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2 Fourier transforms

2.1 Integral transforms

The Fourier transform is studied in this chapter and the Laplace transform in the next. They are
both integral transforms that may used to find solutions to differential, integral and difference
equations and may be used to evaluate definite integral and to sum series.

2.2 Definition of Fourier transform

The Fourier transform of f(x) is given by

f̃(k) =

∫ ∞

−∞
f(x)e−ikx dx. (1)

The inverse transform is given by

f(x) =
1

2π

∫ ∞

−∞
f̃(k)eikx dk. (2)

2.2.1 Example: f(x) = Ae−a|x| for a, A > 0

f̃ =

∫ ∞

0

Ae−ax−ikx dx+

∫ 0

−∞
Aeax−ikx dx =

2Aa

a2 + k2
.

2.2.2 Example: f(x) = 1 when |x| < a and f(x) = 0 otherwise

f̃ =

∫ a

−a

e−ikx dx =
2 sin ak

k
.

2.3 Properties of Fourier transforms

1. Scaling: if g(x) = f(αx) (α > 0), then g̃(k) =
1

α
f̃

(

k

α

)

.

2. Translation 1: if g(x) = e−iµxf(x) (µ ∈ ℜ) then g̃(k) = f̃(k + µ).

3. Translation 2: if g(x) = f(x− µ) (µ ∈ ℜ) then g̃(k) = e−iµkf̃(k).

4. Fourier transform of xnf(x) is (i)n
dnf̃

dkn
.

5. Derivatives: Fourier transform of
dnf

dxn
is (ik)nf̃(k).

6. Convolution: A convolution of two functions is given by

f ⋆ g(x) = g ⋆ f(x) =

∫ ∞

−∞
f(x− ξ)g(ξ) dξ.

The Fourier transform of the convolution is given by

f̃ ⋆ g =

∫ ∞

−∞

∫ ∞

−∞
f(x− ξ)g(ξ)e−ikx dξdx =

∫ ∞

−∞
f(s)e−iks ds

∫ ∞

−∞
g(ξ)e−ikξ dξ = f̃(k)g̃(k).
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Choosing g(−ξ) = f(ξ)∗ (here ∗ denotes complex conjugation), so that g̃(k) = f̃(k)∗, we
deduce Parseval’s formula

∫ ∞

−∞
|f(ξ)|2 dξ =

1

2π

∫ ∞

−∞
|f̃(k)|2 dk.

2.4 Fourier Cosine and Sine transforms

In many problem we are only concerned with f(x) in x > 0 and we are free to extend the
definition of f(x) into x < 0 as we please. Fourier Cosine and Sine transforms correspond to
constructing the function of interest to be even or odd, respectively.

• Cosine transform:

FC =

∫ ∞

0

f(x) cos kx dx and f(x) =
2

π

∫ ∞

0

FC(k) cos kx dk. (3)

• Sine transform:

FS =

∫ ∞

0

f(x) sin kx dx and f(x) =
2

π

∫ ∞

0

FS(k) sin kx dk. (4)

2.4.1 Example: f(x) = e−bx (b > 0).

Using integration by parts we find FC(k) =
1

b
− k

b
FS(k)

FS(k) =
k

b
FC(k)

Then FC =
b

k2 + b2
and FS =

k

k2 + b2
.

2.4.2 Derivatives

The transforms of derivatives are straightforwardly evaluated using integration by parts:

FS

(

df

dx

)

= −kFC(f),

FC

(

df

dx

)

= −f(0) + kFS(f).

These relationships may be used recursively for higher derivatives. We will use Fourier Cosine
and Sine transforms for solving pde problem in semi-infinite domains.

2.5 Inverting Fourier transforms using contour integration

2.5.1 Example: f̃ = (k2 + 1)−1

The inverse transform formula gives

f(x) =
1

2π

∫ ∞

−∞

1

k2 + 1
eikx dk,

but this can not be evaluated using elementary techniques. Instead we treat integral in complex
k-plane, where the integrand has simple poles at k = ±i.
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Figure 1: Integration paths in the complex k-plane with curves (i) CR1 and (ii) CR2 to form a
closed contour.

The residue at k = i is lim
k→i

(k − i)eikx

k2 + 1
=

e−x

2i
and the residue at k = −i is lim

k→−i

(k + i)eikx

k2 + 1
= −ex

2i
.

We construct a closed contour in the k-plane by integrating along the real axis and then closing
by a semi-circular arc in either k > 0 (curve CR1) or k < 0 (curve CR2). These two curves are
parameterised by writing k = Reiθ where 0 < θ < π for CR1 and −π < θ < 0 for CR2. We note
that on either of these curves

∣

∣eikx
∣

∣ = e−xR sin θ.

If x > 0 then e−xR sin θ → 0 as R → ∞ provided sin θ > 0. This corresponds to curve CR1.
Conversely If x < 0 then e−xR sin θ → 0 as R → ∞ provided sin θ < 0. This corresponds to curve
CR2.

First we tackle the case x > 0. Closing the contour using CR1, we have

lim
R→∞

(

∫ R

−R

eikx

k2 + 1
dk +

∫ π

0

eixReiθ

R2e2iθ + 1
iReiθ dθ

)

= 2πi
e−x

2i
,

where the right hand side is 2πi multiplied by the sum of residues enclosed by the contour; in
this case the only residue comes from the pole at k = i. Then evaluating the inverse transform,
we find that

f(x) =
1

2
e−x when x > 0.

Next we tackle x < 0. Closing the contour using CR2 we have

lim
R→∞

(

∫ R

−R

eikx

k2 + 1
dk +

∫ −π

0

eixReiθ

R2e2iθ + 1
iReiθ dθ

)

= 2πi
ex

2i
,

where the right hand side is −2πi multiplied by the sum of residues enclosed by the contour
(poles encircled clockwise); in this case the only residue comes from the pole at k = −i. Then
evaluating the inverse transform, we find that

f(x) =
1

2
ex when x < 0.

2.5.2 Example: f̃(k) = e−ak2 (a > 0)

Applying the inverse Fourier transform formula, we have

f(x) =
1

2π

∫ ∞

−∞
e−ak2+ikx dk.
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Figure 2: Deformation of the integration contour in the complex k-plane

We complete the square to write ak2 − ikx = a((k − ix/(2a))2 + x2/(2a)2), so that

f(x) =
1

2π
e−ax2/(4a)

∫ ∞

−∞
e−a(k−ix/(2a))2 dk.

Since the integrand has no singularities in the complex k-plane, we may deform the contour
without altering its value. In particular we find that

∫ R

−R

e−a(k−ix/(2a))2 dk =

∫ R

−R

e−ak2 dk as R → ∞,

since the contribution from curves C1 and C3 vanish (see figure 2). So we find that

f(x) =
1

2π
e−x2/4a

∫ ∞

−∞
e−ak2 dk

=
1√
4πa

e−x2/4a. (5)

2.6 Using Fourier transforms to solve partial differential equations

2.6.1 Example: One dimensional conduction along an infinite rod.

The temperature θ(x, t) satisfies

∂θ

∂t
= κ

∂2θ

∂x2
(t > 0),

subject to θ(x, 0) = g(x).
To proceed, we take the Fourier transform with respect to x, so that the governing equation

becomes
∂θ̃

∂t
= −κk2θ̃, subject to θ̃(k, 0) = g̃(k).

This may be integrated straightaway to give θ̃ = g̃e−κk2t.
We may invert this by recognising the expression as the product of two transforms (see (5)).

Therefore the inverse transform gives a convolution,

θ(x, t) =

∫ ∞

∞

1√
4πκt

e−(x−ξ)2/(4κt)g(ξ) dξ.
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2.6.2 Example: One dimensional conduction along a semi-infinite rod.

The temperature θ(x, t) satisfies

∂θ

∂t
= κ

∂2θ

∂x2
(x > 0, t > 0),

subject to θ(x, 0) = 0 (initial uniform temperature) and θ(0, t) = θ0 (end of rod held at fixed
temperature).

We proceed by taking the Fourier Sine transform with respect to x, ΘS(k, t) =

∫ ∞

0

θ(x, t) sin kx dx,

so that the governing equation becomes

∂ΘS

∂t
= −κk2ΘS + κkθ(0, t), subject to ΘS(k, 0) = 0.

This may be integrated straightaway to give

ΘS(k, t) =
θ0
k

(

1− e−κk2t
)

.

Inverting the transform gives

θ(x, t) =
2θ0
π

∫ ∞

0

(1− e−κk2t)

k
sin kx dk,

= θ0

(

1− 2√
π

∫ x/(2
√
κt)

0

e−η2 dη

)

,

= θ0erfc

(

x

2
√
κt

)

, (6)

where erfc(z) denotes the complementary error function.
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Figure 3: The temperature θ(x, t) as a function of x at t = 0.01, 0.1, 1
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2.6.3 Example: Two-dimensional fluid flow

y

x

Fluid flow

Source

Potential flow in a region {(x, y) : x > 0, y > 0} driven by an
inflow along y = 0. The fluid velocity field u = (∂φ/∂x, ∂φ/∂y)
satisfies

∂2φ

∂x2
+

∂2φ

∂y2
= 0,

subject to ∂φ/∂x = 0 on x = 0 (impermeable wall) and ∂φ/∂y =
g(x) on y = 0. Furthermore we require decay of the velocity field
as x, y → ∞. We take the Fourier Cosine transform with respect
to x,

ΦC(k, y) =

∫ ∞

0

φ cos kx dx.

Under this transform, Laplace’s equation become

∂2ΦC

∂y2
− k2ΦC = 0,

and the solution satisfying the transformed boundary conditions is

ΦC = −GCe
−ky

k
,

where GC is the Fourier Cosine transform of g(x). Inverting gives

φ(x, y) = −2

π

∫ ∞

0

GCe
−ky cos kx

k
dk.

2.7 Multiple Fourier transforms

For f(x, y) defined on −∞ < x, y < ∞, we may take Fourier
transforms with respect to x and y. Then

F (k, l) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i(kx+ly) dxdy, (7)

while inversion gives

f(x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
F (k, l)ei(kx+ly) dkdl (8)

Similar multiple transforms can be performed with Fourier Cosine
and Sine transforms and/or combination of them.

2.7.1 Example: Return to §2.6.3

Define Φ(k, l) =

∫ ∞

0

∫ ∞

0

φ(x, y) coskx cos ly dxdy, so that Laplace’s

equation becomes
−(k2 + l2)Φ−GC(k) = 0.

Inverting gives

φ(x, y) = − 4

π2

∫ ∞

0

∫ ∞

0

GC(k)

k2 + l2
cos kx cos ly dkdl.

But

∫ ∞

0

cos ly

k2 + l2
dl =

π

2k
e−ky and so we recover the solution of §2.6.3.
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