
CRACKING THE PROBLEM WITH 33

ANDREW R. BOOKER

Abstract. Inspired by the Numberphile video “The uncracked problem with 33” by
Tim Browning and Brady Haran [BH15], we investigate solutions to x3 + y3 + z3 = k
for a few small values of k. We find the first known solution for k = 33.

1. Introduction

Let k be a positive integer with k 6≡ ±4 (mod 9). Then Heath-Brown [HB92] has
conjectured that there are infinitely many triples (x, y, z) ∈ Z3 such that

(1) k = x3 + y3 + z3.

Various numerical investigations of (1) have been carried out, beginning as early as 1954
[MW55]; see [BPTYJ07] for a thorough account of the history of these investigations
up to 2000. The computations performed since that time have been dominated by an
algorithm due to Elkies [Elk00]. The latest that we are aware of is the paper of Huisman
[Hui16] (based on the implementation by Elsenhans and Jahnel [EJ09]), which determined
all solutions to (1) with k < 1000 and max{|x|, |y|, |z|} ≤ 1015. In particular, Huisman
reports that solutions are known for all but 13 values of k < 1000:

(2) 33, 42, 114, 165, 390, 579, 627, 633, 732, 795, 906, 921, 975.

Elkies’ algorithm works by finding rational points near the Fermat curve X3 + Y 3 = 1
using lattice basis reduction; it is well suited to finding solutions for many values of k
simultaneously. In this paper we describe a different approach that is more efficient when
k is fixed. It has the advantage of provably finding all solutions with a bound on the
smallest coordinate, rather than the largest as in Elkies’ algorithm. This always yields a
nontrivial expansion of the search range since, apart from finitely many exceptions that
can be accounted for separately, one has

max{|x|, |y|, |z|} > 3
√

2 min{|x|, |y|, |z|}.

Moreover, empirically it is often the case that one of the variables is much smaller than
the other two, so we expect the gain to be even greater in practice.

Our strategy is similar to some earlier approaches (see especially [HBLtR93], [Bre95],
[KTS97] and [BPTYJ07]), and is based on the observation that in any solution, k− z3 =
x3 + y3 has x+ y as a factor. Our main contribution over the earlier investigations is to
note that with some time-space tradeoffs, the running time is very nearly linear in the
height bound, and it is quite practical when implemented on modern 64-bit computers.

In more detail, suppose that (x, y, z) is a solution to (1), and assume without loss of
generality that |x| ≥ |y| ≥ |z|. Then we have

k − z3 = x3 + y3 = (x+ y)(x2 − xy + y2).

This work was carried out using the computational facilities of the Advanced Computing Research
Centre, University of Bristol, http://www.bris.ac.uk/acrc/. The author was partially supported by
EPSRC Grant EP/K034383/1. No data were created in the course of this study.
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If k − z3 = 0 then y = −x, and every value of x yields a solution. Otherwise, setting
d = |x+ y| = |x|+ y sgnx, we see that d divides |k − z3|, and

|k − z3|
d

= x2 − xy + y2 = x(2x− (x+ y)) + y2

= |x|(2|x| − d) + (d− |x|)2 = 3x2 − 3d|x|+ d2,

so that

(3) {x, y} =

{
1

2
sgn(k − z3)

(
d±

√
4|k − z3| − d3

3d

)}
.

Thus, given a candidate value for z, there is an effective procedure to find all corre-
sponding values of x and y, by running through all divisors of |k − z3|. Already this
basic algorithm finds all solutions with min{|x|, |y|, |z|} ≤ B in time O(B1+ε), assuming
standard heuristics for the time complexity of integer factorization. In the next section
we explain how to avoid factoring and achieve the same ends more efficiently.

Acknowledgements. I thank Roger Heath-Brown for helpful comments and sugges-
tions.

2. Methodology

For ease of presentation, we will assume that k ≡ ±3 (mod 9); note that this holds
for all k in (2). Since the basic algorithm described above is reasonable for finding small

solutions, we will assume henceforth that |z| >
√
k. Also, if we specialize (1) to solutions

with y = z, then we get the Thue equation x3 + 2y3 = k, which is efficiently solvable.
Using the Thue solver in PARI/GP [The18], we verify that no such solutions exist for
the k in (2). Hence we may further assume that y 6= z.

Since |z| >
√
k ≥ 3
√
k, we have

sgn z = − sgn(k − z3) = − sgn(x3 + y3) = − sgnx.

Likewise, since x3+z3 = k−y3 and |y| ≥ |z|, we have sgn y = − sgnx = sgn z. Multiplying
both sides of (1) by − sgn z, we thus obtain

(4) |x|3 − |y|3 − |z|3 = −k sgn z.

Set α = 3
√

2− 1, and recall that d = |x+ y| = |x| − |y|. If d ≥ α|z| then

−k sgn z = |x|3 − |y|3 − |z|3 ≥ (|y|+ α|z|)3 − |y|3 − |z|3

= 3α(α + 2)(|y| − |z|)z2 + 3α(|y| − |z|)2|z|
≥ 3α(α + 2)|y − z|z2.

Since 3α(α+ 2) > 1, this is incompatible with our assumptions that y 6= z and |z| >
√
k.

Thus we must have 0 < d < α|z|.
Next, reducing (4) modulo 3 and recalling our assumption that k ≡ ±3 (mod 9), we

see that

d = |x| − |y| ≡ |z| (mod 3).

Let ε ∈ {±1} be so that k ≡ 3ε (mod 9). Then, since every cube is congruent to 0 or

±1 (mod 9), we must have x ≡ y ≡ z ≡ ε (mod 3), so that sgn z = ε
(
|z|
3

)
= ε

(
d
3

)
. In

view of (3), we get a solution to (1) if and only if d | z3 − k and 3d(4|z3 − k| − d3) =
3d(4ε

(
d
3

)
(z3 − k)− d3) is a square.
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In summary, to find all solutions to (1) with |x| ≥ |y| ≥ |z| >
√
k, y 6= z and |z| ≤ B,

it suffices to solve the following system for each d ∈ Z ∩ (0, αB) coprime to 3:

(5)

d
3
√

2− 1
< |z| ≤ B, sgn z = ε

(
d

3

)
, z3 ≡ k (mod d),

3d

(
4ε

(
d

3

)
(z3 − k)− d3

)
= �.

Our approach to solving this is straightforward: we work through the values of d
recursively by their prime factorizations, and apply the Chinese remainder theorem to
reduce the solution of z3 ≡ k (mod d) to the case of prime power modulus, to which
standard algorithms apply. Let rd(k) = #{z (mod d) : z3 ≡ k (mod d)} denote the
number of cube roots of k modulo d. By standard analytic estimates, since k is not a
cube, we have ∑

d≤αB

rd(k)�k B.

Heuristically, computing the solutions of z3 ≡ k (mod p) for all primes p ≤ αB can
be done with O(B) arithmetic operations on integers in [0, αB]; see e.g. the algorithm
described in [NZM91, §2.9, Exercise 8]. Assuming this, one can see that with Mont-
gomery’s batch inversion trick [Mon87, §10.3.1], the remaining effort to determine the
roots of z3 ≡ k (mod d) for all positive integers d ≤ αB can again be carried out with
O(B) arithmetic operations.

Thus, we can work out all z satisfying the first line of (5), as a union of arithmetic
progressions, in linear time. To detect solutions to the final line, it is crucial to have
a quick method of determining whether ∆ := 3d

(
4ε
(
d
3

)
(z3 − k)− d3

)
is a square. We

first note that for fixed d this condition reduces to finding an integral point on an elliptic
curve; specifically, writing X = 12d|z| and Y = (6d)2|x− y|, from (3) we see that (X, Y )
lies on the Mordell curve

(6) Y 2 = X3 − 2(6d)3
(
d3 + 4ε

(
d

3

)
k

)
.

Thus, for fixed d there are at most finitely many solutions, and they can be effectively
bounded. For some small values of d it is practical to find all the integral points on
(6) and check whether any yield solutions to (1). For instance, using the integral point
functionality in Magma [BCFS18, §128.2.8], we verified that there are no solutions for k
as in (2) and d ≤ 40, except possibly for (k, d) ∈ {(579, 29), (579, 34), (975, 22)}.

Next we note that some congruence and divisibility constraints come for free:

Lemma. Let z be a solution to (5), let p be a prime number, and set s = ordp d, t =
ordp(z

3 − k). Then:

(i) z ≡ 4
3
k(2− d2) + 9(k + d) (mod 18);

(ii) if p ≡ 2 (mod 3) then t ≤ 3s;
(iii) if t ≤ 3s then s ≡ t (mod 2);
(iv) if ordp k ∈ {1, 2} then s ∈ {0, ordp k}.

3



Proof. Let ∆ = 3d
(
4ε
(
d
3

)
(z3 − k)− d3

)
. Writing δ =

(
d
3

)
, we have |z| ≡ d ≡ δ (mod 3).

Observing that (δ + 3n)3 ≡ δ + 9n (mod 27), modulo 27 we have

∆

3d
= 4εδ(z3 − k)− d3 = 4|z|3 − d3 − 4εδk

≡ 4[δ + 3(|z| − δ)]− [δ + 3(d− δ)]− 4εδk = 3(4|z| − d)− δ[18 + 4(εk − 3)]

≡ 3(4|z| − d)− d[18 + 4(εk − 3)] = 12|z| − 9d− 4εdk

≡ 3|z| − 4εdk.

This vanishes modulo 9, so in order for ∆ to be a square, it must vanish mod 27 as well.
Hence

z = εδ|z| ≡ 4δdk

3
≡ 4(2− d2)k

3
(mod 9).

Reducing (1) modulo 2 we see that z ≡ k + d (mod 2), and this yields (i).
Next set u = p−sd and v = p−tεδ(z3 − k), so that

∆ = 3
(
4ps+tuv − p4su4

)
.

If 3s < t then p−4s∆ ≡ −3u4 (mod 4p), but this is impossible when p ≡ 2 (mod 3), since
−3 is not a square modulo 4p. Hence we must have t ≤ 3s in that case.

Next suppose that t ≤ 3s. We consider the following cases, which cover all possibilities:

• If p = 3 then s = t = 0, so s ≡ t (mod 2).
• If p 6= 3 and 3s > t+ 2 ordp 2 then ordp ∆ = s+ t+ 2 ordp 2, so s ≡ t (mod 2).
• If 3s ∈ {t, t+ 2} then s ≡ t (mod 2).
• If p = 2 and 3s = t + 1 then 2−4s∆ = 3

(
2uv − u4

)
≡ 3 (mod 4), which is

impossible.

Thus, in any case we conclude that s ≡ t (mod 2).
Finally, suppose that p | k and p3 - k. If s = 0 then there is nothing to prove, so

assume otherwise. Since d | z3 − k, we must have p | z, whence

0 < s ≤ t = ordp(z
3 − k) = ordp k < 3s.

By part (iii) it follows that s ≡ ordp k (mod 2), and thus s = ordp k. �

Thus, once the residue class of z (mod d) is fixed, its residue modulo lcm(d, 18) is
determined. Note also that conditions (ii) and (iii) are efficient to test for p = 2.

However, even with these optimizations there are � B logB pairs d, z satisfying
the first line of (5) and conclusions (i) and (iv) of the lemma. To achieve better
than O(B logB) running time therefore requires eliminating some values of z from the
start. We accomplish this with a standard time-space tradeoff. To be precise, set
P = 3(log logB)(log log logB), and let M =

∏
5≤p≤P p be the product of primes in

the interval [5, P ]. By the prime number theorem, we have logM = (1 + o(1))P . If ∆ is
a square, then for any prime p |M we have

(7)

(
∆

p

)
=

(
3d

p

)(
|z|3 − c

p

)
∈ {0, 1},

where c ≡ ε
(
d
3

)
k + d3

4
(mod M). When lcm(d, 18) ≤ αB/M , we first compute this

function for every residue class |z| (mod M), and select only those residues for which (7)
holds for every p |M . By Hasse’s bound, the number of permissible residues is at most

M

2ω(M/(M,d))

∏
p| M

(M,d)

(
1 +O

(
1
√
p

))
=

M

2ω(M/(M,d))
eO(
√
P/ logP ),
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and thus the total number of z values to consider is at most∑
lcm(d,18)≤αB

M

rd(k)

[
M +

eO(
√
P/ logP )

2ω(M/(M,d))

αB

d

]
+

∑
d≤αB

lcm(d,18)>αB
M

rd(k)αB

d

�k B logM +
eO(
√
P/ logP )

2ω(M)

∑
g|M

2ω(g)rg(k)

g

∑
d′≤ αB

9gM

rd′(k)αB

d′

�k B logM +B logB
eO(
√
P/ logP )

2ω(M)

∏
p|M

(
1 +

2rp(k)

p

)
� BP +

B logB

2(1+o(1))P/ logP
� B(log logB)(log log logB).

For the z that are not eliminated in this way, we follow a similar strategy with a few
other auxiliary moduli M ′ composed of larger primes, in order to accelerate the square
testing. We precompute tables of cubes modulo M ′ and Legendre symbols modulo p |M ′,
so that testing (7) is reduced to table lookups. Only when all of these tests pass do we
compute ∆ in multi-precision arithmetic [Gt16] and apply a general square test, and this
happens for a vanishingly small proportion of candidate values. In fact we expect the
number of Legendre tests to be bounded on average, so in total, finding all solutions with
|z| ≤ B should require no more than Ok

(
B(log logB)(log log logB)

)
table lookups and

arithmetic operations on integers in [0, B].
Thus, when B fits within the machine word size, we expect the running time to be

nearly linear, and this is what we observe in practice for B < 264.

3. Implementation

We implemented the above algorithm in C, with a few inline assembly routines for
Montgomery arithmetic [Mon85] written by Ben Buhrow [Buh19], and Kim Walisch’s
primesieve library [Wal19] for enumerating prime numbers.

The algorithm is naturally split between values of d with a prime factor exceeding√
αB and those that are

√
αB-smooth. The former set of d consumes more than two-

thirds of the running time, but is more easily parallelized. We ran this part on the
massively parallel cluster Bluecrystal Phase 3 at the Advanced Computing Research
Centre, University of Bristol. For the smooth d we used a separate small cluster of 32-
and 64-core nodes.

We searched for solutions to (1) for k ∈ {33, 42} and min{|x|, |y|, |z|} ≤ 1016, and
found the following:

33 = 8 866 128 975 287 5283 + (−8 778 405 442 862 239)3 + (−2 736 111 468 807 040)3.

We also searched for solutions for k = 3, addressing a question of Mordell [Mor53, §6]. In
this case, Cassels [Cas85] observed that cubic reciprocity forces the additional constraint
x ≡ y ≡ z (mod 9), and it follows that part (i) of the lemma can be upgraded to a
congruence modulo 162:

z ≡ 4

(
d

3

)
d+ 3

(
d2 − 1

)
(mod 162).

Despite this added efficiency, we found no solutions, beyond the known single-digit solu-
tions, with min{|x|, |y|, |z|} ≤ 1016.
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The total computation used approximately 23 core-years over one month of real time.
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