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Abstract. We complete the work of Cogdell and Piatetski-Shapiro [3] to prove, for n ≥ 3, a
converse theorem for automorphic representations of GLn over a number field, with analytic
data from twists by unramified representations of GLn−1.

1. Introduction

In this paper, we complete the work of Cogdell and Piatetski-Shapiro [3] to prove the
following.

Theorem 1.1. Let F be a number field with adèle ring AF . Fix an integer n ≥ 3, and let
π =

⊗
v πv be an irreducible, admissible representation of GLn(AF ) with automorphic central

character. For every unitary, isobaric, automorphic representation τ =
⊗

v τv of GLn−1(AF )
which is unramified at all finite places, assume that the complete Rankin–Selberg L-functions

Λ(s, π × τ) =
∏
v

L(s, πv × τv)

converge absolutely in some right half plane, continue to entire functions of finite order, and
satisfy the functional equation

(1.1) Λ(s, π × τ) = ε(s, π × τ)Λ(1− s, π̃ × τ̃),

where ε(s, π×τ) is the product of the corresponding local ε-factors defined in [7, Thm. 2.7] and
[12]. Then π is quasiautomorphic, in the sense that there is a unique isobaric automorphic
representation Π =

⊗
v Πv of GLn(AF ) such that πv ∼= Πv for all non-archimedean places v

where πv is unramified.

Remarks.

(1) We recall the notion of an isobaric automorphic representation [14]: Given a partition
n1, . . . , nk of n and cuspidal representations σi of GLni(AF ), let P be the correspond-
ing standard parabolic subgroup of GLn and let ωi denote the central character of
σi. Then there is a real number ti such that |ωi(z)| = ‖z‖ti for z in the center of
GLni(AF ). By re-ordering, if necessary, we may assume t1 ≥ . . . ≥ tk, and form glob-

ally the induced representation Υ = Ind
GLn(AF )
P (AF ) (σ1⊗ · · · ⊗ σk). On the other hand, if

σi =
⊗

v σi,v (here and throughout the paper, the symbol
⊗

means a restricted tensor
product with respect to a distinguished set of spherical vectors for almost all places),

we may also form locally the induced representations Υv = Ind
GLn(Fv)
P (Fv) (σ1,v⊗· · ·⊗σk,v)

for each v. (For archimedean v, one has to pass to the smooth completion of σi,v in
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order to form the induced representation Υv; see §3.1 and the references therein for
details.) Then, by definition, σ1,v � · · · � σk,v is the (gv, Kv)-module associated to
the Langlands quotient of Υv. We may also form their (restricted) tensor product
to obtain an automorphic representation of GLn(AF ). This representation, denoted
σ1 � · · ·� σk, is called isobaric, and it satisfies the following properties:
(a) Strong multiplicity one [8]. If n′1, . . . , n

′
l is another partition of n and σ′i, 1 ≤ i ≤

l, are cuspidal representations of GLn′i(AF ) such that

σ1 � · · ·� σk ∼= σ′1 � · · ·� σ′l

then l = k and there is a permutation φ of {1, . . . , k} such that n′i = nφ(i) and
σ′i
∼= σφ(i).

(b) Multiplicativity of local factors. The Rankin–Selberg method [7, 9] of associating
local factors is bi-additive with respect to isobaric sums. In particular, for any
automorphic representation τ =

⊗
v τv of GLn(AF ), one has

L(s, (σ1,v � · · ·� σk,v)× τv) =
k∏
i=1

L(s, σi,v × τv),

ε(s, (σ1,v � · · ·� σk,v)× τv, ψv) =
k∏
i=1

ε(s, σi,v × τv, ψv)

for each v.
We call an isobaric automorphic representation σ = σ1�· · ·�σk unitary if each cus-

pidal representation σi has unitary central character. In this case, for each v, it follows
from the description of the unitary dual of GLn(Fv) [17, 16] that the corresponding

parabolically induced representation Ind
GLn(Fv)
P (Fv) (σ1,v⊗· · ·⊗σk,v) is irreducible, unitary

and generic; therefore, σ is the full induced representation Ind
GLn(AF )
P (AF ) (σ1⊗ · · · ⊗ σk).

(2) The results in [3] are stated in terms of analytic properties of Λ(s, π× τ) for cuspidal
representations τ of GLr(AF ) for all r < n. Our statement in terms of unitary iso-
baric representations of GLn−1(AF ) generalizes this slightly (since one can pass from
cuspidal twists to isobaric twists by multiplying), though as we show in Proposi-
tion 3.1 below, one can derive the properties of the twists by cuspidal representations
of GLr(AF ) from our hypotheses.

Alternatively, one could state the theorem in terms of twists by all unramified,
generic, automorphic subrepresentations τ of GLn−1(AF ), and in fact the proof pro-
ceeds along these lines, i.e. we first derive the properties of such twists from those
for unitary isobaric representations in Proposition 3.1. (Here and throughout the
paper, we say that a global representation or idèle class character is unramified if it
is unramified at every finite place.)

(3) Note that the local constituents πv are not assumed to be generic. If they happen
to be generic for all v then, following the proof of [3, §7, Cor. 2], one can modify
the argument to produce a unique generic (but not necessarily isobaric) automorphic
representation Π such that Πv

∼= πv for all unramified v. In this case, we also obtain
Πv
∼= πv for all archimedean v.
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Our proof closely follows the method of Cogdell and Piatetski-Shapiro, who established
a version of Theorem 1.1 (cf. [3, Thm. 3]) under the assumption that F has class number
1. In fact, in full generality, their method exhibits a classical automorphic form (i.e. at the
archimedean places) with the expected properties, but they encountered some combinatorial
difficulties in relating it back to the representation π (via Hecke eigenvalues), and were only
able to overcome them under the class number assumption. Our proof avoids attacking the
combinatorics directly; rather, we rely on the classical fact, due to Harish-Chandra, that any
K-finite, Z-finite, automorphic form is a finite linear combination of Hecke eigenforms, from
which we realize the L-function of π as a linear combination of automorphic L-functions.
The final ingredient is multiplicativity—since each of the L-functions in question is given by
an Euler product, only the trivial linear relation is possible. To make this precise, we adapt
work of Kaczorowski, Molteni and Perelli [13] on linear independence in the Selberg class,
generalizing it to number fields.
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tute for Mathematical Sciences (Kyoto, Japan), and the second author to the Tata Institute
of Fundamental Research (Mumbai, India). We thank these institutions and our hosts, Pro-
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for suggesting the use of isobaric representations. Finally, we thank the anonymous referee
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2. Preliminaries

Suppose F is a number field with ring of integers oF . For each place v of F , let Fv denote
the completion of F at v. For finite v, let ov denote the ring of integers in Fv, pv the unique
maximal ideal in ov, qv the cardinality of ov/pv, and $v a generator of pv with absolute value
‖$v‖v = q−1

v . Put F∞ =
∏

v|∞ Fv, and let AF = F∞ × AF,f denote the ring of adèles of F .
Recall that a Größencharakter of conductor q is a multiplicative function χ of non-zero

integral ideals satisfying χ(aoF ) = χf (a)χ∞(a) for associated characters χf : (oF/q)× → C×
and χ∞ : F×∞ → C×, with χf primitive and χ∞ continuous, and all a ∈ oF relatively prime
to q. By convention we set χ(a) = 0 for any ideal a with (a, q) 6= 1. The Größencharakters
are in one-to-one correspondence with idèle class characters ω : F×\A×F → C×, and the
correspondence is such that χ∞ = ω−1

∞ and χ(pv∩oF ) = ω($v) at each finite place v co-prime
to q. For any idèle class character ω, we write χω to denote the associated Größencharakter.

For any r > 1 and any commutative ring R, let Br(R) = Tr(R)Ur(R) ⊂ GLr(R) be
the Borel subgroup of upper triangular matrices, P ′r(R) the parabolic subgroup of type
(r−1, 1), and Nr(R) its unipotent radical. Let Pr(R) ⊂ P ′r(R) denote the mirabolic subgroup
consisting of matrices whose last row is of the form (0, . . . , 0, 1), i.e.

Pr(R) =

{(
h y

1

)
: h ∈ GLr−1(R), y ∈ Rr−1

}
∼= GLr−1(R) nNr(R).

Let wr denote the long Weyl element in GLr(R), and put αr = ( wr−1

1 ).
3



From now on, we fix an integer n ≥ 3 and consider GLn along with certain distinguished
subgroups. For each v < ∞, we will consider certain compact open subgroups of GLn(Fv);
namely, let Kv = GLn(ov), and for any integer m ≥ 0, set

K1,v(p
m
v ) =

{
g ∈ GLn(ov) : g ≡

( ∗

∗
...
∗

0 ··· 0 1

)
(mod pmv )

}
,

K0,v(p
m
v ) =

{
g ∈ GLn(ov) : g ≡

( ∗

∗
...
∗

0 ··· 0 ∗

)
(mod pmv )

}
,

so that K1,v(p
m
v ) is a normal subgroup of K0,v(p

m
v ), with quotient K0,v(p

m
v )/K1,v(p

m
v ) ∼=

(ov/p
m
v )×. Next, define Kf =

∏
v<∞Kv, and for an integral ideal a of F , set

Ki(a) =
∏
v<∞

Ki,v(p
mv
v ) for i = 0, 1,

where mv are the unique non-negative integers such that a =
∏

v(pv ∩ oF )mv . Then K1(a) ⊆
K0(a) ⊆ Kf are compact open subgroups of GLn(AF,f ). We consider also the corresponding
principal congruence subgroups of GLn(F∞), embedded diagonally, namely,

Γi(a) = {γ ∈ GLn(F ) : γf ∈ Ki(a)} ⊂ GLn(F∞) for i = 0, 1,

where γf denotes the image of γ in GLn(AF,f ).
From strong approximation for GLn, one knows that GLn(F )\GLn(AF )/GLn(F∞)K1(a)

is finite, with cardinality h, the class number of F . Let us write

GLn(AF ) =
h∐
j=1

GLn(F )gj GLn(F∞)K1(a),

where each gj ∈ GLn(AF,f ). In particular,

GLn(F )\GLn(AF )/K1(a) ∼=
h∐
j=1

Γ1,j(a)\GLn(F∞),

where Γ1,j(a) = {γ ∈ GLn(F ) : γf ∈ gjK1(a)g−1
j } ⊂ GLn(F∞), embedded diagonally.

Replacing K1(a) by K0(a) in this definition, we get the corresponding groups Γ0,j(a).
For groups H ⊆ G, let F(H\G) denote the vector space of all complex-valued functions

f : G→ C that are left invariant under H. Further, for any subgroup L ⊆ G, let F(H\G)L

denote the subspace of right L-invariant functions in F(H\G). Then we have an isomorphism
of vector spaces

(2.1) F(GLn(F )\GLn(AF ))K1(a) ∼=
h∐
j=1

F(Γ1,j(a)\GLn(F∞))

given by f 7→ (fj), where fj(x) = f(xgj) for x ∈ GLn(F∞).

3. The method of Cogdell and Piatetski-Shapiro

3.1. Initial setup. For convenience, we write G∞ to denote the group GLn(F∞). Let g∞
be the real Lie algebra of G∞, and let U denote the universal enveloping algebra of its
complexification, gC∞. Let K∞ =

∏
v|∞Kv, which is a maximal compact subgroup of G∞. If
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S is a finite set of places of F , we write AS
F to denote the restricted product

∏′
v/∈S Fv and

GS = GLn(AS
F ) =

∏′
v/∈S GLn(Fv).

Let us recall the notion of a (smooth) GLn(AF )-module, which is a complex vector space X
equipped with an action of U , K∞, and GLn(AF,f ) satisfying the following usual conditions:

(1) the actions of U and K∞ commute with that of GLn(AF,f );
(2) each u ∈ X is fixed by some compact open subgroup of GLn(AF,f );
(3) X has the structure of a (g∞, K∞)-module under the actions of U and K∞.

Suppose δ is an irreducible representation of K∞ and H is any compact open subgroup of
GLn(AF,f ). Let X(δ,H) denote the subspace consisting of elements in X which are fixed by
H and of isotypic type δ. For ∆ a finite collection of irreducible representations of K∞, let
X(∆, H) =

∑
δ∈∆X(δ,H). Then X is said to be admissible if X(∆, H) is finite dimensional

for every ∆ and H. We will also use the notation XH to denote the subspace of H-fixed
vectors in X.

For each place v, let Hv denote the Hecke algebra of GLn(Fv) (defined with respect to
Kv for v | ∞), and let ∗ denote the multiplication operation in Hv. Set H∞ =

⊗
v|∞Hv

and Hf =
⊗

v<∞Hv, so that the global Hecke algebra H satisfies H = H∞ ⊗Hf . Given a
smooth GLn(AF )-module X as above, it inherits an action of the Hecke algebra Hv for each
v and hence becomes a module for H. It is well known that a smooth irreducible admissible
GLn(AF )-module is factorizable in the sense of [5, Thm. 3]. As is customary, by a smooth
irreducible admissible representation of GLn(AF ) we mean a smooth irreducible admissible
GLn(AF )-module.

Now, let π =
⊗

v πv be an irreducible, admissible representation of GLn(AF ) with au-
tomorphic central character ωπ, as in the statement of Theorem 1.1. We fix an additive
character ψ =

⊗
v ψv of F\AF whose conductor is the inverse different d−1 of F . For each v,

let Ξv be the induced representation of “Langlands type” having πv as the unique irreducible
quotient [7, 9]. For v | ∞, by definition, Ξv is actually a smooth admissible representation
of GLn(Fv) of moderate growth and πv is the underlying (gv, Kv)-module, also known as the
Harish-Chandra module, of the unique irreducible quotient of Ξv. Each Ξv is an induced
representation of Whittaker type in the sense of [3, p. 159], also called a generic induced
representation [9, p. 4]. In particular, Ξv is admissible of finite type and admits a non-zero
ψv-Whittaker form which is unique up to scalar factor. In general, such a representation is
said to be of Whittaker type. It should be noted that any constituent of Ξv has the same
central character as that of πv.

For any representation τv of Whittaker type, we write W(τv, ψv) to denote its Whittaker
model with respect to ψv [7, 9]. An important feature of the Ξv defined in the previous
paragraph is that, although it may not be irreducible, the usual map f 7→ Wf from its
space to W(Ξv, ψv) is bijective [11, 9]. The local factors associated to πv (not necessarily
generic) are then defined via integral representations using the Whittaker model of Ξv. More
precisely, by definition (cf. [7, 9]), for every representation τv of GLr(Fv) that is induced of
Whittaker type one has

L(s, πv × τv) = L(s,Ξv × τv),
with a similar equality for the local ε-factors.

In the following two paragraphs, we rely heavily on [9] and refer the reader to that paper for
any unexplained notation or terminology. For a fixed v | ∞, suppose V is the representation
space of Ξv, let V0 ⊂ V be the unique minimal invariant subspace which is generic, and let π′v
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be the corresponding underlying Harish-Chandra module. By [9, Lemma 2.4], any non-zero
ψv-form λ on V will restrict to a non-zero ψv-form on V0. Therefore, for any generic induced
representation τv of GLn−1(Fv), the family of integrals defining L(s, π′v × τv) is a subspace
of those defining L(s,Ξv × τv). By passing to the projective tensor product and applying [9,
Thm. 2.6], we see that the factor L(s, π′v × τv) is equal to an integral of the form∫

W
[(

g 0
0 1

)
, g
]
‖ det g‖s−

1
2

v dg,

where W corresponds to a smooth vector in the projective completion of the representation
π′v ⊗ τv.

Then, by continuity and using the extension of [9, Prop. 11.1] to the complete tensor
product (see §12.3 of loc. cit.), we see that L(s, π′v × τv) must be a holomorphic multiple of
L(s, πv × τv). Let us realize π′v (in the above sense) as the Langlands quotient of an induced
representation (Ξ′v, V

′) of Langlands type. Then, it follows from [9, Lemma 2.5] that Ξ′v is
irreducible and consequently π′v is the Harish-Chandra module of Ξ′v. Now, as in [9, §11],
(Ξv, V ) (and hence (Ξ′v, V

′)) is a subrepresentation of a principal series representation Iµ,t,
where µ is an n-tuple of characters and t is an n-tuple of complex numbers. Similarly, τv is a
subrepresentation of an Iµ′,t′ . Then, from the proof of Proposition 11.1 of loc. cit., it follows
that both L(s, π′v × τv) and L(s, πv × τv) are polynomial multiples of∏

i,j

L(s+ ti + t′j, µiµ
′
j).

Thus L(s, π′v × τv) is a rational multiple of L(s, πv × τv). Since it is a holomorphic multiple
as well, we conclude that

(3.1) L(s, π′v × τv) = f(s)L(s, πv × τv),

where f(s) is a polynomial. Finally, it also follows from loc. cit. that the γ-factors associated
with the pairs (πv, τv) and (π′v, τv), respectively, are the same.

Now, let π′ =
⊗

v|∞ π
′
v ⊗

⊗
v<∞ πv, which is an irreducible admissible representation of

GLn(AF ) with the same central character as π. Suppose τ is a unitary isobaric automorphic
representation of GLn−1(AF ). As noted in the remarks following Theorem 1.1, τv is a generic
induced representation for each v | ∞, so it follows from the above that Λ(s, π′ × τ) =
P (s)Λ(s, π × τ) for some polynomial P (s). Further,

γ(s, π′ × τ) :=
ε(s, π′ × τ)Λ(1− s, π̃′ × τ̃)

Λ(s, π′ × τ)

=
∏
v|∞

γ(s, π′v × τv, ψv)
∏
v<∞

ε(s, π′v × τv, ψv) ·
L(1− s, π̃′ × τ̃)

L(s, π′ × τ)

=
∏
v|∞

γ(s, πv × τv, ψv)
∏
v<∞

ε(s, πv × τv, ψv) ·
L(1− s, π̃ × τ̃)

L(s, π × τ)

= γ(s, π × τ).

Since γ(s, π × τ) = 1 identically if and only if Λ(s, π × τ) satisfies the functional equation
(1.1), the functional equation for Λ(s, π′×τ) is equivalent to that of Λ(s, π×τ). In summary,
π′ satisfies the hypotheses of Theorem 1.1 if π does. The representation π′ has the added
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feature that its archimedean local components have a Whittaker model, and if πv is generic
for all v | ∞ to begin with then π = π′.

In general, we may replace π by π′, and assume without loss of generality that πv is generic
for all archimedean v, at the expense of losing compatibility between πv and Πv for those v.
In [3], the authors work with the full induced representation Ξv instead of πv at archimedean
places, but we have made the above modification in order to preserve irreducibility, which is
essential in Lemma 3.4 (see §3.4 below).

Next, for v < ∞, choose ξ0
v in the space of Ξv as in [3, p. 203]. In particular, for v < ∞

where πv (and hence Ξv) is unramified, ξ0
v is the unique Kv-fixed vector that projects onto the

distinguished spherical vector of πv. For v <∞ where πv is ramified, the choice of ξ0
v is such

that it is fixed by K1,v(p
mv
v ) for some mv > 0. Set n =

∏
v<∞(pv∩oF )mv . We note that when

π is generic, we may choose each ξ0
v to be the essential vector [6, 10] and n to be the conductor

of π. At any rate, for v < ∞ where πv is unramified, and τv any unramified representation
of GLn−1(Fv) of Langlands type with normalized spherical function W 0

τv ∈ W(τv, ψ
−1
v ), one

has (cf. [8, §1, (3)])

(3.2)

∫
Un−1(Fv)\GLn−1(Fv)

Wξ0v

(
g

1

)
W 0
τv(g)‖ det g‖s−

1
2

v dg = L(s, πv × τv).

As pointed out in [10, Remark 2] as well as in [15, §1.5], the above equality is derived
for generic unramified representations in [8] but the proof extends verbatim to unramified
representations of Langlands type.

3.2. The functions Uξ and Vξ. In this subsection, we summarize the construction in [3]
of the functions Uξ and Vξ associated to π, and describe their properties, culminating in the
identity given in Proposition 3.1; we defer to [3] for detailed proofs.

First note that if we take τ to be the isobaric sum of n− 1 copies of the trivial character
then, by hypothesis, the product

∏
v L(s, πv × τv) converges absolutely for s in a right half

plane. For each v, let πv � τv denote the functorial tensor product defined via the local
Langlands correspondence. For an unramified finite place v, let αv,1, . . . , αv,n denote the
Satake parameters of πv. Then πv � τv has the same parameters, repeated with multiplicity
n − 1. Applying [3, Lemma 2.2] to the representation π � τ =

⊗
v(πv � τv), we obtain an

estimate of the form αv,i = O(qσv ) for some σ ∈ R. Hence, the Euler product defining the
standard L-function,

∏
v L(s, πv), also converges absolutely for s in a right half plane, which

is the form that this hypothesis takes in [3].
Next, as discussed in [3, §8], ωπ determines a character χπ =

⊗
v χπv of K0(n) which is

trivial on K1(n). Moreover, it follows from loc. cit. that K0(n) acts on the space of K1(n)-
fixed vectors via χπ. In particular, for v <∞ and g ∈ K0,v(p

mv
v ), we have

Ξv(g)ξ0
v = χπv(g)ξ0

v .

Let Vπ∞ denote the space of π∞, and fix a ξ∞ =
⊗

v|∞ ξv ∈ Vπ∞ . Let ξ = ξ∞ ⊗ ξ0
f , where

ξ0
f =

⊗
v<∞ ξ

0
v , and consider

Uξ(g) =
∑

γ∈Un(F )\Pn(F )

Wξ(γg) =
∑

γ∈Un−1(F )\GLn−1(F )

Wξ

((
γ

1

)
g

)
.

This sum converges absolutely and uniformly on compact subsets to a continuous function
on GLn(AF ) which is cuspidal along the unipotent radical of any standard maximal parabolic
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subgroup of GLn(AF ). Since ωπ is assumed to be automorphic, as a function of GLn(AF ),
Uξ is left invariant under both Pn(F ) and the center Zn(F ).

We also consider a second function Vξ attached to ξ, which will be related to Uξ through

the functional equation. Namely, let W̃ξ(g) = Wξ(wn
tg−1), put

Ũξ(g) =
∑

γ∈Un(F )\Pn(F )

W̃ξ(γg),

and define Vξ(g) = Ũξ(αn
tg−1), where αn = ( wn−1

1 ), as defined in §2. In other words,

Vξ(g) =
∑

γ∈Un(F )\Pn(F )

W̃ξ(γαn
tg−1) =

∑
γ∈Un−1(F )\GLn−1(F )

W̃ξ

((
γ

1

)
αn

tg−1

)
.

Hence, if Qn = tP−1
n , then Vξ(g) is invariant on the left by both Qn(F ) and Zn(F ).

We record another formula for Vξ(g) which shows that it agrees with the definition given
in [3]. By definition, since tα−1

n = αn, we have

Vξ(g) =
∑

γ∈Un(F )\Pn(F )

W̃ξ(γαn
tg−1) =

∑
γ∈Un−1(F )\GLn−1(F )

Wξ

(
wn

(
tγ−1

1

)
αng

)

=
∑

γ∈Un−1(F )\GLn−1(F )

Wξ

(
wnαn

(
w−1
n−1

tγ−1wn−1

1

)
g

)

=
∑

γ∈Un−1(F )\GLn−1(F )

Wξ

(
wnαn

(
γ

1

)
g

)
.

Here, the last equality follows since the transformation γ 7→ wn−1
tγ−1w−1

n−1 permutes the set
of right cosets Un−1(F )γ in GLn−1(F ). Thus,

Vξ(g) =
∑

γ∈Un−1(F )\GLn−1(F )

Wξ

(
α′n

(
γ

1

)
g

)
,

where α′n =
(

1
In−1

)
.

Now, let τ be an automorphic subrepresentation of GLn−1(AF ), and let φ be an automor-
phic form in the space of τ . Suppose τ ∼=

⊗
v τv and φ corresponds to a pure tensor

⊗
v φv

under this isomorphism. Let

I(s;Uξ, φ) =

∫
GLn−1(F )\GLn−1(AF )

Uξ

(
h

1

)
φ(h)‖ deth‖s−

1
2 dh.

The above integral is absolutely convergent for <(s) � 1 and if τ is cuspidal, it converges
for all s. Further, the integral unfolds to give

(3.3)

I(s;Uξ, φ) =

∫
Un−1(AF )\GLn−1(AF )

Wξ

(
h

1

)
Wφ(h)‖ deth‖s−

1
2 dh

=
∏
v

∫
Un−1(Fv)\GLn−1(Fv)

Wξv

(
hv

1

)
Wφv(hv)‖ dethv‖

s− 1
2

v dhv

=
∏
v

Ψv(s;Wξv ,Wφv),
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where Wφ(h) =
∫
Un−1(F )\Un−1(AF )

φ(nh)ψ(n) dn, i.e. Wφ ∈ W(τ, ψ−1). In particular, the

integral vanishes unless τ is generic. Further, from the theory of local L-functions [7, 9],

Ev(s) =
Ψv(s;Wξv ,Wφv)

L(s, πv × τv)

is entire for all v. If v is non-archimedean then Ev(s) ∈ C[qsv, q
−s
v ], and for almost all such v

we have Ev(s) = 1. Thus, setting E(s) =
∏

v Ev(s), we have

I(s;Uξ, φ) = E(s)
∏
v

L(s, πv × τv).

Similarly, we define the integral

I(s;Vξ, φ) =

∫
GLn−1(F )\GLn−1(AF )

Vξ

(
h

1

)
φ(h)‖ deth‖s−

1
2 dh,

which converges for −<(s)� 1. If we unfold this integral, we get

I(s;Vξ, φ) =

∫
Un−1(AF )\GLn−1(AF )

W̃ξ

(
h

1

)
W̃φ(h)‖ deth‖

1
2
−s dh

=
∏
v

∫
Un−1(Fv)\GLn−1(Fv)

W̃ξv

(
hv

1

)
W̃φv(hv)‖ dethv‖

1
2
−s

v dhv

=
∏
v

Ψv(1− s; W̃ξv , W̃φv),

where W̃φ(h) = Wφ(wn−1
th−1). In passing, we mention that this is the ψ-Whittaker coeffi-

cient of the dual function φ̃(h) = φ(wn−1
th−1), i.e. W̃φ(h) =

∫
Un−1(F )\Un−1(AF )

φ̃(uh)ψ−1(u) du.

Now, for every v, just as we defined Ev(s), let

Ẽv(s) =
Ψv(s; W̃ξv , W̃φv)

L(s, π̃v × τ̃v)

denote the corresponding entire function attached to the pair of dual representations (π̃v, τ̃v).
Then

I(s;Vξ, φ) = Ẽ(1− s)
∏
v

L(1− s, π̃v × τ̃v),

where Ẽ(s) =
∏

v Ẽv(s).
Hence the two integrals I(s;Uξ, φ) and I(s;Vξ, φ) continue to meromorphic or analytic

functions of s if the respective L-functions Λ(s, π× τ) and Λ(1− s, π̃× τ̃) do. In addition, if
these L-functions satisfy the standard functional equation, together with the local functional
equation (cf. [3, p. 169]), it follows that the two analytically-continued integrals are in fact
equal.

In what follows, we abuse notation and identify GLn−1 with its image in Pn via the
embedding h 7→ ( h 1 ). We now prove a slight generalization of [3, Prop. 10.2]:

Proposition 3.1. We have Uξ(g) = Vξ(g) for all g ∈ GLn(F∞) GLn−1(AF )Zn(AF )K0(n).
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Proof. Since K0(n) (resp. Zn(AF )) acts on ξ0
f (resp. ξ∞ ⊗ ξ0

f ) through the central character,
it is sufficient to prove the identity for g ∈ GLn(F∞) GLn−1(AF ). First, we prove it for g ∈
GLn−1(AF ). As in the proof of [3, Prop. 10.2], this follows from the Langlands spectral theory,
provided that one knows the expected analytic properties of Λ(s, π × τ) for all unramified,
generic, automorphic subrepresentations τ of GLn−1(AF ). Here we only assume these for
unitary isobaric representations. Our proof proceeds by passing from unitary to non-unitary
isobaric representations, and then to generic subrepresentations.

To that end, we first take τ1 to be the isobaric sum of n − 1 trivial characters, so that
Λ(s, τ1) = ξF (s)n−1, where ξF (s) is the complete Dedekind zeta-function, and Λ(s, π× τ1) =
Λ(s, π)n−1. (This follows from the multiplicativity property in Remark 1, which will be put
to repeated use throughout this proof without further mention.) Thus, by our hypotheses,
Λ(s, π)n−1 continues to an entire function of finite order and does not vanish identically.
Hence,

Λ′

Λ
(s, π) =

1

n− 1

d

ds
log
(
Λ(s, π)n−1

)
has meromorphic continuation to C.

Next, we take τ2 to be the isobaric sum of one trivial character and n − 2 copies of the
character ‖ · ‖it for a fixed t ∈ R, so that Λ(s, τ2) = ξF (s)ξF (s + it)n−2 and Λ(s, π × τ2) =
Λ(s, π)Λ(s+ it, π)n−2. Then as above we find that

Λ′

Λ
(s, π) + (n− 2)

Λ′

Λ
(s+ it, π)

has meromorphic continuation to C and has non-negative integral residues at every point.
Now, since Λ′

Λ
(s, π) has at most countably many poles, there exists t ∈ R such that Λ′

Λ
(s+it, π)

and Λ′

Λ
(s, π) have no poles in common. Hence, Λ′

Λ
(s, π) has non-negative integral residues,

and therefore Λ(s, π) continues to an entire function. Moreover, from the functional equation

Λ(s, π)n−1 = Λ(s, π × τ1) = ε(s, π × τ1)Λ(1− s, π̃ × τ̃1) = ε(s, π)n−1Λ(1− s, π̃)n−1,

we derive
Λ(s, π) = µε(s, π)Λ(1− s, π̃),

where µ is an (n−1)st root of unity (which may depend on π), and similarly the finite order
of Λ(s, π) follows from that of Λ(s, π)n−1.

Now, let σ be an unramified unitary cuspidal representation of GLr(AF ) for some r < n,
and let τ3 be the isobaric sum of σ and n − 1 − r copies of ‖ · ‖it for t ∈ R. Then arguing
as above we see that Λ(s, π× σ) continues to an entire function of finite order, and from the
functional equations for Λ(s, π × τ3) and Λ(s, π), we derive

Λ(s, π × σ) = µrε(s, π × σ)Λ(1− s, π̃ × σ̃).

Since every cuspidal representation is unitary up to twisting by a power of the determinant,
by shifting s in this equation by a real displacement, we conclude the same properties of
Λ(s, π × σ) for every cuspidal representation σ, not necessarily unitary.

For i = 1, . . . , k, let σi be an unramified (not necessarily unitary) cuspidal representation
of GLri(AF ), assume that r1 + . . . + rk = n − 1, and put τ = σ1 � · · · � σk. Then by the
above we see that Λ(s, π× τ) continues to an entire function of finite order and satisfies the
functional equation

Λ(s, π× τ) = µr1+...+rkε(s, π× σ1) · · · ε(s, π× σk)Λ(1− s, π̃× τ̃) = ε(s, π× τ)Λ(1− s, π̃× τ̃).
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Now let τ ′ be an unramified, generic, automorphic subrepresentation of GLn−1(AF ). By
Langlands’ classification, it can be realized as a subquotient of an induced (parabolic) rep-

resentation of the form Ind
GLn−1(AF )
P (σ1 ⊗ · · · ⊗ σk) for some cuspidal automorphic represen-

tations σi. Since τ ′ is a subrepresentation to begin with, as explained in the proof of [3,
Prop. 6.1], it is in fact a subrepresentation of the induced representation. Now, at a finite
place v where τ ′v is unramified, by [3, p. 201, proof of Prop. 10.5] τ ′v is the full induced
representation; in particular, τ ′v = τv, where τ is the isobaric sum σ1 � · · · � σk. This need
not be the case at archimedean places, but by the argument leading up to (3.1) (with the
roles of π and τ reversed), we see that L(s, πv × τ ′v) is a polynomial multiple of L(s, πv × τv)
and that the corresponding local γ-factors are the same. Thus, the analytic properties of
Λ(s, π × τ ′) follow from those of Λ(s, π × τ).

It remains to prove the assertion for any g = (g∞, gf ) with g∞ ∈ GLn(F∞), gf =
(
g′f

1

)
,

g′f ∈ GLn−1(AF,f ). To this end, let Fξ∞ = Uξ − Vξ, where ξ = ξ∞ ⊗ ξ0
f . Then we have

Fξ∞((1, gf )) = 0 from the above conclusion. In other words, the linear functional on Vπ∞
given by

ξ∞ 7→ Fξ∞((1, gf ))

is trivial. Since ξ∞ 7→ Wξ∞ is continuous on the Casselman–Wallach completion of Vπ∞
and the K∞-finite vectors are dense in this completion, it follows that Fξ∞((1, gf )) = 0 for
all smooth vectors ξ∞. Finally, fixing a pure tensor ξ∞ in Vπ∞ as in the statement of the
Proposition, we have Fξ∞(g) = Fg∞·ξ∞((1, gf )) = 0. �

3.3. Congruence subgroups and classical automorphic forms. Let {t1, . . . , th} ⊂ A×F,f
be a set of representatives for the ideal class group of F , with t1 = 1, and let aj denote
the ideal generated by tj, which we assume to be integral. Put gj = diag(tj, 1, . . . , 1) ∈
GLn(AF,f ). For ξ∞ ∈ Vπ∞ , we associate the h-tuple of functions (Φξ∞,1, . . . ,Φξ∞,h) given by

Φξ∞,j(g) = Uξ∞⊗ξ0f ((g, gj)) = Vξ∞⊗ξ0f ((g, gj)) for g ∈ GLn(F∞).

In the notation of §2, for j = 1, . . . , h, let us set Gj = Γ1,j(oF ) = Γ0,j(oF ). In concrete
terms,

Gj =

γ ∈
 ∗ aj ··· aj

a−1
j

... ∗
a−1
j

 : det γ ∈ o×F

 .

For each j, Γ1,j(n) ⊆ Γ0,j(n) are then subgroups of Gj. For instance, if γ = (γkl) ∈ Γ1,j(n),
then the congruence condition on its last row is given by

γn1 ∈ na−1
j , γn2 ∈ n, . . . , γnn − 1 ∈ n.

Now, for i = 0, 1, j = 1, . . . , h, let

ΓPi,j(n) = Zn(F )Pn(F ) ∩GLn(F∞)gjKi(n)g−1
j ,

ΓQi,j(n) = Zn(F )Qn(F ) ∩GLn(F∞)gjKi(n)g−1
j ,

which are subgroups of Γi,j(n) ⊆ Gj ⊂ GLn(F∞). Since the functions Uξ∞⊗ξ0f and Vξ∞⊗ξ0f are

left invariant under Zn(F )Pn(F ) and Zn(F )Qn(F ), respectively, and ξ0
f is fixed by K1(n),

we see that Φξ∞,j is invariant on the left by both ΓP1,j(n) and ΓQ1,j(n) for j = 1, . . . , h. We
now need the following result, generalizing [3, Prop. 9.1].
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Proposition 3.2. For j = 1, . . . , h, the groups ΓP1,j(n) and ΓQ1,j(n) together generate the
congruence subgroup Γ1,j(n).

Proof. Let γ ∈ Γ1,j(n) be a typical element, and let (a1, . . . , an) be its bottom row. Recall
that det γ is a unit in oF . Expanding the determinant along the bottom row, we find that

1 =
n∑
i=1

ciai

for some c1 ∈ aj, c2, . . . , cn ∈ oF . In particular, (c1a1, a2, . . . , an) ∈ onF is unimodular.
Since n ≥ 3, it follows from the Bass stable range theorem [1, Thm. 11.1] that there are
b2, . . . , bn ∈ oF such that if a′i = ai + bic1a1 then (a′2, . . . , a

′
n) is unimodular. Put

σ =

(
1 b2c1 ··· bnc1

1
. . .

1

)
,

so that σ ∈ ΓP1,j(n) and (a1, . . . , an)σ = (a1, a
′
2, . . . , a

′
n). Hence, replacing γ by γσ if necessary,

we may assume without loss of generality that (a2, . . . , an) is unimodular.
Next let m = a2oF + . . . + an−1oF , so that m + anoF = oF . In particular, if m is the zero

ideal then an is a unit; but then right-multiplying by the matrix

τ =

 1
1
. . .

1
−a1a−1

n 0 ··· 0 a−1
n

 ∈ ΓQ1,j(n)

reduces the bottom row of γ to (0, . . . , 0, 1), so that γτ ∈ ΓP1,j(n), and we are finished. Hence,
we may assume that m is non-zero.

Choose y1 ∈ aj \
⋃

p⊇m paj and z ∈ a−1
j \

⋃
p⊇m pa−1

j . Then zy1 ∈ oF is invertible modulo

m. Let z′ ∈ oF be a multiplicative inverse of zy1 (mod m), and set u1 = zz′ ∈ a−1
j , so that

u1y1 ≡ 1 (mod m). Further, since a−1
j aj = oF , there are elements u2, . . . , uK ∈ a−1

j and

v2, . . . , vK ∈ aj such that 1 =
∑K

k=2 ukvk. Setting yk = (1 − u1y1)vk ∈ ajm for k ≥ 2, we
have

1 =
K∑
k=1

ukyk and an + (1− an)
K′∑
k=1

ukyk ≡ 1 (mod m)

for K ′ = 1, . . . , K. Next we set xk = (an − 1)uk ∈ a−1
j n so that

an − 1 =
K∑
k=1

xkyk,

and an −
∑K′

k=1 xkyk is invertible modulo m for K ′ = 0, . . . , K.
By unimodularity there exist d2, . . . , dn ∈ oF such that d2a2 + . . .+ dnan = 1. If we put

τ1 =

( 1
d2(x1−a1) 1

...
. . .

dn(x1−a1) 1

)
, σ1 =

(
1 −y1
. . .

1

)
,

then τ1 ∈ ΓQ1,j(n), σ1 ∈ ΓP1,j(n), and (a1, . . . , an)τ1σ1 = (x1, a2, . . . , an−1, an − x1y1). More-
over, since an − x1y1 is invertible modulo m, we have m + (an − x1y1)oF = oF , so that
(a2, . . . , an−1, an − x1y1) is again unimodular. Thus, we may repeat the construction with
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an replaced by an −
∑K′

k=1 xkyk for K ′ = 1, . . . , K − 1, obtaining matrices τ2, σ2, . . . , τK , σK
such that

(a1, . . . , an)τ1σ1 · · · τKσK = (xK , a2, . . . , an−1, 1).

Finally, applying the matrix  1
1

. . .
1

−xK −a2 ··· −an−1 1

 ∈ ΓQ1,j(n)

reduces the bottom row to (0, . . . , 0, 1), and we are finished. �

Thus, for each j, the function Φξ∞,j is left invariant under Γ1,j(n). Indeed, these are
classical automorphic forms. To be precise, observe that for each j, χπ also determines
a character of Γ0,j(n) that is trivial on Γ1,j(n), which we continue to denote by χπ. Let
A(Γ0,j(n)\GLn(F∞);ωπ∞ , χ

−1
π ) denote the space of classical automorphic forms f on GLn(F∞)

satisfying

f(γg) = χ−1
π (γ)f(g) for all γ ∈ Γ0,j(n) ⊂ GLn(F∞),

f(zg) = ωπ∞(z)f(g) for all z ∈ Zn(F∞).

Then it follows that Φξ∞,j belongs to A(Γ0,j(n)\GLn(F∞);ωπ∞ , χ
−1
π ). (The relevant growth

properties follow from [4].) The character χ−1
π is usually referred to as the Nebentypus

character.
Now, let A(ωπ) denote the space of automorphic forms on GLn(AF ) which transform under

the central character ωπ. Then the isomorphism (2.1) induces a topological isomorphism

(3.4) A(ωπ)K1(n) ∼=
h∐
j=1

A(Γ0,j(n)\GLn(F∞);ωπ∞ , χ
−1
π ).

In particular, the family of functions {Φξ∞,j}hj=1 determine a global automorphic form Φξ∞

through this isomorphism. Explicitly, given g ∈ GLn(AF ), choose j (which is uniquely
determined) and γ ∈ GLn(F ) so that γg ∈ gj GLn(F∞)K1(n); then Φξ∞(g) = Φξ∞,j(γ∞g∞).
One checks that this is well defined, in the sense that it is independent of the choice of γ. In
the reverse direction, as mentioned above, we have

Φξ∞,j(g) = Φξ∞(g, gj) for all g ∈ GLn(F∞), j = 1, . . . , h.

For later reference, we note that Φξ∞ satisfies the relation

(3.5) Φξ∞(g) = Uξ∞⊗ξ0f (g) for g ∈ Pn(AF ),

which readily follows from its construction.

3.4. Hecke eigenforms and automorphic representations. We continue with the no-
tation of §3.1. It is clear that (3.4) is an isomorphism of (g∞, K∞)-modules. Then the
mapping ξ∞ 7→ Φξ∞ gives us a canonical embedding ι : Vπ∞ → A(ωπ) of (g∞, K∞)-modules.
Moreover, since π∞ is irreducible, the center Z of U acts on Vπ∞ through a character, say
λ. Let (Π,W ) be the smallest GLn(AF )-submodule of A(ωπ) containing ι(Vπ∞), which is
admissible according to [2, Prop. 4.5]. Indeed, for a fixed ξ∞ 6= 0, W = H ? Φξ∞ . In [3,
Prop. 10.4], Cogdell and Piatetski-Shapiro show that Π consists of Hecke eigenforms for an
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appropriate Hecke algebra, under the assumption that h = 1. Our proof departs from their
approach in what follows.

For each v, as mentioned in §3.1, πv induces an action of Hv, which we continue to denote
by πv. For ∆ a finite collection of irreducible representations of K∞, let e∆ ∈ H∞ be the
corresponding idempotent. We write Vπ∞(∆) to denote the image of the operator π∞(e∆), i.e.
Vπ∞(∆) is the sum of the δ-isotopic components Vπ∞(δ) for δ ∈ ∆. This is a finite-dimensional
vector space since π∞ is admissible. Further, if Vπ∞(∆) 6= 0, then it is an irreducible module
for the (unital) subalgebra H∞(∆) = e∆ ∗ H∞ ∗ e∆. Before we proceed further, we need the
following basic result from the theory of finite-dimensional representations of unital algebras.

Lemma 3.3. Suppose A and B are unital algebras over C. Set C = A ⊗ B, and suppose
(ρ, E) is a finite-dimensional representation of C. Let M be a simple A-module, and set
M ′ = HomA(M,E). Consider the left B-module structure of M ′ coming from that of the left
B-module E, and regard M ⊗M ′ as a C-module. Then the natural map α : M ⊗M ′ → E
induced by v ⊗ f 7→ f(v) is a monomorphism of C-modules.

Proof. First, it is straightforward to see that α is a morphism of C-modules. Let I =
AnnA(M); then I is cofinite and, since M is a simple A-module, it follows that A/I ∼= Mn(C)
for some n. Thus, by reducing to A/I ⊗ B, we may assume that A is simple Artinian.
Now, let {v1, . . . , vn} be a basis for M , and let ekl ∈ A = Mn(C) be the matrix units
with respect to that basis. If x =

∑n
i=1 vi ⊗ fi ∈ M ⊗ M ′ is such that α(x) = 0, then

0 = ekl ·α(x) = α(ekl ·
∑

i vi⊗ fi) = α(vk⊗ fl) = fl(vk), for all k, l. Thus, fl = 0 for all l, i.e.
x = 0, and hence α is injective. �

Next we show that one can split π∞ off from Π in the following sense.

Lemma 3.4. There exists a smooth admissible GLn(AF,f )-module (Πf , U) such that

π∞ ⊗ Πf
∼= Π

as GLn(AF )-modules. Further, there exists Φf ∈ U such that for any ξ∞ ∈ Vπ∞, ξ∞ ⊗Φf 7→
Φξ∞ under this isomorphism.

Proof. Let (Πf , U) denote the GLn(AF,f )-module HomH∞(Vπ∞ ,W ) and let Φf ∈ U be the
element ξ∞ 7→ Φξ∞ . Then Φf ∈ UK1(n) as every Φξ∞ is right K1(n)-invariant. Since W
is smooth and admissible, and Vπ∞ is a cyclic H∞-module, it follows that U is a smooth,
admissible GLn(AF,f )-module. There is a natural homomorphism of GLn(AF )-modules from

(3.6) Vπ∞ ⊗ HomH∞(Vπ∞ ,W ) −→ W,

and it is clear that ξ∞ ⊗ Φf 7→ Φξ∞ , for ξ∞ ∈ Vπ∞ , under this morphism. It is surjective
since W is cyclic and generated by any nonzero Φξ∞ . Finally, in order to show that (3.6)
is injective, it is sufficient to do so after fixing a level H =

∏
v<∞Hv, a compact open

subgroup of GLn(AF,f ), and an infinity type ∆. To this end, take A = H∞(∆), B =
H(GLn(AF,f ), H) =

⊗
v<∞H(GLn(Fv), Hv), M = Vπ∞(∆), and E = W (∆, H), and apply

Lemma 3.3. �

Now, let T be the smallest finite set of places of F containing the archimedean places such
that πv is unramified at all v /∈ T . By construction Π is also unramified at every v /∈ T .
Let HT =

⊗
v/∈T H(GLn(Fv), Kv) denote the spherical Hecke algebra, which is known to

be commutative. Then, as explained in [3, §2, Appendix], HT is naturally a subalgebra of
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H(GLn(AF,f ), K1(n)), and hence acts on the space of K1(n)-fixed vectors UK1(n). Therefore,
UK1(n) has a basis consisting of Hecke eigenvectors for the action of the algebra HT . In
particular, we may write

(3.7) Φf =
m∑
i=1

ηi,

where ηi is a Hecke eigenvector with eigencharacter Λi, say.
For 1 ≤ i ≤ m, put Vi = Cηi, and let Ui be the smallest GLn(AF,f )-submodule of U that

contains ηi, viz. Ui = Hf ? Vi. Then Ui is admissible and UKT

i = Vi, where KT =
∏

v/∈T Kv

is the maximal compact open subgroup of GT . Now, let (π′i, U
′
i) denote the unique spherical

representation of GT associated to Λi. Then, by an argument identical to that in Lemma 3.4,
it follows that there is an admissible representation U ′′i of

∏
v∈T
v<∞

GLn(Fv) such that Ui ∼=
U ′i ⊗U ′′i as Hf -modules, or equivalently, as representations of GLn(AF,f ). Therefore, we may
assume that each ηi is of the form ηi,T ⊗

⊗
v/∈T η

0
i,v, where η0

i,v is the spherical vector at v
(normalized to give the correct local L-factor, as in (3.2)), and ηi,T is a vector belonging to
the space of an admissible representation of

∏
v∈T
v<∞

GLn(Fv).

Lemma 3.5. There exists a unique isobaric automorphic representation πi such that πTi =⊗
v/∈T πi,v is the unique irreducible admissible representation of GLn(AT

F ) associated to the
character Λi.

Proof. By [3, Thm. A], there exists an irreducible (but not necessarily isobaric) automorphic
representation Πi with the required property and also satisfying Πi,∞ ∼= π∞. We may realize
Πi as a component of an induced representation Ξ = Ind(σ1 ⊗ · · · ⊗ σk) of Langlands type,
where the σj are cuspidal representations of GLrj(AF ) with r1 + . . . + rk = n. Since Πi,v is
unramified for v /∈ T , it follows that the representation Ξv = Ind(σ1,v ⊗ · · · ⊗ σk,v) is also
unramified and that Πi,v is the unique spherical constituent of Ξv. Let πi be the isobaric
representation σ1 � · · · � σk. Then, since the Langlands quotient of Ξv is the same as the
unique spherical constituent for an unramified place v, it follows that πi,v ∼= Πi,v for v /∈ T .
The uniqueness of πi follows from the strong form of multiplicity one (cf. Remark 1). �

3.5. A linear relation of L-functions. Next, given any automorphic form φ on GLn(AF ),
we recall that its Whittaker–Fourier coefficient Wφ (for a fixed ψ) is defined as

Wφ(g) =

∫
Un(F )\Un(AF )

φ(ug)ψ(u) du.

Lemma 3.6. Assume the measure is normalized so that F\AF has unit volume. For ξ∞ ∈
Vπ∞, let Φξ∞ be as defined after (3.4). Then its Whittaker–Fourier coefficient satisfies

WΦξ∞
(g) = Wξ(g) for g ∈ Pn(AF ),

where ξ = ξ∞ ⊗ ξ0
f .

Proof. For any subgroup N ⊆ Un, we write [N ] to denote the adelic quotient N(F )\N(AF ).
Also, for m < n, we view GLm as a subgroup of GLn via the diagonal embedding h 7→
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(
h
In−m

)
. It follows from (3.5) that for g ∈ Pn(AF ),

WΦξ∞
(g) =

∫
[Un]

Uξ(ug)ψ(u) du =

∫
[Un]

∑
γ∈Un−1(F )\GLn−1(F )

Wξ

((
γ

1

)
ug

)
ψ(u) du,

=
∑

γ∈Un−1(F )\GLn−1(F )

∫
[Un]

Wξ

((
γ

1

)
ug

)
ψ(u) du.

Let us write u = u1u2, u1 ∈ Nn(AF ), u2 ∈ Un−1(AF ) ⊂ GLn−1(AF ) ⊂ GLn(AF ). We
further write elements of Nn as u(X) =

(
In−1 X

1

)
, where X is a column vector. Since ( γ 1 )

normalizes Nn, we get

WΦξ∞
(g) =

∑
γ∈Un−1(F )\GLn−1(F )

∫
(F\AF )n−1

ψ(u(γX−X)) dX

∫
[Un−1]

Wξ

((
γ

1

)
u2g

)
ψ(u2) du2.

It is straightforward to check that the first integral in the above expression vanishes unless
γ ∈ Pn−1(F ). Since Un−1(F )\Pn−1(F ) may be identified with Un−2(F )\GLn−2(F ) via µ 7→
( µ 1 ), we finally obtain

WΦξ∞
(g) =

∑
γ∈Un−2(F )\GLn−2(F )

∫
[Un−1]

Wξ

((
γ

I2

)
ug

)
ψ(u) du.

We may now argue inductively to obtain the desired conclusion. �

Let Φi ∈ W be the automorphic form corresponding to ξ∞ ⊗ ηi. Then it follows from the
above lemma and (3.7) that

Wξ

(
h

1

)
=

m∑
i=1

WΦi

(
h

1

)
for h ∈ GLn−1(AF ).

Choosing ξ∞ so that Wξ∞(In) 6= 0, we evaluate this at (In−1, h) for h ∈ GLn−1(AF,f ) and
cancel the factor of Wξ∞(In) on both sides to get∏

v<∞

Wξ0v

(
hv

1

)
=

m∑
i=1

Wηi

(
h

1

)
for h ∈ GLn−1(AF,f ).

For a finite v ∈ T , according to [11, Prop. 3.2], we can choose h0
v ∈ GLn−1(Fv) so that

Wξ0v

(
h0v

1

)
6= 0. Then since ηi is of the form ηi,T ⊗

⊗
v/∈T η

0
i,v, we may evaluate the above at(∏

v∈T
v<∞

h0
v, h
)

for h ∈ GLn−1(AT
F ) and divide by

∏
v∈T
v<∞

Wξ0v

(
h0v

1

)
, to obtain

(3.8)
∏
v/∈T

Wξ0v

(
hv

1

)
=

m∑
i=1

ci
∏
v/∈T

Wη0i,v

(
hv

1

)
for h ∈ GLn−1(AT

F ),

for some constants ci ∈ C.
Note that GL1(AF ) = A×F is a subgroup of GLn−1(AF ) as described at the beginning of the

proof of Lemma 3.6. So, for any unramified idèle class character ω of F , we may multiply
(3.8) by ω(h)‖ deth‖s−n−1

2 for h ∈ (AT
F )×, integrate over h and use (3.2) to get

(3.9) LT (s, π ⊗ ω) =
m∑
i=1

ciL
T (s, πi ⊗ ω).
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Here LT denotes the partial Euler product over all places v /∈ T , viz.
(3.10)

LT (s, π ⊗ ω) =
∏
v/∈T

n∏
j=1

1

1− α0,v,jωv($v)q−sv
, LT (s, πi ⊗ ω) =

∏
v/∈T

n∏
j=1

1

1− αi,v,jωv($v)q−sv
,

where α0,v,j (resp. αi,v,j) are the Satake parameters of πv (resp. πi,v).

4. Some multiplicative number theory

In this section, we extend some of the basic notions of multiplicative number theory to
number fields. First, let IF denote the set of non-zero integral ideals of oF and PF ⊂ IF the
set of prime ideals. Let DF denote the set of all functions f : IF → C. Given f, g ∈ DF , we
define their Dirichlet convolution f ∗ g ∈ DF via

f ∗ g(a) =
∑
b∈IF
b⊇a

f(b)g(ab−1), ∀a ∈ IF .

This gives DF the structure of a commutative ring with multiplicative identity

1DF (a) =

{
1 if a = oF ,

0 otherwise.

In fact, one can show that DF is an integral domain, though we will not need that in what
follows.

For any f ∈ DF , we say that

(i) f is multiplicative if f(oF ) = 1 and f(ab) = f(a)f(b) for every a, b ∈ IF satisfying
a + b = oF ;

(ii) f has polynomial growth if there exists σ ∈ R such that f(a) = O(N(a)σ) for all
a ∈ IF ;

(iii) f is p-finite if there is a finite set S ⊂ PF such that f(a) = 0 for every a ∈ IF which
is contained in a prime ideal p ∈ PF \ S.

Further, we call multiplicative functions f, g ∈ DF equivalent if there is a finite set S ⊂ PF
such that f(pk) = g(pk) for all p ∈ PF \ S and all k ≥ 1, and inequivalent otherwise.

Finally, let MF ⊂ DF and RF ⊂ DF denote the subsets of multiplicative and p-finite
elements, respectively. It is easy to verify that RF is a subring of DF and MF is a subgroup
of the unit group D×F .

Lemma 4.1 (adapted from [13], Thm. 2). Let m be a positive integer and let f1, . . . , fm ∈MF

be pairwise inequivalent, multiplicative functions. Then f1, . . . , fm are linearly independent
over RF , i.e. if c1, . . . , cm ∈ RF satisfy

∑m
j=1 cj ∗ fj = 0, then c1 = . . . = cm = 0 identically.

Proof. Suppose otherwise, and let f1, . . . , fm ∈MF and c1, . . . , cm ∈ RF be a counterexample
with m minimal; in particular, none of c1, . . . , cm vanishes identically. Since all elements of
MF are units in DF , we must have m > 1. Let S ⊂ PF be a finite set of primes such that
cj(a) = 0 for j = 1, . . . ,m whenever a has a prime factor outside of S. Since f1 and f2 are
inequivalent, there exists p ∈ PF \ S and k ∈ Z>0 such that f1(pk) 6= f2(pk).
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We consider the equation

(4.1)
m∑
j=1

cj ∗ fj(a) = 0

with a = pkb for all b co-prime to p, obtaining

(4.2)
m∑
j=1

fj(p
k)
∑
n⊇b

cj(n)fj(bn
−1) = 0.

Next we replace a by b in (4.1), multiply by f1(pk), and subtract (4.2) to get
m∑
j=2

(f1(pk)− fj(pk))
∑
n⊇b

cj(n)fj(bn
−1) = 0.

Finally, for j = 2, . . . ,m we define

c̃j(a) = (f1(pk)− fj(pk))cj(a) and f̃j(a) =

{
0 if a ⊆ p,

fj(a) otherwise,

so that f̃j ∈MF , c̃j ∈ RF , c̃2 is not identically 0, and

m∑
j=2

c̃j ∗ f̃j = 0.

This contradicts the minimality of m and completes the proof. �

When F = Q, it is well known that one can identify any f ∈ DF of polynomial growth
with its Dirichlet series

∑∞
n=1 f(nZ)n−s, which defines a holomorphic function in a right half-

plane. When F 6= Q, the map f 7→
∑

a∈IF f(a)N(a)−s is still a ring homomorphism, but it
is no longer injective since there may be multiple ideals with the same norm. However, we
recover a one-to-one correspondence if we include the twists by unramified Größencharakters,
as the following lemma shows.

Lemma 4.2. Let f ∈ DF be a function of polynomial growth. Suppose that there exists
σ ∈ R such that ∑

a∈IF

f(a)χω(a)N(a)−s = 0

for every unramified, unitary, idèle class character ω and all s ∈ C with <(s) > σ. Then
f = 0 identically.

Proof. Collecting the terms with a common value of N(a), we have
∞∑
n=1

n−s
∑
a∈IF
N(a)=n

f(a)χω(a) = 0

for all unramified unitary characters ω and all s with <(s) sufficiently large. Considering the
asymptotic behavior as s→∞, we find that

∑
a∈IF
N(a)=n

f(a)χω(a) vanishes for all unramified

ω.
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Fix a choice of n, and let a1, . . . , am ∈ IF be the ideals of norm n. It suffices to show that
Cm is spanned by the vectors (χω(a1), . . . , χω(am)), with ω running through all unramified
characters. If that is not the case then there exist c1, . . . , cm ∈ C, not all zero, such that
c1χω(a1) + . . .+ cmχω(am) = 0 for all such ω. Reordering if necessary, we may assume that
cj 6= 0 for 1 ≤ j ≤ k and cj = 0 for k < j ≤ m. Further, by scaling we may assume that
c1 = 1, so that

1 + c2χω(a2a
−1
1 ) + . . .+ ckχω(aka

−1
1 ) = 0.

Since this holds for all unramified characters ω, we are free to replace ω by any unramified
twist ωω′. In particular, letting ω′ run through all characters of the class group and taking
the average, all terms for which aja

−1
1 is not a principal fractional ideal vanish. Thus, we

may assume without loss of generality that aja
−1
1 is principal for each j = 2, . . . , k, so that

aja
−1
1 = (γj) for some γj ∈ F×. Since ω is unramified, we have χω(aja

−1
1 ) = χω((γj)) =

ω∞(γj)
−1, so the above becomes

1 + c2ω∞(γ2)−1 + . . .+ ckω∞(γk)
−1 = 0.

Next we replace ω by the twist ω(ω′)`, take the average over ` ∈ {0, 1, . . . , L − 1}, and
let L → ∞. Recall that any idèle class character is unitary up to a power of ‖ · ‖; since
‖γj‖∞ = N(aja

−1
1 ) = 1, it follows that ω′∞(γj) is a complex number of modulus 1, so that

lim
L→∞

1

L

L−1∑
`=0

ω′∞(γj)
−` =

{
1 if ω′∞(γj) = 1,

0 otherwise.

Now, for any j = 2, . . . , k, a1 and aj are distinct ideals, so γj is not an element of o×F . Since
we are free to choose any ω′∞ in the dual of o×F\{y ∈ F×∞ : ‖y‖∞ = 1}, we may always arrange
it so that ω′∞(γj) 6= 1 for a particular j. Thus, by repeating the above averaging procedure,
all of the terms for j = 2, . . . , k vanish, so we are left with the absurd conclusion 1 = 0. This
completes the proof. �

We conclude this section with two consequences of the above for automorphic L-functions
that may be of independent interest.

Corollary 4.3 (Linear independence of automorphic L-functions). Let n1, . . . , nm be pos-
itive integers, and for each i = 1, . . . ,m, let πi =

⊗
v πi,v be an irreducible automorphic

representation of GLni(AF ). For each pair i 6= j, assume that there is a finite place v such
that πi,v and πj,v are both unramified and πi,v 6∼= πj,v. Let S be a finite set of places containing
all archimedean places, and consider the partial L-functions

LS(s, πi ⊗ ω) =
∏
v/∈S

L(s, πi,v ⊗ ωv),

where ω is an unramified idèle class character. Then, if c0, . . . , cm ∈ C are such that

(4.3) c0 + c1L
S(s, π1 ⊗ ω) + . . .+ cmL

S(s, πm ⊗ ω) = 0

for every unramified ω, then c0 = . . . = cm = 0.

Proof. Let λπi(a) denote the Dirichlet coefficients of L(s, πi), so that

L(s, πi ⊗ ω) =
∑
a

λπi(a)χω(a)N(a)−s
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for <(s) > 0 sufficiently large. Next let m be the product of the prime ideals corresponding
to the finite places in S, and define

λSπi(a) =

{
λπi(a) if a + m = oF ,

0 otherwise,

so that
LS(s, πi ⊗ ω) =

∑
a

λSπi(a)χω(a)N(a)−s.

By Lemma 4.2, the linear relation (4.3) implies that c01DF (a)+c1λ
S
π1

(a)+ . . .+cmλ
S
πm(a) = 0

identically. Moreover, by restricting a in this equality to the ideals co-prime to a fixed
modulus, we are free to replace S by any larger finite set of places. In particular, we may
assume without loss of generality that S contains all finite places of ramification of π1, . . . , πm.

Next, following the proof of Lemma 3.5, for each i there is a unique isobaric automorphic
representation Πi =

⊗
v Πi,v of GLni(AF ) such that Πi,v

∼= πi,v for every finite place v at
which πi,v is unramified. Then for any i 6= j, by hypothesis there is an unramified finite
place v for which Πi,v

∼= πi,v 6∼= πj,v ∼= Πj,v, so that Πi 6∼= Πj.
Finally, since S contains all ramified finite places, we are free to replace πi by Πi, so we

may assume without loss of generality that πi is isobaric. Then, by strong multiplicity one
for isobaric representations, λSπ1 , . . . , λ

S
πm are pairwise inequivalent, multiplicative elements

of DF . Moreover, for every unramified place v, L(s, πi,v) is not identically 1, so each λSπi is
also inequivalent to the identity 1DF . The conclusion now follows from Lemma 4.1. �

Corollary 4.4 (Algebraic independence of cuspidal automorphic L-functions). Assume
the hypotheses of Corollary 4.3, and suppose that π1, . . . , πm are cuspidal. Then, if P ∈
C[x1, . . . , xm] is such that

P (LS(s, π1 ⊗ ω), . . . , LS(s, πm ⊗ ω)) = 0

for every unramified ω, then P = 0 identically.

Proof. We may write P =
∑

e1,...,em
ce1,...,emx

e1
1 · · ·xemm as a linear combination of monomials.

For each non-zero m-tuple (e1, . . . , em), we may define

Πe1,...,em = π1 � · · ·� π1︸ ︷︷ ︸
e1 times

� · · ·� πm � · · ·� πm︸ ︷︷ ︸
em times

.

Then, by [8], the Πe1,...,em are pairwise non-isomorphic isobaric representations satisfying

LS(s,Πe1,...,em ⊗ ω) = LS(s, π1 ⊗ ω)e1 · · ·LS(s, πm ⊗ ω)em ,

and the conclusion follows from Corollary 4.3 applied to these. �

Remark. This result should be compared to that of Jacquet and Shalika [8], who proved the
multiplicative independence of cuspidal L-functions, and thus showed the existence of the
class of isobaric representations. In our notation, this means that for any solution to

LS(s, π1 ⊗ ω)c1 · · ·LS(s, πm ⊗ ω)cm = 1,

where the πi are pairwise non-isomorphic cuspidal representations and c1, . . . , cm ∈ C, one
has c1 = . . . = cm = 0. (Here we interpret LS(s, πi ⊗ ω)ci to mean exp(ci logLS(s, πi ⊗ ω)),
where logLS(s, πi ⊗ ω) is the unique logarithm with zero constant term in its expansion as
a Dirichlet series.) In particular, taking the ci to be integers, one sees that for any isobaric
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representation π, LS(s, π⊗ω) has a unique factorization into products of cuspidal L-functions
LS(s, πi ⊗ ω). Note that Corollary 4.4 constitutes a strengthening of this particular case,
from multiplicative independence to algebraic independence.

5. Conclusion of the proof

By Lemma 4.2 and (3.9)–(3.10), there are unique functions f0, f1, . . . , fm ∈MF such that∑
a∈IF

f0(a)χω(a)N(a)−s = LT (s, π ⊗ ω)

and ∑
a∈IF

fj(a)χω(a)N(a)−s = LT (s, πj ⊗ ω)

for j = 1, . . . ,m and all unramified idèle class characters ω, and they are related by the
identity

(5.1) f0 =
m∑
j=1

cjfj.

By collecting common terms of (3.9) if necessary, we may assume without loss of gen-
erality that the πj are pairwise non-isomorphic. Then strong multiplicity one for isobaric
representations (see Remark 1) implies that, for any i 6= j, the local L-factors L(s, πi,v) and
L(s, πj,v) differ at infinitely many places, and it follows that f1, . . . , fm are pairwise inequiv-
alent. Thus, by Lemma 4.1, f0 must be equivalent to fj for some j ∈ {1 . . . ,m}, and by
reordering if necessary we may assume that f0 is equivalent to f1.

Let S ⊂ PF be the finite set of primes p for which f0(pk) 6= f1(pk) for some k ≥ 1. For

j = 0, 1 we factor fj as f [j ∗ f
]
j , where f [j , f

]
j ∈ MF are the unique multiplicative functions

satisfying

f [j (p
k) =

{
fj(p

k) if p ∈ S,
0 otherwise

and f ]j (p
k) =

{
0 if p ∈ S,
fj(p

k) otherwise.

Note that f [0 and f [1 are p-finite, and f ]0 = f ]1, so we may rewrite (5.1) in the form

(c1f
[
1 − f [0) ∗ f ]1 +

m∑
j=2

cjfj = 0.

Invoking Lemma 4.1 again, we see that cj = 0 for j = 2, . . . ,m, and thus (5.1) becomes

f0 = c1f1.

Evaluating both sides at oF , we find that c1 = 1, and it follows that L(s, πv) = L(s, π1,v)
for all places v /∈ T . Since πv is unramifed for all v /∈ T , we conclude that πv ∼= π1,v, as
desired.
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phic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis,
Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979,
pp. 205–246.

15. Nadir Matringe, Essential Whittaker functions for GL(n), Doc. Math. 18 (2013), 1191–1214.
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