic condition: the pressure is continuous at z = η(x, t). The pressure field p = p0+ǫp1
and so

p(ǫη0e
ik(x−xt)) = p∗ + ǫη0e

ik(x−ct) ∂p0
∂z

∣

∣

∣

∣

z=0

+ ǫp1(0) + . . . . (24)

Thus demanding continuity of pressure at O(ǫ) yields

∂p0
∂z

∣

∣

∣

∣

z=0+
+ p̂1(0

+) =
∂p0
∂z

∣

∣

∣

∣

z=0−
+ p1(0

−). (25)

From the perturbation equation for horizontal momentum, we can relate the horizontal
velocity field to the pressure and so

ρ1ik

(

U0

2
− c

)

û1 = −ikp̂1 at z = 0+, (26)

ρ2ik

(

−U0

2
− c

)

û1 = −ikp̂1 at z = 0−. (27)

This implies that continuity of pressure (25) is given by

−ρ1

(

U0

2
− c

)

û1(0
+) + ρ2

(

−U0

2
− c

)

û1(0
−) = (ρ1 − ρ2)gη0. (28)

On application of these boundary conditions, we find that

c2 + c
U0(ρ2 − ρ1)

ρ1 + ρ2
+

U2
0

4
=

(ρ2 − ρ1)g

k(ρ1 + ρ2)
. (29)

This relationship may be interpreted in various settings:

1. No density difference (ρ1 = ρ2).
c = ±iU0/2 and so the interface is unstable to disturbances of all wave lengths. Somewhat
worryingly, the growth rate (= kU0/2) increases as the wavelength decreases. This is
physically unreasonable as short wavelengths are stabilised by the action of viscosity and/or
surface tension.

2. No flow (U0 = 0)
c2 = (ρ2 − ρ1)g/(k(ρ1 + ρ2)). There is no instability when denser fluid underlies less dense
fluid; instead there is wave-like motion. However if the denser fluid over-lies the less dense
then the interface is unstable and overturns.

3. Flow and density differences: Kelvin-Helmholtz instability.
The flow is linearly unstable if

k >
(ρ22 − ρ21)

ρ1ρ2

g

U2
0

(30)

This means that long wavelength disturbances (small wave number) are stabilised by a
density difference.
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6.4 Thermal convection: Rayleigh-Bernard Convection

z=0

z=h

T=T0

T=T0

+∆T

g

We analyse a fluid layer heated from below. Heat trans-
port in the absence of fluid motion is by molecular diffusion
alone and through the calculation that follows, we address
the question: when will fluid motion be initiated so that the
heat transport is by convection rather than conduction?

The problem set up is as follows: fluid of dynamic vis-
cosity µ and thermal diffusivity κ lies between two horizontal boundaries at z = 0 and z = h.
The lower boundary is maintained at temperature T = T0 + ∆T , while the upper one is at
T = T0. (Here ∆T > 0.) The governing equations for the incompressible fluid motion are

∇.u = 0, (31)

ρ0

(

∂u

∂t
+ u.∇u

)

= −∇p + ρg + µ∇2u, (32)

∂T

∂t
+ u.∇T = κ∇2T, (33)

where in (32) we have made the Boussinesq approximation so that the density of the fluid is
treated as a constant (ρ0), apart from where it multiplies the gravitational term (ρg). The
Boussinesq approximation is reasonable, provided the density differences are not large. To close
this system, we require an equation of state, linking the density of the fluid to its temperature.
Here we use a linear relationship with a constant coefficient of thermal expansion, α, such that

ρ/ρ0 = 1− α(T − T0). (34)

The steady, ‘conduction’ solution with no flow (u = 0) is given by

T ≡ T = T0 +∆T (1− z/h), (35)

ρ ≡ ρ = ρ0 (1− α∆T (1− z/h)) , (36)

p ≡ p = p0 − ρ0g
(

(1− α∆T )z + α∆Tz2/(2h)
)

. (37)

This satisfies the governing equations and boundary conditions at z = 0, h.
The linear stability calculation then examines the temporal evolution of small perturbations

to this steady state. To this end we introduce,

T = T + T ′, ρ = ρ+ ρ′ and p = p+ p′.

The linearised governing equations are then

∇.u = 0, (38)

ρ0

(

∂

∂t
− ν∇2

)

u = −∇p′ + ρ′g, (39)

(

∂

∂t
− κ∇2

)

T ′ = −w
dT

dz
=

w∆T

h
, (40)

ρ′ = −ρ0αT
′. (41)

These can be manipulated into a single linear equation for the vertical component of the velocity
field

ρ0

(

∂

∂t
− ν∇2

)(

∂

∂t
− κ∇2

)

∇2w =
αρ0∆Tg

h
∇2

hw, (42)
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where ∇2
h = ∂2/∂x2 + ∂2/∂y2. It is convenient to adopt dimensionless variables,

w =
κ

h
W, x = hX and t =

h2

κ
τ,

and to seek a solution of the form

W (X) = Ŵ (Z)ei(lX+mY )+στ ,

where k2 = l2 +m2. Then the governing equation becomes

(

d2

dZ2
− k2 − σ

)(

d2

dZ2
− k2 − P−1σ

)(

d2

dZ2
− k2

)

W = −Ra k2W, (43)

where there are two dimensionless parameters, namely, Ra, the Rayleigh number and P , the
Prandtl number given by

Ra =
α∆Tgh3

κν
and P =

ν

κ
.

The governing equation (43) must be solved subject to boundary conditions. The easiest problem
is to assume that the boundaries are stress-free and have a fixed temperature. These conditions
demand

W =
d2W

dZ2
=

d4W

dZ4
= 0 at Z = 0, 1. (44)

Marginal stability occurs when σ = 0 and then the solution

W (Z) = sin nπZ, n ∈ Z, (45)

exists provided

Ra =
(n2π2 + k2)3

k2
. (46)
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Figure 1: The Rayleigh number, Ra, as a function of the wavenumber, k, for marginal stability
(σ = 0) and mode n = 1, 2. The critical Rayleigh number, Rac, below which the flow is linearly
stable is plotted with a dashed line.

This has a minimum at n = 1, k = π/
√
2, at which values Ra = Rac = 27π4/4. (see figure

1). Thus if Ra < Rac there is no marginal stability solution to the governing equations and the
flow is linearly stable. Conversely, if Ra > Rac ≡ 658 then there exists a flow solution for some
wavelength and the flow is linearly unstable.
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