A CONVERSE THEOREM FOR GL(n)
ANDREW R. BOOKER AND M. KRISHNAMURTHY

ABSTRACT. We complete the work of Cogdell and Piatetski-Shapiro [3] to prove, for n > 3, a
converse theorem for automorphic representations of GL,, over a number field, with analytic
data from twists by unramified representations of GL,,_1.

1. INTRODUCTION

In this paper, we complete the work of Cogdell and Piatetski-Shapiro [3] to prove the
following.

Theorem 1.1. Let F' be a number field with adéle ring Ar. Fix an integer n > 3, and let
7=, T, be an irreducible, admissible representation of GL,(Ap) with automorphic central
character. For every unitary, isobaric, automorphic representation 7 = @), 7, of GL,_1(Ap)
which is unramified at all finite places, assume that the complete Rankin—Selberg L-functions

A(s,m X T) HLS?TvXTU

converge absolutely in some right half plane, continue to entire functions of finite order, and
satisfy the functional equation

(1.1) A(s,m x 1) =€(s,m x T)A(1 — s, X T),

where €(s, X T) is the product of the corresponding local e-factors defined in [7, Thm. 2.7] and
[12]. Then 7 is quasiautomorphic, in the sense that there is a unique isobaric automorphic
representation I1 = @, 11, of GL,(Ap) such that m, = 11, for all non-archimedean places v
where T, 1s unramified.

Remarks.

(1) We recall the notion of an isobaric automorphic representation [14]: Given a partition
ni,...,n of n and cuspidal representations o; of GL,,(Ar), let P be the correspond-
ing standard parabolic subgroup of GL, and let w; denote the central character of
0;. Then there is a real number ¢; such that |w;(z)| = ||z|| for z in the center of
GL,,(AFr). By re-ordering, if necessary, we may assume t; > ... > t;, and form glob-

ally the induced representation T = IndGL" AF )( 01 ® -+ - ®o0y). On the other hand, if

0, =@, 0i (here and throughout the paper the symbol @) means a restricted tensor

product with respect to a distinguished set of spherical vectors for almost all places),

we may also form locally the induced representations 1, = IndGL"()F v) (01, R0ky)

for each v. (For archimedean v, one has to pass to the smooth completion of o;, in
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order to form the induced representation Y, ; see §3.1 and the references therein for

details.) Then, by definition, oy, B --- B 0%, is the (g,, K,)-module associated to

the Langlands quotient of Y,. We may also form their (restricted) tensor product

to obtain an automorphic representation of GL,,(Ag). This representation, denoted

o, H---Hoy, is called isobaric, and it satisfies the following properties:

(a) Strong multiplicity one [8]. If n, ..., n] is another partition of n and ¢}, 1 <i <
[, are cuspidal representations of GL,/(Ar) such that

oyB---HBop, 2o H---Bo,

then | = k and there is a permutation ¢ of {1,...,k} such that n; = ny; and
i = 0g(i).

(b) Multiplicativity of local factors. The Rankin—Selberg method [7, 9] of associating
local factors is bi-additive with respect to isobaric sums. In particular, for any
automorphic representation 7 = @), 7, of GL,(Ap), one has

k
L(s,(o1,B---Bogy) Xx1) = HL(S, Tiv X Ty),

=1
k
6(57 (Ul,v EE’ e EE’ Uk,v) X T, wv> = HG(S,U@U X 7-1)71/}1;)

=1

for each v.
We call an isobaric automorphic representation o = 18- - -Hoy, unitary if each cus-
pidal representation o; has unitary central character. In this case, for each v, it follows

from the description of the unitary dual of GL,,(F,) [17, 16] that the corresponding

parabolically induced representation Indg(Lgu()F v)<0'1ﬂ,®- --®0y,) is irreducible, unitary

and generic; therefore, ¢ is the full induced representation Indg(ngF )(0'1 R Q0p).

The results in [3] are stated in terms of analytic properties of A(s, 7 x 7) for cuspidal
representations 7 of GL,(Ap) for all 7 < n. Our statement in terms of unitary iso-
baric representations of GL,,_1(Ar) generalizes this slightly (since one can pass from
cuspidal twists to isobaric twists by multiplying), though as we show in Proposi-
tion 3.1 below, one can derive the properties of the twists by cuspidal representations
of GL,.(AF) from our hypotheses.

Alternatively, one could state the theorem in terms of twists by all unramified,

generic, automorphic subrepresentations 7 of GL,,_;(Ar), and in fact the proof pro-
ceeds along these lines, i.e. we first derive the properties of such twists from those
for unitary isobaric representations in Proposition 3.1. (Here and throughout the
paper, we say that a global representation or idele class character is unramified if it
is unramified at every finite place.)
Note that the local constituents 7, are not assumed to be generic. If they happen
to be generic for all v then, following the proof of [3, §7, Cor. 2], one can modify
the argument to produce a unique generic (but not necessarily isobaric) automorphic
representation Il such that II, = x, for all unramified v. In this case, we also obtain
II, & m, for all archimedean v.



Our proof closely follows the method of Cogdell and Piatetski-Shapiro, who established
a version of Theorem 1.1 (cf. [3, Thm. 3]) under the assumption that F' has class number
1. In fact, in full generality, their method exhibits a classical automorphic form (i.e. at the
archimedean places) with the expected properties, but they encountered some combinatorial
difficulties in relating it back to the representation 7 (via Hecke eigenvalues), and were only
able to overcome them under the class number assumption. Our proof avoids attacking the
combinatorics directly; rather, we rely on the classical fact, due to Harish-Chandra, that any
K-finite, Z-finite, automorphic form is a finite linear combination of Hecke eigenforms, from
which we realize the L-function of 7 as a linear combination of automorphic L-functions.
The final ingredient is multiplicativity—since each of the L-functions in question is given by
an Euler product, only the trivial linear relation is possible. To make this precise, we adapt
work of Kaczorowski, Molteni and Perelli [13] on linear independence in the Selberg class,
generalizing it to number fields.
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2. PRELIMINARIES

Suppose F'is a number field with ring of integers or. For each place v of F, let F,, denote
the completion of F' at v. For finite v, let 0, denote the ring of integers in F},, p, the unique
maximal ideal in 0,, ¢, the cardinality of 0,/p,, and w, a generator of p, with absolute value
|@ollo = ¢yt Put Fyy = ]_L}'OO F,, and let Ap = F,, x Apy denote the ring of adeles of F'.

Recall that a Groffencharakter of conductor q is a multiplicative function x of non-zero
integral ideals satisfying x(aor) = xr(a)x~(a) for associated characters xs : (op/q)* — C*
and xo : FX — C*, with xy primitive and x., continuous, and all a € op relatively prime
to q. By convention we set x(a) = 0 for any ideal a with (a,q) # 1. The GroBencharakters
are in one-to-one correspondence with idele class characters w : F*\AY — C*, and the
correspondence is such that x. = w ! and x(p,Nor) = w(w,) at each finite place v co-prime
to q. For any idele class character w, we write x,, to denote the associated Groflencharakter.

For any r > 1 and any commutative ring R, let B,(R) = T,.(R)U,(R) C GL,(R) be
the Borel subgroup of upper triangular matrices, P/(R) the parabolic subgroup of type
(r—1,1), and N, (R) its unipotent radical. Let P.(R) C P/(R) denote the mirabolic subgroup
consisting of matrices whose last row is of the form (0,...,0,1), i.e.

P.(R) = {(h ?{> :h € GL,_1(R),y € R”} ~ GL,_(R) x N,(R).

Let w, denote the long Weyl element in GL,(R), and put o, = (“"7" ).
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From now on, we fix an integer n > 3 and consider GL,, along with certain distinguished
subgroups. For each v < oo, we will consider certain compact open subgroups of GL, (F,);
namely, let K, = GL,(0,), and for any integer m > 0, set

Kiu(py') = {g € GL,(0,) : g = (O . 1) (mod pL")} :

Kou(pt) = {9 € GLyf0,) 1= ( . ) (mod 1) .

so that K7 ,(p)') is a normal subgroup of Ky, (pl'), with quotient Ko, (pI")/K1.(p)) =
(0,/p1")*. Next, define Ky = [[,_., Ku, and for an integral ideal a of F, set

a) = [ Kinlpy) fori=0,1,

<0

where m, are the unique non-negative integers such that a =[] (p, Nor)"™. Then K;(a) C
Koy(a) C Ky are compact open subgroups of GL,,(Ap ). We consider also the corresponding
principal congruence subgroups of GL,(Fy ), embedded diagonally, namely,

[i(a) ={y € GL,(F) : v € K;(a)} C GL,(F) fori=0,1,

where 77 denotes the image of v in GL,,(Apy).
From strong approximation for GL,,, one knows that GL,,(F)\ GL,(Ar)/ GL,(Fx)K:(a)
is finite, with cardinality h, the class number of F. Let us write

HGL F)g; GLn(Foo) K1 (a),

where each g; € GL,(Apy). In partlcular

L, (F)\ GL,(Ar)/K:(a HFIJ N\ GL, (Fwo),

where I'y j(a) = {y € GL,(F) : 77 € g, Kl(a)gj_l} C GL,(Fy), embedded diagonally.
Replacing K (a) by Ky(a) in this definition, we get the corresponding groups I'g ;(a).

For groups H C G, let F(H\G) denote the vector space of all complex-valued functions
f : G — C that are left invariant under H. Further, for any subgroup L C G, let F(H\G)*
denote the subspace of right L-invariant functions in F(H\G). Then we have an isomorphism
of vector spaces

(2.1) F(GLo(F)\ GLa(Ar)) gH (F1j(a)\ GLn(Fic))

given by f — (f;), where f;(z) = f(xg;) for z € GLn( Fy).

3. THE METHOD OF COGDELL AND PIATETSKI-SHAPIRO

3.1. Initial setup. For convenience, we write G4, to denote the group GL,(F). Let gs

be the real Lie algebra of GG, and let U4 denote the universal enveloping algebra of its

complexification, g5 . Let K HU|OO K,, which is a maximal compact subgroup of G,. If
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S is a finite set of places of F, we write A%. to denote the restricted product HZ@ ¢ F, and
G = GL,(AF) = [T, ps CLu(F).

Let us recall the notion of a (smooth) GL,, (Ar)-module, which is a complex vector space X
equipped with an action of U, K, and GL,, (A, ) satisfying the following usual conditions:

(1) the actions of U and K, commute with that of GL,,(Ap);
(2) each u € X is fixed by some compact open subgroup of GL,,(Ag ¢);
(3) X has the structure of a (goo, K )-module under the actions of U and K.

Suppose d is an irreducible representation of K., and H is any compact open subgroup of
GL,(Apy). Let X(6, H) denote the subspace consisting of elements in X which are fixed by
H and of isotypic type 0. For A a finite collection of irreducible representations of K, let
X(AH) =3 50 X(0,H). Then X is said to be admissible if X (A, H) is finite dimensional
for every A and H. We will also use the notation X to denote the subspace of H-fixed
vectors in X.

For each place v, let H, denote the Hecke algebra of GL,(F,) (defined with respect to
K, for v | 00), and let % denote the multiplication operation in H,. Set H,, = ®v|oo H.,
and Hy = @), Ho, so that the global Hecke algebra H satisfies H = Ho, ® Hy. Given a
smooth GL,(Ar)-module X as above, it inherits an action of the Hecke algebra #, for each
v and hence becomes a module for H. It is well known that a smooth irreducible admissible
GL,(Ar)-module is factorizable in the sense of [5, Thm. 3]. As is customary, by a smooth
irreducible admissible representation of GL, (Ar) we mean a smooth irreducible admissible
GL,(Ap)-module.

Now, let 7 = @), 7, be an irreducible, admissible representation of GL,(Ap) with au-
tomorphic central character w,, as in the statement of Theorem 1.1. We fix an additive
character ¢ = @, 1, of F\Ar whose conductor is the inverse different 9~ of F. For each v,
let =, be the induced representation of “Langlands type” having 7, as the unique irreducible
quotient [7, 9]. For v | oo, by definition, =, is actually a smooth admissible representation
of GL,,(F,) of moderate growth and m, is the underlying (g,, K,)-module, also known as the
Harish-Chandra module, of the unique irreducible quotient of =,. Each Z, is an induced
representation of Whittaker type in the sense of [3, p. 159], also called a generic induced
representation [9, p. 4]. In particular, =, is admissible of finite type and admits a non-zero
1,-Whittaker form which is unique up to scalar factor. In general, such a representation is
said to be of Whittaker type. It should be noted that any constituent of =, has the same
central character as that of m,.

For any representation 7, of Whittaker type, we write W(7,,,) to denote its Whittaker
model with respect to v, [7, 9]. An important feature of the =, defined in the previous
paragraph is that, although it may not be irreducible, the usual map f — Wy from its
space to W(Z,,1,) is bijective [11, 9]. The local factors associated to m, (not necessarily
generic) are then defined via integral representations using the Whittaker model of =,. More
precisely, by definition (cf. [7, 9]), for every representation 7, of GL,(F},) that is induced of
Whittaker type one has

L(s,my, X Ty) = L(s,Z, X Ty),
with a similar equality for the local e-factors.

In the following two paragraphs, we rely heavily on [9] and refer the reader to that paper for
any unexplained notation or terminology. For a fixed v | oo, suppose V is the representation

space of =, let V; C V be the unique minimal invariant subspace which is generic, and let 7/,
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be the corresponding underlying Harish-Chandra module. By [9, Lemma 2.4], any non-zero
Y,-form A on V' will restrict to a non-zero 1,-form on Vj. Therefore, for any generic induced
representation 7, of GL,_1(F,), the family of integrals defining L(s,n! x 7,) is a subspace
of those defining L(s,=, X 7,). By passing to the projective tensor product and applying [9,
Thm. 2.6], we see that the factor L(s, ) x 7,) is equal to an integral of the form

Jwis9) o) ldetgli ds

where W corresponds to a smooth vector in the projective completion of the representation
T @ Ty.

Then, by continuity and using the extension of [9, Prop. 11.1] to the complete tensor
product (see §12.3 of loc. cit.), we see that L(s,n, X 7,) must be a holomorphic multiple of
L(s,m, x 7,). Let us realize 7, (in the above sense) as the Langlands quotient of an induced

—_

representation (=], V’) of Langlands type. Then, it follows from [9, Lemma 2.5] that = is
irreducible and consequently 7, is the Harish-Chandra module of =Z!. Now, as in [9, §11],
(24, V) (and hence (Z],V")) is a subrepresentation of a principal series representation I,,,
where p is an n-tuple of characters and t is an n-tuple of complex numbers. Similarly, 7, is a
subrepresentation of an I,/ 4. Then, from the proof of Proposition 11.1 of loc. cit., it follows

that both L(s, 7, x 7,) and L(s, 7, X 7,) are polynomial multiples of

TTLGs+ti+ 8 puard).

1]
Thus L(s, 7, x 7,) is a rational multiple of L(s,m, x 7,). Since it is a holomorphic multiple
as well, we conclude that

(3.1) L(s, 7 x7,) = f(s)L(s, T, X T0,),

where f(s) is a polynomial. Finally, it also follows from loc. cit. that the y-factors associated
with the pairs (m,,7,) and (7}, 7,), respectively, are the same.

Now, let " = &),o0 Ty ® @, <0 Mo, Which is an irreducible admissible representation of
GL,(Ar) with the same central character as m. Suppose 7 is a unitary isobaric automorphic
representation of GL,_1(Ap). As noted in the remarks following Theorem 1.1, 7, is a generic
induced representation for each v | oo, so it follows from the above that A(s, 7’ x 7) =
P(s)A(s,m x 1) for some polynomial P(s). Further,

e(s, 7" x T)A(1 — 5,7 X T)

/ -
Y(s, ™ x T): As, 7 x 1)

L(1 -5 x7T)

I 4 ! ’ ’

—1|_[7(357rv X Tv>wv)v1<_£)€<s’ﬂ_v Xijwv) L<3;7T/ X T)
L(1_87%X/’7\:)

= v X Ty, Py s Ty X Ty, Po) -

v]gows,w T zw)vljme(sw T ) )

Since (s, m x 7) = 1 identically if and only if A(s,7 X 7) satisfies the functional equation
(1.1), the functional equation for A(s, 7’ x 7) is equivalent to that of A(s, 7 x 7). In summary,

7’ satisfies the hypotheses of Theorem 1.1 if 7w does. The representation 7’ has the added
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feature that its archimedean local components have a Whittaker model, and if 7, is generic
for all v | co to begin with then 7 = 7’.

In general, we may replace w by n’, and assume without loss of generality that 7, is generic
for all archimedean v, at the expense of losing compatibility between 7, and II, for those v.
In [3], the authors work with the full induced representation =, instead of 7, at archimedean
places, but we have made the above modification in order to preserve irreducibility, which is
essential in Lemma 3.4 (see §3.4 below).

Next, for v < oo, choose €Y in the space of =, as in [3, p. 203]. In particular, for v < oo
where 7, (and hence =) is unramified, £° is the unique K,-fixed vector that projects onto the
distinguished spherical vector of 7,. For v < oo where T, is ramified, the choice of £2 is such
that it is fixed by K ,(p}*) for some m, > 0. Set n =[], ___(p,Nor)™. We note that when
7 is generic, we may choose each £ to be the essential vector [6, 10] and n to be the conductor
of m. At any rate, for v < oo where 7, is unramified, and 7, any unramified representation
of GL,_1(F,) of Langlands type with normalized spherical function W? € W(r,,;'), one
has (cf. [8, §1, (3)])

_1
(32) Weg(% 1) W @ldet gl dg = Lo, x 7).

/Un_1(FU)\GLn_1(FU)
As pointed out in [10, Remark 2] as well as in [15, §1.5], the above equality is derived
for generic unramified representations in [8] but the proof extends verbatim to unramified
representations of Langlands type.

3.2. The functions Us and V. In this subsection, we summarize the construction in [3]
of the functions Ug and V; associated to m, and describe their properties, culminating in the
identity given in Proposition 3.1; we defer to [3] for detailed proofs.

First note that if we take 7 to be the isobaric sum of n — 1 copies of the trivial character
then, by hypothesis, the product [], L(s,m, % 7,) converges absolutely for s in a right half
plane. For each v, let m, X 7, denote the functorial tensor product defined via the local
Langlands correspondence. For an unramified finite place v, let o, ,...,a,, denote the
Satake parameters of m,. Then m, X 7, has the same parameters, repeated with multiplicity
n — 1. Applying [3, Lemma 2.2] to the representation 7 X7 = @ (m, X 7,), we obtain an
estimate of the form «,; = O(q7) for some o € R. Hence, the Euler product defining the
standard L-function, [[, L(s, m,), also converges absolutely for s in a right half plane, which
is the form that this hypothesis takes in [3].

Next, as discussed in [3, §8], w, determines a character x» = @), xr, of Ko(n) which is
trivial on Kj(n). Moreover, it follows from loc. cit. that Ky(n) acts on the space of K;(n)-
fixed vectors via x,. In particular, for v < oo and g € Ky, (p'*), we have

Zu(9)€0 = Xm (9)&)-
Let V;_ denote the space of 7, and fix a £, = ®U|OO & € Vi Let £ =60 ® 5]9, where
=R Y and consider

V<00 DSV

Ulg)= >, Welvg) = > . Ws((7 1) g) :

YEUR(F)\Pn(F) YEUn—1(F)\ GLyp—1

This sum converges absolutely and uniformly on compact subsets to a continuous function

on GL,,(Ar) which is cuspidal along the unipotent radical of any standard maximal parabolic
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subgroup of GL,(Ar). Since w, is assumed to be automorphic, as a function of GL,,(Ar),
Ug is left invariant under both P,(F') and the center Z,(F).
We also consider a second function Vg attached to &, which will be related to U, through

the functional equation. Namely, let We(g) = We(w, 'g™"), put
Ulg)= >, Wel),
YEUR(F)\Pn(F)
and define Ve(g) = Ue(a, 'g™), where a,, = ("' ), as defined in §2. In other words,
o= Y Waey = 3 (7 )ets)
YEUR(F)\Pn(F) YEUn—1(F)\ GLn_1(F)

Hence, if Q, ='P, ", then V(g) is invariant on the left by both Q,,(F) and Z,(F).
We record another formula for V(g) which shows that it agrees with the definition given
in [3]. By definition, since ‘a; ' = «,, we have

Velg) = Z We(yom'g™") = Z . We (wn (tTl 1) ang)

YEUR (F)\Pr (F) Y€Upn_1(F)\ GLy_1

-1t -1
= > We (wnan (w"_l T 1) 9)

’YGUn_l(F)\ GLn_1(F)

= Z We (wnan (7 1) g> .
’YEUn_l(F)\GLn_l(F)

Here, the last equality follows since the transformation y — w,_1*y'w, !, permutes the set
of right cosets U,,_1(F)7y in GL,,_1(F). Thus,

Ve(g) = > We (% (7 1) g) ,
YE€Un—-1(F)\ GLp—1(F)
where of, = (1, , ).
Now, let 7 be an automorphic subrepresentation of GL,_1(AF), and let ¢ be an automor-
phic form in the space of 7. Suppose 7 = ), 7, and ¢ corresponds to a pure tensor &), ¢,
under this isomorphism. Let

(5 Ue, ) = vi(" ) ol decnl an

/GLnl(F)\GLnl(AF)

The above integral is absolutely convergent for R(s) > 1 and if 7 is cuspidal, it converges
for all s. Further, the integral unfolds to give

st = [ we(" ) W e an
Unfl(AF)\ GLnfl(AF‘)

h, o
(3.3) -T1 / W§U< 1) W, (ho)ll det b |3 dh,
v Unfl(Fv)\GLnfl(Fv)

= (s We,, W),



where Wy(h) = fUn_l(F)\Un_l(AF) d(nh)(n)dn, ie. Wy € W(r,v'). In particular, the
integral vanishes unless 7 is generic. Further, from the theory of local L-functions [7, 9],
\Pv(s; W£v7 Wd)v)

L(s,my, X T)

E,(s) =

is entire for all v. If v is non-archimedean then E,(s) € ClgZ, ¢, *], and for almost all such v
we have F,(s) = 1. Thus, setting E(s) =[], E,(s), we have

I(s;Ue, ¢) = E(s) HL(S,?TU X Ty).
Similarly, we define the integral

IsVeo) = |

(") emlaeny an
GLp—1(F)\ GLp—1(AF)

which converges for —R(s) > 1. If we unfold this integral, we get

IsiVeo) = |

Un—1(Ap)\GLr—1(AF

11/ Weo (") W th) et 1 dn,
v Unfl(Fv)\GLnfl(Fv)

= H\I/U(l — S, W&NW%),

We (h 1) W, (k)| det h||#~ dh
)

where W¢(h) = Wy(wp—1'h™1). In passing, we mention that this is the ¢-Whittaker coeffi-
cient of the dual function ¢(h) = ¢(w,—1 ‘b7, ie. Wo(h) = [, o0 ap Qb)Y ™ (w) du.

Now, for every v, just as we defined E,(s), let

~ ‘IJU(S;Wg ,qu )
E — v v
v(s) L(s, 7 X 7,)

denote the corresponding entire function attached to the pair of dual representations (7, 7, ).
Then

I(s; Ve, 9) = E(l - S)HL(I — 8, Ty X Ty),

where E(s) = [, Eu(s).

Hence the two integrals I(s;Ug, ¢) and I(s; Ve, ¢) continue to meromorphic or analytic
functions of s if the respective L-functions A(s, 7 x 7) and A(1 —s,7 x 7) do. In addition, if
these L-functions satisfy the standard functional equation, together with the local functional
equation (cf. [3, p. 169]), it follows that the two analytically-continued integrals are in fact
equal.

In what follows, we abuse notation and identify GL,_; with its image in P, via the
embedding h +— (" ). We now prove a slight generalization of [3, Prop. 10.2]:

Proposition 3.1. We have U¢(g) = Ve(g) for all g € GL,(F) GLy—1(Ar) Z,(Ar) Ko(n).
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Proof. Since Ko(n) (resp. Z,(Ap)) acts on &£} (resp. o ® £7) through the central character,
it is sufficient to prove the identity for g € GL, (F) GL,_1(Ag). First, we prove it for g €
GL,_1(Ar). Asin the proof of [3, Prop. 10.2], this follows from the Langlands spectral theory,
provided that one knows the expected analytic properties of A(s, 7 x 7) for all unramified,
generic, automorphic subrepresentations 7 of GL,_1(Ar). Here we only assume these for
unitary isobaric representations. Our proof proceeds by passing from unitary to non-unitary
isobaric representations, and then to generic subrepresentations.

To that end, we first take 7; to be the isobaric sum of n — 1 trivial characters, so that
A(s, 1) = Ep(s)" !, where p(s) is the complete Dedekind zeta-function, and A(s, 7 x 1) =
A(s,m)" L. (This follows from the multiplicativity property in Remark 1, which will be put
to repeated use throughout this proof without further mention.) Thus, by our hypotheses,
A(s, )" continues to an entire function of finite order and does not vanish identically.

Hence,
AN 1 d
X(S, 7T> = m@ lOg(A<S, W)n_l)
has meromorphic continuation to C.
Next, we take 1 to be the isobaric sum of one trivial character and n — 2 copies of the
character || - || for a fixed t € R, so that A(s, ) = &r(s)ér(s +it)" 2 and A(s, 7 X 1) =
A(s,m)A(s +it, 7)" 2. Then as above we find that

/ /

A :
K(S,ﬂ') +(n— Q)K(S +it, )

has meromorphic continuation to C and has non-negative integral residues at every point.
Now, since AX(S, 7) has at most countably many poles, there exists ¢ € R such that AX/(stit, )

/ . ! . . .
and %(S,TI‘) have no poles in common. Hence, Ax(s, 7) has non-negative integral residues,

and therefore A(s, 7) continues to an entire function. Moreover, from the functional equation
AGs,m)" P = A(s,m x 1) = e(s, 7 x T)A(l — 8,7 x 71) = e(s,7)" 'A(L — 5, 7)" !,

we derive

A(‘S?W) = HJE(S?W)A(l - 37%)7
where g is an (n — 1)st root of unity (which may depend on ), and similarly the finite order
of A(s, ) follows from that of A(s,7)" 1.

Now, let o be an unramified unitary cuspidal representation of GL,.(Ag) for some r < n,
and let 73 be the isobaric sum of o and n — 1 — r copies of || - |* for ¢ € R. Then arguing
as above we see that A(s, 7 X o) continues to an entire function of finite order, and from the
functional equations for A(s,m X 73) and A(s, ), we derive

A(s,m x o) = p"e(s,m x 0)A(1 —s,7 X 7).

Since every cuspidal representation is unitary up to twisting by a power of the determinant,
by shifting s in this equation by a real displacement, we conclude the same properties of
A(s,m x o) for every cuspidal representation ¢, not necessarily unitary.

Fori=1,...,k, let 0; be an unramified (not necessarily unitary) cuspidal representation
of GL,,(Ap), assume that r; + ... +r, =n —1, and put 7 = oy H--- Hoy. Then by the
above we see that A(s, 7 X 7) continues to an entire function of finite order and satisfies the
functional equation
As,mx7)=pu""Fre(s,mx01) - e(s,m X op)A(1 — 8, T XT) =€(s,m x 7)A(1 — 8,7 X T).
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Now let 7/ be an unramified, generic, automorphic subrepresentation of GL,,_1(Afr). By
Langlands’ classification, it can be realized as a subquotient of an induced (parabolic) rep-
resentation of the form IndgL"’l(AF ) (01 ® -+ ® oy) for some cuspidal automorphic represen-
tations o;. Since 7’ is a subrepresentation to begin with, as explained in the proof of [3,
Prop. 6.1], it is in fact a subrepresentation of the induced representation. Now, at a finite
place v where 7] is unramified, by [3, p. 201, proof of Prop. 10.5] 7/ is the full induced
representation; in particular, 7, = 7,, where 7 is the isobaric sum oy B - - - B o). This need
not be the case at archimedean places, but by the argument leading up to (3.1) (with the
roles of m and 7 reversed), we see that L(s,m, X 7/) is a polynomial multiple of L(s,m, X 7,)
and that the corresponding local v-factors are the same. Thus, the analytic properties of
A(s,m x 7') follow from those of A(s,m x 7).

It remains to prove the assertion for any ¢ = (goo, g7) With goo € GL,(Fix), g5 = (95’ 1),
g5 € GLn_1(Apy). To this end, let Fe, = Ue — Vg, where £ = & ® £). Then we have
Fe ((1,g97)) = 0 from the above conclusion. In other words, the linear functional on V;_
given by

€oo = Fe (1, 95))

is trivial. Since s ++ Wg_ is continuous on the Casselman-Wallach completion of V
and the K. -finite vectors are dense in this completion, it follows that F¢_((1,gs)) = 0 for
all smooth vectors {,. Finally, fixing a pure tensor £ in V;_ as in the statement of the
Proposition, we have F¢_(g) = F,_¢.((1,97)) = 0. O

3.3. Congruence subgroups and classical automorphic forms. Let {¢;,...,t,} C A;f
be a set of representatives for the ideal class group of F', with ¢; = 1, and let a; denote
the ideal generated by ¢;, which we assume to be integral. Put g; = diag(t;,1,...,1) €
GL,(Apy). For £ € V., we associate the h-tuple of functions (®¢__ 1,..., e ) given by

Dee j(9) = Uewer((9,95)) = Veeer((9,95))  for g € GLn(Fo).

In the notation of §2, for j = 1,...,h, let us set G; = I'1 j(0r) = I'g;(0F). In concrete

terms,
* 05 e G5

Gi=q¢7€| " :dety € 0

For each j, I'y ;(n) C Iy ;j(n) are then subgroups of G;. For instance, if v = (yi) € ' ;(n),
then the congruence condition on its last row is given by
Yl €NA; Y2 €0, Y — L E
Now, fort=0,1, 5 =1,...,h, let

Pz{aj(n) = Zn(F)P.(F) N GLn(Fw)ngi(n)gj_la

7(n) = Zu(F)Qu(F) N GLy (Fu)g; Ki(n)g;
which are subgroups of I'; j(n) € G; C GL,(F). Since the functions U&X@g? and V&x,@f?- are
left invariant under Z,(F)P,(F) and Z,(F)Q,(F), respectively, and £ is fixed by Ki(n),

we see that ®¢_ ; is invariant on the left by both I'{;(n) and ng(n) for j =1,...,h. We

now need the following result, generalizing [3, Prop. 9.1].
11



Proposition 3.2. For j = 1,...,h, the groups Ffj(n) and F?’j(n) together generate the
congruence subgroup I'y j(n).

Proof. Let v € T'y j(n) be a typical element, and let (as,...,a,) be its bottom row. Recall
that dety is a unit in or. Expanding the determinant along the bottom row, we find that

n

1= Z C;Q;

i=1
for some ¢; € aj, ¢2,...,¢, € op. In particular, (ciai,as,...,a,) € o} is unimodular.
Since n > 3, it follows from the Bass stable range theorem [1, Thm. 11.1] that there are
by, ..., b, € op such that if a; = a; + biciay then (d, ..., a)) is unimodular. Put

7'

1 bocy -+ bpcy
1
g = . y
Tl

so that o € 't ;(n) and (a1, ..., a,)0 = (a1, ), ..., a;,). Hence, replacing y by yo if necessary,
we may assume without loss of generality that (as,...,a,) is unimodular.

Next let m = as0p + ... + a,_10F, so that m + a,0r = 0. In particular, if m is the zero
ideal then a,, is a unit; but then right-multiplying by the matrix

1
1

T= €T (n)
—alaﬁl 0--0 a;l

reduces the bottom row of v to (0,...,0,1), so that y7 € Ff,j (n), and we are finished. Hence,
we may assume that m is non-zero.

Choose y1 € a; \ U5, P, and 2 € Clj_l \ Upgmpaj_l. Then zy; € o is invertible modulo
m. Let 2’ € o be a multiplicative inverse of zy; (mod m), and set u; = 22’ € aj_l, so that
w1y = 1 (mod m). Further, since aj’laj = op, there are elements uo, ..., ux € a;l and
Ug,..., U € a; such that 1 = ZkK:2 upvg. Setting yp, = (1 — wyyr)vp € a;m for kb > 2, we
have

K K’
1= Z upyr and  a, + (1 —a,) Z uryry =1 (mod m)
k=1 k=1

for K’ =1,..., K. Next we set xy = (a, — 1)ug € a;ln so that
K
an — 1= Ty,
k=1
and a, — Zsz/l Yk is invertible modulo m for K/ =0, ..., K.

By unimodularity there exist ds, ..., d, € op such that dsas + ...+ d,a, = 1. If we put

1
dz(xl—al) 1 1 —Y1
= : .. ) 01 = )
1 1

dn (371 _al)

Q P _
then 7, € Fl,j(n), oy € I't;(n), and (ay,...,a,)T101 = (21,02, ..., 01,0, — T1y1). More-
over, since a, — x1y; is invertible modulo m, we have m + (a, — x1y1)op = op, so that
(agy...,an_1,a, — x1y1) is again unimodular. Thus, we may repeat the construction with

12



K’ . .
an replaced by a, — > ,_, xpyy for K’ =1,..., K — 1, obtaining matrices 75,09, ..., Tk, 0k
such that

(a1,...,an)T101 - Tkox = (Tk, A0, ..., an_1,1).

Finally, applying the matrix

1 e I';(n)
—XTg —a2 -+ —Gp-—1 1

reduces the bottom row to (0,...,0,1), and we are finished. O

Thus, for each j, the function ®_; is left invariant under I'y ;(n). Indeed, these are
classical automorphic forms. To be precise, observe that for each j, x, also determines
a character of I'g;(n) that is trivial on I'; ;(n), which we continue to denote by x.. Let
A(To;(n)\ GL,(Fxo); wr.., X, ') denote the space of classical automorphic forms f on GL,, (Fy)
satisfying

F(v9) = x5 (1)f(g) for all v € To;(n) C GL, (Fi),
f(z9) = wa(2)f(g) forall z € Z,(Fy).

Then it follows that ®¢_ ; belongs to A(To;(n)\ GLy(Fao); wr, Xa')- (The relevant growth
properties follow from [4].) The character y_ ' is usually referred to as the Nebentypus
character.

Now, let A(w,) denote the space of automorphic forms on GL,,(Ar) which transform under
the central character w,. Then the isomorphism (2.1) induces a topological isomorphism

(3.4) Alwn) 1™ 22 TT A5 (m)\ GL (Foo): s X )-

J=1

In particular, the family of functions {®¢_ ;}"_, determine a global automorphic form ®_
through this isomorphism. Explicitly, given g € GL,(Afg), choose j (which is uniquely
determined) and v € GL,(F) so that vg € g; GL,,(Fx)Ki(n); then ®¢_(9) = Pe.. i (VooGoo)-
One checks that this is well defined, in the sense that it is independent of the choice of v. In
the reverse direction, as mentioned above, we have

De i(g) =P (g9,9;) forallge GL,(Fx), j=1,...,h.

For later reference, we note that ®,_ satisfies the relation

(3.5) De.(9) = Ugoweo(9)  for g € Pu(Ar),

which readily follows from its construction.

3.4. Hecke eigenforms and automorphic representations. We continue with the no-
tation of §3.1. Tt is clear that (3.4) is an isomorphism of (gs, K )-modules. Then the
mapping & — D¢ gives us a canonical embedding ¢ : V; — A(wx) of (goo, Koo )-modules.
Moreover, since T, is irreducible, the center Z of U acts on V,__ through a character, say
A. Let (I, W) be the smallest GL,,(Ap)-submodule of A(w,) containing ¢(V;_ ), which is
admissible according to [2, Prop. 4.5]. Indeed, for a fixed &, # 0, W = H x . In [3,

Prop. 10.4], Cogdell and Piatetski-Shapiro show that II consists of Hecke eigenforms for an
13



appropriate Hecke algebra, under the assumption that A~ = 1. Our proof departs from their
approach in what follows.

For each v, as mentioned in §3.1, 7, induces an action of H,, which we continue to denote
by m,. For A a finite collection of irreducible representations of K, let ex € H,, be the
corresponding idempotent. We write V;__(A) to denote the image of the operator 7o (ea), i.e.
Vi (A) is the sum of the d-isotopic components V;_ (0) for 6 € A. This is a finite-dimensional
vector space since T, is admissible. Further, if V; _(A) # 0, then it is an irreducible module
for the (unital) subalgebra Ho.(A) = ea * Hoo * ea. Before we proceed further, we need the
following basic result from the theory of finite-dimensional representations of unital algebras.

Lemma 3.3. Suppose A and B are unital algebras over C. Set C' = A ® B, and suppose
(p, E) is a finite-dimensional representation of C. Let M be a simple A-module, and set
M’ = Homu(M, E). Consider the left B-module structure of M' coming from that of the left
B-module E, and regard M & M' as a C-module. Then the natural map o : M @ M' — FE
induced by v @ f — f(v) is a monomorphism of C-modules.

Proof. First, it is straightforward to see that a is a morphism of C-modules. Let I =
Anny(M); then [ is cofinite and, since M is a simple A-module, it follows that A/I = M,,(C)
for some n. Thus, by reducing to A/I ® B, we may assume that A is simple Artinian.
Now, let {vy,...,v,} be a basis for M, and let ej; € A = M,(C) be the matrix units
with respect to that basis. If z = " v, ® f; € M ® M’ is such that a(xz) = 0, then
O=ep-a(x)=alen >, 0® fi) = (v ® fi) = fi(uvg), for all k, 1. Thus, f; =0 for all [, i.e.

x = 0, and hence « is injective. 0
Next we show that one can split 7., off from II in the following sense.

Lemma 3.4. There ezists a smooth admissible GL, (Ap, r)-module (I1;,U) such that
Tso ® Hf = H

as GL,,(Ap)-modules. Further, there exists @y € U such that for any e € Vi, oo @ Of —
D¢ under this isomorphism.

Proof. Let (Il;,U) denote the GL,(Ag)-module Homy, (V,;_,W) and let &y € U be the
element &, — ®¢_. Then ®; € UKI™ as every ®¢_ is right K;(n)-invariant. Since W
is smooth and admissible, and V. is a cyclic H.-module, it follows that U is a smooth,
admissible GL,,(Af s)-module. There is a natural homomorphism of GL,,(Ag)-modules from

(3.6) Vi, @ Homy (Vo , W) — W,

and it is clear that {oo ® @y = P, for { € V,_, under this morphism. It is surjective
since W is cyclic and generated by any nonzero ®¢_. Finally, in order to show that (3.6)
is injective, it is sufficient to do so after fixing a level H = [], _. H,, a compact open
subgroup of GL, (Apf), and an infinity type A. To this end, take A = H(A), B =
H(GL,(Ary), H) = Qoo H(GL,(F,), Hy), M =V, _(A), and E = W(A, H), and apply
Lemma 3.3. 0

Now, let T" be the smallest finite set of places of F' containing the archimedean places such
that 7, is unramified at all v ¢ T. By construction II is also unramified at every v ¢ T.
Let HT = @ ,¢r H(GLA(F,), K,) denote the spherical Hecke algebra, which is known to

be commutative. Then, as explained in [3, §2, Appendix], H” is naturally a subalgebra of
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H(GL,(Ap;), Ki(n)), and hence acts on the space of K;(n)-fixed vectors UX1™ . Therefore,
U1 has a basis consisting of Hecke eigenvectors for the action of the algebra HT. In
particular, we may write

(3.7) Py = Z Nis
i=1

where 7; is a Hecke eigenvector with eigencharacter A;, say.

For 1 <i <m, put V; = Cn;, and let U; be the smallest GL,,(Ap s)-submodule of U that
contains 7;, viz. U; = H; x V;. Then U; is admissible and UZ-KT = V;, where KT = vaT K,
is the maximal compact open subgroup of GT. Now, let (7}, U/) denote the unique spherical
representation of G associated to A;. Then, by an argument identical to that in Lemma 3.4,
it follows that there is an admissible representation U/ of HveT GL,(F,) such that U; =

U;®@U," as H-modules, or equivalently, as representatlons of GL (AF 7). Therefore, we may
assume that each 7, is of the form 7,7 ® @), 41 17, where 77 is the spherical vector at v
(normalized to give the correct local L-factor, as in (3.2)), and 7; 7 is a vector belonging to
the space of an admissible representation of [[ver GL,(F}).
V<00

Lemma 3.5. There exists a unique isobaric automorphic representation m; such that w! =
®U¢T T 18 the unique irreducible admissible representation of GL,(AL) associated to the
character A;.

Proof. By [3, Thm. A, there exists an irreducible (but not necessarily isobaric) automorphic
representation II; with the required property and also satistying 1I; ., = 7. We may realize
I1; as a component of an induced representation = = Ind(o; ® - - - ® o) of Langlands type,
where the o; are cuspidal representations of GL,, (Ap) with r; + ... 4+ ry = n. Since 11, is
unramified for v ¢ T, it follows that the representation =, = Ind(cy, ® - -+ ® 0y,) is also
unramified and that II;, is the unique spherical constituent of =,. Let m; be the isobaric
representation oy B --- H o,. Then, since the Langlands quotient of =, is the same as the
unique spherical constituent for an unramified place v, it follows that m;, =11, , for v ¢ T.
The uniqueness of 7; follows from the strong form of multiplicity one (cf. Remark 1). O

3.5. A linear relation of L-functions. Next, given any automorphic form ¢ on GL,,(Ag),
we recall that its Whittaker-Fourier coefficient Wy (for a fixed v) is defined as

Wilo) = [ g 0 u) d
Un(F)\Un(AF)

Lemma 3.6. Assume the measure is normalized so that F\Ap has unit volume. For &y, €
Vi, let O¢ be as defined after (3.4). Then its Whittaker—Fourier coefficient satisfies

Wa, _(9) = Welg) for g € Pu(Ap),
where £ = €50 ® gjoc_

Proof. For any subgroup N C U, we write [IN] to denote the adelic quotient N(F)\N(Ag).

Also, for m < n, we view GL,, as a subgroup of GL, via the diagonal embedding h +—>
15



(" 1,_..)- It follows from (3.5) that for g € P,(Ap),

Wee o) = [ Utwatan=[ ¥ (F)Wg((7 ) ) B o,

~€EU,_1(F)\ GLy

_ T } /[ ] W§< <7 1) ug) D) du

~YEUp—1(F)\ GLp—1

Let us write v = wjug, u; € Np(Ap), us € U,_1(Ar) C GL,_1(Ar) C GL,(Ar). We
further write elements of N, as u(X) = (" ¥), where X is a column vector. Since (7 ;)
normalizes N,,, we get

W= [ wtatxxax [ (7)o ) o) e

YEUn—1(F)\ GLn—1(F)
It is straightforward to check that the first integral in the above expression vanishes unless
v € P,_1(F). Since U,—1(F)\P,—1(F) may be identified with U,_o(F)\ GL,_2(F) via u
(* ), we finally obtain

W= [ we((7 ) ) Fa

VEUp—2(F)\ GLy,—2(F)
We may now argue inductively to obtain the desired conclusion. 0

Let ®; € W be the automorphic form corresponding to &, ® n;. Then it follows from the
above lemma and (3.7) that

We (h 1) => W, (h 1) for h € GL,_1(Ap).
=1

Choosing £ so that We_(I,) # 0, we evaluate this at (I,_1,h) for h € GL,_1(Ags) and
cancel the factor of We_(I,,) on both sides to get

I We (hv 1) = Zwi(h 1) for h € GLy_1(Apy).
=1

<00

For a finite v € T, according to [11, Prop. 3.2], we can choose h? € GL,_;(F,) so that
ng(hg 1) # 0. Then since n; is of the form 7,7 ® ®U¢T 77?,117 we may evaluate the above at

<H$§Zo RO, h) for h € GL,-1(AF) and divide by [Tper Wep(" ), o obtain

(3.8) I We (h 1) = i e [ [ Wi, (hv 1) for h € GL,_1(AZ),

vgT i=1  vgT
for some constants ¢; € C.
Note that GL;(Ap) = A7 is a subgroup of GL,,_1(Ar) as described at the beginning of the
proof of Lemma 3.6. So, for any unramified idele class character w of F', we may multiply
(3.8) by w(h)||det k=" for h € (AL)*, integrate over h and use (3.2) to get

(3.9) L'(s,m@w) =Y L' (s,m®@w).
=1
16



Here LT denotes the partial Euler product over all places v ¢ T, viz.

(3.10)
L (s, m Q@ w) HH , LTs7rz®w HH
veT j=1

vgT j=1

)

aOU]wv(wv)q 5 azvjwv(wfu)q s

where oy, ; (resp. a;, ;) are the Satake parameters of 7, (resp. m;,).

4. SOME MULTIPLICATIVE NUMBER THEORY

In this section, we extend some of the basic notions of multiplicative number theory to
number fields. First, let Zp denote the set of non-zero integral ideals of 0 and Pr C Zr the
set of prime ideals. Let Dp denote the set of all functions f : Zr — C. Given f,g € Dp, we
define their Dirichlet convolution f * g € Dp via

f*g Zf 1, Va e 1lp.

belp
bDa

This gives Dp the structure of a commutative ring with multiplicative identity

1 ifa=op,
1DF(a>:{ -F

0 otherwise.

In fact, one can show that Dp is an integral domain, though we will not need that in what
follows.
For any f € Dp, we say that

(i) f is multiplicative if f(op) =1 and f(ab) = f(a)f(b) for every a,b € Zp satisfying

a+b=op;
(ii) f has polynomial growth if there exists ¢ € R such that f(a) = O(N(a)?) for all
ac IF,

(iii) f is p-finite if there is a finite set S C Pp such that f(a) = 0 for every a € Zp which
is contained in a prime ideal p € Pg \ S.

Further, we call multiplicative functions f, g € Dp equivalent if there is a finite set S C Pp
such that f(p*) = g(p*) for all p € P\ S and all k > 1, and inequivalent otherwise.

Finally, let Mr C Dp and Rr C Dp denote the subsets of multiplicative and p-finite
elements, respectively. It is easy to verify that Rp is a subring of Dr and My is a subgroup
of the unit group Dj.

Lemma 4.1 (adapted from [13], Thm. 2). Let m be a positive integer and let fi, ..., fr € Mp
be pairwise inequivalent, multiplicative functions. Then fi,..., f, are linearly independent
over Rp, i.e. if c¢1,...,cm € R satisfy Z;”zl c;* f; =0, then c; = ... = ¢, = 0 identically.

Proof. Suppose otherwise, and let f1,..., f,, € Mp and cy,...,c, € Rr be a counterexample
with m minimal; in particular, none of ¢y, ..., ¢, vanishes identically. Since all elements of
My are units in Dp, we must have m > 1. Let S C Pr be a finite set of primes such that
cj(a) =0 for j =1,...,m whenever a has a prime factor outside of S. Since f; and f, are

inequivalent, there exists p € Pr \ S and k € Z+q such that fi(p¥) # fo(p*).
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We consider the equation
(4.1) > ik fi(a) =0
j=1
with a = p*b for all b co-prime to p, obtaining

(4.2) ij(Pk)ZCj(n)fj(b“_l) =0.

nob
Next we replace a by b in (4.1), multiply by f;(p*), and subtract (4.2) to get
> (FPF) = [ eim) fi(bnh) = 0.
j=2 nob

Finally, for j = 2,...,m we define

0 if a Cp,
fi(a) otherwise,

¢j(a) = (fr(p*) — fj(pk))cj(a) and fj(a) = {

so that f] € Mp, ¢; € Rp, ¢ is not identically 0, and

> & fi=0.
j=2
This contradicts the minimality of m and completes the proof. 0

When F' = Q, it is well known that one can identify any f € Dp of polynomial growth
with its Dirichlet series >~ | f(nZ)n~*, which defines a holomorphic function in a right half-
plane. When F # Q, the map f +~— > ;- f(a)N(a)™® is still a ring homomorphism, but it
is no longer injective since there may be multiple ideals with the same norm. However, we
recover a one-to-one correspondence if we include the twists by unramified Groflencharakters,
as the following lemma shows.

Lemma 4.2. Let f € Dp be a function of polynomial growth. Suppose that there exists
o € R such that

> f@)xw(@)N(a) ™ =0

aclp
for every unramified, unitary, ideéle class character w and all s € C with R(s) > o. Then
f =0 identically.

Proof. Collecting the terms with a common value of N(a), we have

Yot Y f@xe(a) =0

aclp
N(a)=n

for all unramified unitary characters w and all s with R(s) sufficiently large. Considering the
asymptotic behavior as s — oo, we find that Y aez, f(a)xw(a) vanishes for all unramified

(a)=n
Ww.
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Fix a choice of n, and let a4,...,a,, € Zr be the ideals of norm n. It suffices to show that
C™ is spanned by the vectors (xw(a1), ..., Xw(@m)), With w running through all unramified
characters. If that is not the case then there exist ¢q,...,c,, € C, not all zero, such that
cXw(a1) + ...+ emXxw(an) = 0 for all such w. Reordering if necessary, we may assume that
c; #0for1 <j<kandc; =0for k£ <j <m. Further, by scaling we may assume that
c1 = 1, so that

1+ caxolazar) + ... + cuxo(apart) = 0.

Since this holds for all unramified characters w, we are free to replace w by any unramified
twist ww’. In particular, letting w’ run through all characters of the class group and taking
the average, all terms for which ajafl is not a principal fractional ideal vanish. Thus, we
may assume without loss of generality that ajafl is principal for each j = 2,... k, so that
aja; " = (v;) for some 4; € F*. Since w is unramified, we have y,(a;a;") = x.((v;)) =
weo (7)1, s0 the above becomes

1+ cawoo(72) ™ H 4 .+ Crwoo(k) "t = 0.

Next we replace w by the twist w(w’), take the average over £ € {0,1,...,L — 1}, and
let L — oo. Recall that any idele class character is unitary up to a power of || - ||; since
17illo = N(aja;t) = 1, it follows that w’_(+;) is a complex number of modulus 1, so that

1wl (y) = 1,
ézﬂo—Zw ()7 {

0 otherwise.

Now, for any j =2,...,k, a; and a; are distinct ideals, so v, is not an element of 0. Since
we are free to choose any w’ in the dual of 0:\{y € FX : ||y||oc = 1}, we may always arrange
it so that w/_(v;) # 1 for a particular j. Thus, by repeating the above averaging procedure,
all of the terms for j = 2, ...,k vanish, so we are left with the absurd conclusion 1 = 0. This
completes the proof. O

We conclude this section with two consequences of the above for automorphic L-functions
that may be of independent interest.

Corollary 4.3 (Linear independence of automorphic L-functions). Let ny,...,n,, be pos-
itive integers, and for each i = 1,...,m, let 1, = @), T;» be an irreducible automorphic
representation of GL,, (Agr). For each pair i # j, assume that there is a finite place v such
that m;, and 7j, are both unramified and m; ,, 2 ;.. Let S be a finite set of places containing
all archimedean places, and consider the partial L-functions

Ls(s, QW)= H L(s, 0 ®wy),

vgS
where w is an unramified idéle class character. Then, if co,...,cn € C are such that
(4.3) co+al®(s,m@w)+... +cnl® (s, @w) =0
for every unramified w, then co = ... = ¢, = 0.

Proof. Let A, (a) denote the Dirichlet coefficients of L(s i), so that
L(s,m @ w) Z Ar; (@ N(a)™®

19



for (s) > 0 sufficiently large. Next let m be the product of the prime ideals corresponding
to the finite places in S, and define

S (a) = {)\m(a) ifa+m=op,

0 otherwise,

so that
L¥(s,m@w) =Y A (a)yu(a)N(a)™".

By Lemma 4.2, the linear relation (4.3) implies that colp, (a)+ci A3 (@) +...+cnA2 (a) =0
identically. Moreover, by restricting a in this equality to the ideals co-prime to a fixed
modulus, we are free to replace S by any larger finite set of places. In particular, we may
assume without loss of generality that S contains all finite places of ramification of 7y, ..., m,,.

Next, following the proof of Lemma 3.5, for each ¢ there is a unique isobaric automorphic
representation II; = @, I, of GL,,(Ar) such that II,, = 7, for every finite place v at
which 7, is unramified. Then for any ¢ # j, by hypothesis there is an unramified finite
place v for which II, , = 7;, 2 7, = 1I;,, so that I1I; 2 II;.

Finally, since S contains all ramified finite places, we are free to replace m; by Il;, so we
may assume without loss of generality that m; is isobaric. Then, by strong multiplicity one
for isobaric representations, /\il, cee )\fm are pairwise inequivalent, multiplicative elements
of Dp. Moreover, for every unramified place v, L(s,m;,) is not identically 1, so each )\;i, is
also inequivalent to the identity 1p,. The conclusion now follows from Lemma 4.1. O

Corollary 4.4 (Algebraic independence of cuspidal automorphic L-functions). Assume
the hypotheses of Corollary 4.3, and suppose that m, ..., 7, are cuspidal. Then, if P €
Clxy, ..., Tm) is such that

P(L%(s,m ®w),...,L5(s, 7, ®w)) =0

for every unramified w, then P = 0 identically.

Proof. We may write P = Zel,...,em Cepem @it -+ - x&m as a linear combination of monomials.
For each non-zero m-tuple (ey,...,e,), we may define
ey ey =mB8B---BmB---Bm, B---Bmp,.
—_—— —_——

e1 times em times

Then, by [8], the I, .
LS(57 Hel,m,em ® W) = LS(57 & w>el e LS(57 T & W)ema

are pairwise non-isomorphic isobaric representations satisfying

and the conclusion follows from Corollary 4.3 applied to these. O

Remark. This result should be compared to that of Jacquet and Shalika [8], who proved the
multiplicative independence of cuspidal L-functions, and thus showed the existence of the
class of isobaric representations. In our notation, this means that for any solution to

Lo(s,m @w) - L3(s, T @ w)°™ = 1,

where the 7; are pairwise non-isomorphic cuspidal representations and cy,...,c, € C, one
has ¢; = ... = ¢, = 0. (Here we interpret L°(s,m; ® w)% to mean exp(c; log L% (s, m; @ w)),
where log L° (s, m; ® w) is the unique logarithm with zero constant term in its expansion as

a Dirichlet series.) In particular, taking the ¢; to be integers, one sees that for any isobaric
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representation 7, L°(s, 7®w) has a unique factorization into products of cuspidal L-functions
L%(s,m ® w). Note that Corollary 4.4 constitutes a strengthening of this particular case,
from multiplicative independence to algebraic independence.

5. CONCLUSION OF THE PROOF

By Lemma 4.2 and (3.9)—(3.10), there are unique functions fo, f1,..., fm € Mp such that

> fol@xw(@N(a)™ = LT (s, 7 @ w)

aclp
and

> filaxw(@N (@)™ = LM (s,m; @ w)

aclp
for y = 1,...,m and all unramified idele class characters w, and they are related by the
identity

(51) fo = Zijj.
j=1

By collecting common terms of (3.9) if necessary, we may assume without loss of gen-
erality that the 7; are pairwise non-isomorphic. Then strong multiplicity one for isobaric
representations (see Remark 1) implies that, for any ¢ # j, the local L-factors L(s,m;,) and
L(s,m;j,) differ at infinitely many places, and it follows that f1,..., f,, are pairwise inequiv-
alent. Thus, by Lemma 4.1, f, must be equivalent to f; for some j € {1...,m}, and by
reordering if necessary we may assume that f; is equivalent to f;.

Let S C Pr be the finite set of primes p for which fo(p*) # f1(p*) for some k > 1. For
Jj = 0,1 we factor f; as f; * f; , Where f]'? , f}j € My are the unique multiplicative functions
satisfying

Pt = {fj@’“) TPES, 0 e - {o ifpes,

! 0 otherwise fi(p*) otherwise.

Note that f; and f? are p-finite, and fg = ff , so we may rewrite (5.1) in the form
(o ft = fo)* fi+ ey =0,
j=2

Invoking Lemma 4.1 again, we see that ¢; = 0 for j = 2,...,m, and thus (5.1) becomes

fo=rcifr.

Evaluating both sides at op, we find that ¢; = 1, and it follows that L(s,m,) = L(s,m1,)
for all places v ¢ T. Since 7, is unramifed for all v ¢ T, we conclude that 7, = m,, as

desired.
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