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Separable solutions to Laplace’s equation

The following notes summarise how a separated solution to Laplace’s equation may be for-
mulated for plane polar; spherical polar; and cylindrical polar coordinates.

1. Plane polar coordinates (r, θ)
In plane polar coordinates, Laplace’s equation is given by

∇2φ ≡ 1
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∂φ

∂r

)
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∂2φ

∂θ2
= 0. (1)

To find a separable solution, we propose that

φ(r, θ) = F (r)G(θ). (2)

Hence from Laplace’s equation we find that
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d2G
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. (3)

In this expression the left-hand side is purely a function of r, while the right-hand side is
purely a function of θ. Thus they can only be equal to each other if they are both constant.
We write this constant as n2, which yields
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− n2F = 0, (4)

d2G

dθ2
+ n2G = 0. (5)

The solutions to these two ordinary differential equations for n 6= 0 are

F (r) = Anr
n +Bnr

−n, (6)

G(θ) = Cn cosnθ +Dn sinnθ, (7)

where An, Bn, Cn and Dn are constants. When n = 0, F (r) = A0 ln r + B0 and G(r) =
C0θ +D0. For consistency we require that

G(θ + 2π) = G(θ), (8)

which implies that the constant n must only take integer values. Thus the separated
solution is given by

φ(r, θ) = (A0 ln r +B0)(C0θ +D0) +
∞∑
n=1

(
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n +Bnr
−n
)

(Cn cosnθ +Dn sinnθ) . (9)



2. Spherical polar coordinates (r, θ, χ)
We seek an axisymmetric solution to Laplace’s equation in spherical polar coordinates
(0 ≤ θ ≤ π, 0 ≤ χ < 2π), for which ∂/∂χ ≡ 0. Laplace’s equation is given by

∇2φ ≡ 1
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We seek a separated solution of the form

φ(r, θ) = R(r)P (θ). (11)

Substitution of this expression into Laplace’s equation yields
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As in §1, the left-hand side is only a function of r and the right-hand side is only a function
of θ. Thus they must both equal a constant which we write as n(n + 1). Furthermore we
substitute y = cos θ and obtain the following equations:
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)
+ n(n+ 1)P = 0. (14)

Solutions to (13) are given by

R(r) = Anr
n +Bnr

−(n+1), (15)

where An and Bn are constants. It can be shown that for solutions of (14) which are regular
at y = −1 and 1, corresponding to θ = 0 and π, the constant n must only take integer
values. Then (14) is known as Legendre’s equation, which admits polynomial solutions
which take finite values at y = 0. These are known as Legendre polynomials. The first
three are given by

P0(y) = 1, (16)

P1(y) = y, (17)

P2(y) = (3y2 − 1)/2. (18)

In this list the suffix on the functions P (y) denotes the value of the constant n. The
complete separated solution is given by

φ(r, θ) =
∞∑
n=0

(
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)
Pn(cos θ). (19)

In the Fluids 3 course we will only encounter the solutions with n = 0 and 1. These are:

n = 0 φ = A0/r

n = 1 φ = A1r cos θ ≡ A1.x, φ =
B1 cos θ

r2
≡ B1.x

r3



3. Cylindrical polar coordinates (r, θ, z) In terms of cylindrical polar coordinates, (r >
0, 0 ≤ θ < 2π), Laplace’s equation is given by
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To find a separable solution, we propose that

φ(r, θ, z) = J(r)M(θ)Z(z). (21)

Hence from Laplace’s equation we find that
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In this equation the left-hand side is a function of r and θ while the right-hand side is a
function of z. Hence both sides must be constant and equal to a constant, which we write
as −α2. Thus we find that

d2Z

dz2
− α2Z = 0, (23)
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The solution to (23) is given by

Z(z) = A exp(αz) +B exp(−αz) (25)

while the left- and right-hand sides of (24) are functions of solely r and θ, respectively and
thus are constant. Hence we write

d2M

dθ2
+ n2M = 0, (26)
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Hence we deduce that
M(θ) = C cosnθ +D sinnθ, (28)

and that since the functions must satisfy M(θ+2π) = M(θ), it implies that n is an integer.
We now substitute u = αr and find that
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)
+ (u2 − n2)J = 0. (29)

This is Bessel’s equations and the solutions which are regular at u = 0 are known as
Bessel functions of the first kind. They are denoted Jn(u). Hence the separated solution
in cylindrical polar coordinates is given by

φ(r, θ, z) =
∞∑
n=0

Jn(αr) (Cn cosnθ +Dn sinnθ) (An exp(αz) +Bn exp(−αz)) . (30)


