

0. Introduction, motivation and preliminary skills

1. The governing equation for viscous fluid flow

Conservation of mass; stress and rate of strain tensors; Navier-Stokes equation; dissipation; boundary conditions; vorticity.

2. Simple fluid flows

Solution to the Navier-Stokes equations for simple geometries; steady flows along pipes and between parallel plates; oscillating flows; impulsively started flows; flows with circular streamlines.

3. Dynamical similarity and the Reynolds Number

Dimensionless governing equations and the definition of the Reynolds number; interpretation; simple examples.

4. Flows with negligible inertia (Reynolds number $\ll 1$)

Stokes' equations; corner flows; settling particles; lubrication flows; spreading droplets.

5. Flows with inertia (Reynolds Numbers $\gg 1$)

Singular perturbations of the Navier-Stokes equations; boundary layer flows; similarity solutions; production of vorticity; separation; wakes.

6. Instabilities

Linear instability theory of shear flows, vortex sheets and flows with density gradients.