
Martingales

The unit will cover topics related to martingale convergence, possibly including materials on uniformly

integrable martingales, and will be mostly restricted to discrete-time martingales. Chapters 3-4

are partially based on an earlier set of notes on martingales by Stas Volkov.

1 Background

1.1 Probability Theory Background

Recall:

Definition 1 A probability space is a triple (Ω,F ,P).

Ω is the sample space, i.e. the set of all possible outcomes. F is a σ-field (also called σ-algebra), defined
to satisfy these axioms:

1. ∅ ∈ F ;

2. if A1, A2, . . . ∈ F , then
⋃∞
i=1Ai ∈ F ;

3. if A ∈ F , then Ac ∈ F .

The σ-field F consists of events whose probabilities we may want to calculate. These events (sets) are
said to be F-measurable (or simply measurable if it is clear what the underlying σ-field is). Note that by
definition, an event is measurable, but sometimes we use the term “measurable event” to emphasize this
fact. In particular, ∅ ∈ F is known as the impossible event, Ω ∈ F is known as the certain event, and
intersections of events are also events. We require infinite unions of measurable sets to be measurable,
because not requiring this will make life difficult if Ω is infinite, e.g. [0, 1] or R.
Examples of sample spaces

• toss a coin once or twice: {H,T}

• toss a coin until a head turns up: {ω1, ω2, . . .}. May wish to study the probability of requiring an
even number of tries

• choose a number uniformly in [0, 1]

Examples of σ-fields

• {∅,Ω}: absolutely useless

• {∅, A,Ac,Ω}: smallest σ-field containing {A}

• {0, 1}Ω (power set of Ω, i.e. the set containing all subsets of Ω), always a σ-field. Fine for finite
sets, but not useful (too large) for infinite sets (for deep reasons beyond the scope of this unit)

• σ(C), σ-field generated by a collection of events C, smallest σ-field containing all events in C, i.e.
intersections of all σ-fields containing events of C (why is the intersection of two σ-fields still a
σ-field?)

• Borel σ-field B(R), σ-field generated by open sets of R (same if generated by closed sets), contains
(a, b), (a, b], [a, b), [a, b], etc.

• tossing a coin twice, F12 = σ({{HH}, {HT}, {TH}, {TT}}), F1 = σ({{HH,HT}, {TH, TT}})

From the last example, one may be able to see vaguely that σ-field is a way to encode information about
the experiment. One can only distinguish between two outcomes given the information available to us in
the form of σ-field if they are in different subsets (which we call atoms, but we need to note that unions
of atoms are still atoms and there may not be a “smallest” atom). If two outcomes are always in the
same atom, then they cannot be distinguished

A probability measure P is a function P : F → [0, 1] satisfying these axioms:

1. P(∅) = 0,P(Ω) = 1;
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2. (σ-additivity) if A1, A2, . . . ∈ F are pair-wise disjoint, i.e. Ai ∩ Aj = ∅ for all i, j such that i 6= j,
then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

The second axiom in the definition of F and P are related. A statement about outcomes is said to hold
almost surely, or shortened to a.s., if it has probability 1.

Proposition 1 If Fn ∈ F (n ∈ N) and P(Fn) = 1 for all n, then P(
⋂
n Fn) = 1.

It is important that the intersection in the above proposition is countable. Uncountable intersections
(unions, sums, etc) can lead to trouble.

Definition 2 A σ-field G is a sub-σ-field of the σ-field F if G ⊂ F .

Definition 3 A random variable X on (Ω,F ,P) is

1. a function X : Ω→ R

2. (measurability) with the property that {ω ∈ Ω : X(ω) ≤ x} ∈ F for each x ∈ R (or we can write
X−1((−∞, x]) ∈ F).

σ-field F ↔ “information”

sub-σ-field G ⊂ F ↔ “subset of information”

X is F-measurable ↔ X can be decided based on information in F

At this point, one may wonder what the point of the measurability condition is. In addition to making
all the mathematics work out without contradiction, the point to be emphasized for this unit is that it
has to do with what kind of random variable can be defined with the information coded in F . It is easier
to think of this in the finite setting, i.e. when Ω is finite and the probability of any event can only be
in {x1, . . . , xn}. In this case, each atom in F can indeed be written as unions of minimal atoms (i.e. no
proper subset of minimal atom is an atom). In addition, the measurability condition is now equivalent to

2’ (measurability in the finite setting) {ω ∈ Ω : X(ω) = xi} ∈ F for each xi, . . . , xn (or we can write
X−1(xi) ∈ F).

If X is F-measurable and ω1 and ω2 are such that x1 := X(ω1) 6= X(ω2) =: x2, then X−1(x1) and
X−1(x2) are two disjoint atoms. Therefore, if one can distinguish ω’s using X, one can do the same with
F . In this sense, the information generated by X is a subset of that contained in F .

Definition 4 The σ-field generated by a collection of random variables {Xn : n ∈ N} is the smallest
σ-field in which each Xn is measurable, i.e. intersections of all σ-fiels in which each Xn is measurable.

Fact. Arbitrary intersections of σ-fields are still σ-fields.
Examples of measurability

• We toss a coin twice and let ω = (ω1, ω2) ∈ {H,T}2. Define F12 = σ({{HH}, {HT}, {TH}, {TT}})
and F1 = σ({{HH,HT}, {TH, TT}}). Define for n = 1, 2 (and . . . for the next example),

Xn :=

{
1, if ωn = H
0, if ωn = T

.

Then X−1
1 (1) = {HH,HT}, X−1

1 (0) = {TH, TT}, X−1
2 (1) = {HH,TH}, X−1

2 (0) = {HT, TT}.
So both X1 and X2 are F12-measurable, but only X1 is F1-measurable (actually F1 is generated
by X1). Therefore X2 is a random variable in (Ω,F12) but not (Ω,F1). The reason is that F1 does
not contain information necessary to distinguish between different outcomes of X2.
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• We toss a coin infinitely many times, then Ω = {H,T}N and we write ω = (ω1, ω2, . . .) for a typical
outcome. We define

F = σ({ω : ωn = W} : n ∈ N,W ∈ {H,T}),

i.e. F is generated by outcomes of each throw. So in particular, each Xn is measurable and thus a
random variable. Then

σ(X1) = {∅, {H ∗ ∗ ∗ . . .}, {T ∗ ∗ ∗ . . .},Ω}
σ(X1, X2) = σ({{HH ∗ ∗ . . .}, {TH ∗ ∗ . . .}, {HT ∗ ∗ . . .}, {TT ∗ ∗ . . .}})

= {∅, {HH ∗ ∗ . . .}, {TH ∗ ∗ . . .}, {HT ∗ ∗ . . .}, {TT ∗ ∗ . . .},

{H ∗ ∗ ∗ . . .}, {T ∗ ∗ ∗ . . .}, {∗H ∗ ∗ . . .}, {∗T ∗ ∗ . . .},
{
HH
TT

∗ ∗ . . . ,
}
,

{
HT
TH

∗ ∗ . . . ,
}
,

{HH ∗ ∗ . . .}c, {TH ∗ ∗ . . .}c, {HT ∗ ∗ . . .}c, {TT ∗ ∗ . . .}c,Ω},

where ∗ means that it can take on either H or T , so {H ∗ ∗ ∗ . . .} = {ω : ω1 = H}. In σ(X1, X2),
{HH ∗ ∗ . . .}, {TH ∗ ∗ . . .}, {HT ∗ ∗ . . .}, {TT ∗ ∗ . . .} are the minimal atoms. With the information
available to us in σ(X1, X2), we can distinguish between ω’s where the first (or second) outcomes
are different. But if two ω’s have the same first and second outcomes, then they fall into the same
atom and we cannot distinguish between them.

A useful way to model this experiment is by mapping each ω to a number x in [0, 1] (by mapping
H 7→ 0, T 7→ 1, and ωn 7→ nth digit in the binary expansion of x), then σ(X1) contains information
about the first digit, σ(X1, X2) contains information about the first two digits, etc. There is a slight
problem with this mapping, since (0, 1, 1, . . .) and (1, 0, 0, . . .) map to the same number, but this
is not really a problem over which one loses sleep. (why?) With σ(X1), we can only tell if x is in
[0, 0.5] or [0.5, 1]. With σ(X1, X2), we can tell if x is in one of four intervals [0, 0.25], [0.25, 0.5],
[0.5, 0.75], [0.75, 1], thus one has more detailed information. As one adds more and more Xn in the
σ-field, the distinguishable intervals become smaller and smaller.

• σ(X) is a sub-σ-field of σ(X,Y ).

Proposition 2 Sums and products of random variables are random variables. A measurable function of
a random variable is a random variable.

This proposition is all but trivial if one does not need to consider measurability. All functions you can
think of are measurable. It is really not easy to come up with non-measurable functions on R. We will not
prove this proposition. Instead, we give some intuitions in terms of information. If X is F-measurable,
then any two outcomes ω1 and ω2 such that X(ω1) 6= X(ω2) must fall into different atoms of F . If
f(X(ω1)) 6= f(X(ω2)), then certainly X(ω1) 6= X(ω2), hence ω1 and ω2 are in different atoms of F . This
means that F has enough information to also distinguish between different values of the random variable
f(X), hence f(X) is F-measurable. The measurability of sums and products of random variables follows
similar intuition: if X(ω1) + Y (ω1) = Z(ω1) 6= Z(ω2) = X(ω2) + Y (ω2), then either X(ω1) 6= X(ω2) or
Y (ω1) 6= Y (ω2), . . .

Definition 5 Sub-σ-fields G1,G2 of F are said to be independent if, whenever Gi ∈ Gi, i = 1, 2, we have
P(G1∩G2) = P(G1)P(G2). Random variables X1 and X2 are said to be independent if the σ-fields σ(X1)
and σ(X2) are independent. Events E1 and E2 are said to be independent if random variables 1E1

and
1E2 are independent.

This definition of independence agrees with the classic definition, and crucially implies that E (XY ) =
E (X)E (Y ) if X and Y are independent random variables (for the expectation we will define a bit later).

1.2 Analysis Background

In AP2, the expectation of a discrete random variable X that takes on values in {xi : i ∈ N} was defined
as

E (X) =
∑
xi

xiP(X = xi).

And for a continuous random variable, the expectation uses integral against the probability density
function. This is really not elegant, requiring different formulae under slightly different circumstances.
With measure theory, the expectation can be defined elegantly using a single definition for both discrete
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and continuous (or other even more exotic) random variables. The detail of such a definition is beyond
the scope of this unit, but we can get some basic ideas on how it is done, which relies on the following
crucial fact:
Fact. A simple random variable Z is one that takes on finitely many values, i.e. Z =

∑K
k=1 ak1Ak for

Ak ∈ F . A random variable X on (Ω,F ,P) can be approximated by simple random variables, i.e. there
exists a sequence of simple random variables Xn such that Xn → X a.s..

The definition is in 3 steps.

Step 1. Indicator functions: for a measurable set A, define E (1A) := P(A).

Step 2. Simple random variablesX that takes on only finitely many values {a1, . . . , an}, i.e. X =
∑n
k=1 ak1Ak

for measurable sets A1, . . . , Ak: define E (X) :=
∑n
k=1 akP(Ak), which agrees with the “classic” def-

inition.

Step 3. Arbitrary X: approximate X by a sequence of simple random variables Xn such that Xn ≤ X but
Xn ↑ X as n→∞ a.s., and define E (X) :=↑ limE (Xn).

Recall different modes of convergence of random variables: almost sure, in probability, in distribution,
and L1 (also known as convergence in mean). Recall the definition of L1 and L2 spaces:

Definition 6 A random variable X on (Ω,F ,P) is L1 if E (|X|) <∞, and L2 if E (|X|2) <∞.

Also recall the definitions of limsup and liminf. Let (xn, n ∈ N) be a sequence of real numbers,

lim supxn := inf
m

{
sup
n≥m

xn

}
=↓ lim

m

{
sup
n≥m

xn

}
∈ [−∞,∞]

lim inf xn := sup
m

{
inf
n≥m

xn

}
=↑ lim

m

{
inf
n≥m

xn

}
∈ [−∞,∞]

xn → x ∈ [−∞,∞] ⇐⇒ lim sup
n

xn = x = lim inf
n

xn

Analogously, for sequences of events En,

lim supEn := (En, i.o.) = (En, infinitely often)

:=
⋂
m

⋃
n≥m

En = {ω : ω ∈ En for infinitely many n}

lim inf En := (En, ev) = (En, eventually)

:=
⋃
m

⋂
n≥m

En = {ω : ω ∈ En for all sufficiently large n}.

The following convergence theorems mostly provide conditions for L1 convergence given a.s. conver-
gence. They are all very useful.

Proposition 3 (Bounded Convergence Theorem) If Xn → X in probability, and |Xn| ≤ M , then
E (Xn)→ E (X).

Proposition 4 (Fatou’s Lemma) If Xn ≥ 0, then lim inf E (Xn) ≥ E (lim inf Xn)

Proposition 5 (Monotone Convergence Theorem) If Xn ↑ X a.s. and Xn ≥ 0 for all n, then
E (Xn) ↑ E (X).

Proposition 6 (Dominated Convergence Theorem) If Xn → X a.s., |Xn| < Y for all n, and
E (Y ) <∞, then E (Xn)→ E (X).
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2 Conditional Expectation

SupposeX and Z are random variables that take on only finitely many values {x1, . . . , xm} and {z1, . . . , zn},
respectively. From classic probability theory, we define condition probability and condition expectation
as follows:

P(X = xi |Z = zj) := P(X = xi, Z = zj)/P(Z = zj)

E (X |Z = zj) :=
∑
i

xiP(X = xi |Z = zj)

Y := E (X |Z) such that: if Z(ω) = zj , then Y (ω) = E (X |Z = zj)

(Similarly, if X and Z are both continuous, we define fX |Z(x | z) := fX,Z(x, z)/fZ(z) for fZ(z) 6= 0. This
is again not elegant, for many reasons: (1) one needs different definitions for different type of random
variables; (2) if X is continuous but Z is discrete, or the other way around, the definition will become
very clumsy; (3) most importantly, it is not so easy to justify that these two definitions are really about
the same thing, e.g. writing fX |Z(x | z) := P(X = x, Z = z)/P(Z = z) is nonsense since the RHS is 0/0.)

In this section, we define the conditional expectation (which is, as it turns out, easier to define than
conditional probability1) in terms of measure theory and σ-fields. This definition, originally due to A.
N. Kolmogorov, is of fundamental and central importance not only to the theory of martingales, but
also to modern probability theory as a whole. Kolmogorov, due to his large contribution to modern
probability theory (and many other fields of mathematics), of which this definition forms a small part, is
now regarded as the founder of this discipline.

Knowing the value of Z is equivalent to partitioning Ω into Z-atoms and knowing which atom has
been picked – no more detailed information is available to us.

Ω G1 = {Z = z1} G2 = {Z = z2} . . . Gn = {Z = zn}
Define G = σ(Z). A set G is in G if and only if it is a union of some (or all) of these atoms. A random
variable Y ′ is G-measurable (which means the information carried by Y ′ belongs in G) if and only if it
is constant on each atom in G (otherwise, using Y ′, we can distinguish between different events within a
single atom in G). In particular, Y = E (X |Z) takes a constant value E (X |Z = zj) on each Z-atom Gj ,
and is thus G-measurable, which leads to the following calculation:

E (Y 1Gj ) = E (X |Z = zj)P(Z = zj) =
∑
i

xiP(X = xi |Z = zj)P(Z = zj) =
∑
i

xiP(X = xi, Z = zj)

=
∑
i,j′

xi1j=j′P(X = xi, Z = z′j) = E (X1Gj ).

Intuition: Y is taken to be constant on each Gj ; this constant is, in a sense, the average of X over Gj .
This calculation can be generalised to all G ∈ G, and thus we conclude that

E (Y 1G) = E (X1G) for all G ∈ G.

Indeed, this is the defining equality of conditional expectation:

Definition 7 (Definition of Conditional Expectation, Kolmogorov, 1933) Let X be an L1 ran-
dom variable on (Ω,F ,P). Let G be a sub-σ-field of F . Then there exists a random variable Y such
that

1. Y is G-measurable,

2. Y ∈ L1,

3. for every G ∈ G, we have E (Y 1G) = E (X1G).

If Ỹ is another random variable that satisfies these properties, then Ỹ = Y a.s.. The random variable Y
is called (a version of) the conditional expectation E (X | G) of X given G.

We shall not prove the above is well defined in this set of notes, please refer to Williams for detail.
As an example, in the experiment where the coin is tossed infinitely many times, the random variable X1

partitions Ω into two atoms. The random variable Y1 := E (X1 +X2 |X1) is 0.5 if X1 = 0 (which is the
average of X1 +X2 over all outcomes in {0 ∗ ∗∗}), and 1.5 if X1 = 1.

1Conditional probability is rarely used in modern research in probability anyway.
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(Ω, σ(X1)) {0 ∗ ∗ ∗ . . .} {1 ∗ ∗ ∗ . . .}
Y1 0.5 1.5

But the random variable (X1, X2) partitions Ω into four atoms. The random variable Y2 := E (X1 +
X2 |X1, X2) is completely determined by the conditioning.

(Ω, σ(X1, X2)) {00 ∗ ∗ . . .} {10 ∗ ∗ . . .} {01 ∗ ∗ . . .} {11 ∗ ∗ . . .}
Y2 0 1 1 2

The conditional expectation Y = E (X | G) defined above can be regarded as the best least-squares
estimator of X given the information in G. This fact can be seen by the following calculation. Suppose Y ′

is a random variable that is G-measurable (i.e. it only uses information available in G), then the square
error of the estimator Y ′ is

E ((X − Y ′)2) = E ((X − Y + Y − Y ′)2) = E ((X − Y )2) + 2E ((X − Y )(Y − Y ′)) + E ((Y − Y ′)2).

In the middle term above, V := Y − Y ′ is G-measurable, and thus we can take better and better
approximations using Vn =

∑m
k=1 ak1Gk , where Gk ∈ G, such that Vn → V as n→∞. Then

E ((X − Y )V ) = lim
n→∞

n∑
k=1

akE ((X − Y )1Gk) = 0,

since E (X1Gk) = E (Y 1Gk) for each Gk ∈ G. (In order to turn this into a rigorous proof, one simply splits
the relevant terms into positive and negative parts and then applies the monotone convergence theorem.)
This show shat for any G-measurable Y ′,

E ((X − Y ′)2) ≥ E ((X − Y )2).

Proposition 7 (Properties of Conditional Expectation) (a) E (E (X | G)) = E (X), E (X | constant) =
E (X), E (E (X |Y ) |Y ) = E (X |Y ).
(b) If X is G-measurable, then E (X | G) = X.
(c) (Linearity) E (a1X1 + a2X2 | G) = a1E (X1 | G) + a2E (X2 | G).
(d) (Positivity) If X ≥ 0, then E (X|G) ≥ 0.
(e) (MON) If 0 ≤ Xn ↑ X, then E (Xn | G) ↑ E (Xn | G).
(f) (FATOU) If 0 ≤ Xn, then E (lim inf Xn | G) ≤ lim inf E (Xn | G).
(g) (DOM) If |Xn| ≤ V , Xn → X, and E (V ) <∞, then E (Xn | G)→ E (X | G).
(h) (JENSEN) If f is convex, then E (f(X) | G) ≥ f(E (X | G)).
(i) (Tower) If H ⊂ G then E (E (X | G) |H) = E (X |H).
(j) (Taking out what is known) If Z is G measurable, then E (ZX | G) = ZE (X | G).
(k) (Independence) If H is independent of σ(X,G), then E (X |σ(G,H)) = E (X | G)

Proof:(a) homework. (b) and (i) are almost immediate from definition. For (j), let Y = E (X | G) and
G ∈ G, then it is sufficient to establish that

E (ZX1G) = E (E (ZX | G)1G) = E (ZE (X | G)1G) = E (ZY 1G),

where the first equality is the definition of E (ZX | G). We use standard (for measure theory) machinary
for this, then it suffices to establish the above for Z = 1G′ , i.e.

E (X1G′1G) = E (Y 1G′1G),

which follows from the definition of Y since 1G′1G = 1G′∩G and G′ ∩G ∈ G.
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3 Martingale Definitions and the Optional Stopping Theorem

Let (Ω,F ,P) be a probability triple as usual.

Definition 8 An increasing family of σ-fields Fn is filtration if F12 ⊂ F1 ⊂ F2 . . . ⊂ F . A process
X = (Xn : n ≥ 0) is adapted if each Xn is Fn measurable. The σ-field F∞ := σ(∪nFn) is ⊂ F .

Intuition: Fn is an increasing sequence of σ-fields and carries information about the process up to and
including time n. Usually, Fn is taken to be the natural filtration Fn = σ(X0, X1, . . . , Xn). If X is
adapted to Fn, then we know the values of X0, . . . , Xn at time n using information in Fn. Refer to the
second example of measurability.

Definition 9 A process M is martingale (relative to ({Fn},P))

1. if Mn is adapted,

2. E (|Mn|) <∞,

3. E (Mn | Fn−1) = Mn−1.

Submartingale: = replaced by ≥. supermartingale: = replaced by ≤.

Remark: WLOG, we can assume M0 = 0 when studying martingales.
Examples:

1. Sn := X1 + · · · + Xn, Fn = σ(X1, X2, . . . , Xn), where E (Xk) = 0 and E (|Xk|) < ∞ for all k. For
example, Xk = ±1 dependent on the outcome of a (fair/unfair) coin toss. Can think of Sn as your
net winning after n plays of the a certain game, if one bets exactly £1 on each play.

2. Mn := X1X2 . . . Xn where X1, X2, . . . are independent nonnegative random variables with E (Xk) =
1; Calculate: E (Mn | Fn−1) = E (Mn−1Xn | Fn−1) = Mn−1E (Xn | Fn−1) = Mn−1E (Xn) = Mn−1.

3. Given a filtration Fn and a random variable X ∈ L1(Ω,F ,P), Mn := E (X | Fn) is a martingale.
Calculate: E (E (X | Fn) | Fn−1) = E (X | Fn−1) = Mn−1. An interesting questions here is whether
Mn →M∞ := E (X |F∞) a.s.. M∞ can be thought of as the best prediction we can ever make.

Definition 10 A process C = (Cn : n ∈ N) is said to be previsible if it is Fn−1 measurable. The
martingale transform of X by C is defined by

(C ◦X)n :=

n∑
k=1

Ck∆Xk =

n∑
k=1

Ck(Xk −Xk−1).

Remark: X does not have to be a martingale in the above definition. C ◦X is the discrete time analogue
of the stochastic integral

∫
C dX. Indeed, C ◦ X is comparable to the Riemann integral if X is a

deterministic sequence. (C ◦X)n can be thought of as the winning after n plays of the game, where at
play k a bet of Ck is made (that’s why it needs to be Fn−1 measurable) and Xk −Xk−1 is the outcome
of game k.

Theorem 1 (a) If M is a martingale, C is previsible and bounded, then (C ◦M)n is also a martingale,
zero at n = 0;
(b) if X is a supermartingale and C is previsible, bounded and non-negative, then C ◦ X is also a
supermartingale with E ((C ◦X)n) ≤ 0.

Proof:(a) Write Y = C ◦M . Y is obviously adapted, and since |C| ≤ c for some c, we have

E (|Yn|) ≤
n∑
k=1

E |Ck(Mk −Mk−1)| ≤ c
n∑
k=1

E |Mk +Mk−1| <∞.

Since Cn is Fn−1-measurably, we have

E (Yn | Fn−1) = E (Yn−1 + Cn(Mn −Mn−1) | Fn−1) = Yn−1 + CnE (Mn −Mn−1 | Fn−1) = Yn−1.

Hence Y is a martingale.
(b) Obvious since for a supermartingale X, E (Xn −Xn−1 | Fn−1) ≤ 0.
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Definition 11 A map T : Ω→ {0, 1, 2, . . . ,∞} is called a stopping time or optional random variable if
{T ≤ n} is Fn measurable. The stopped process is written XT = (XT∧n : n ∈ Z+).

Remark: This requirement is equivalent to {T = n} is Fn measurable. T can be thought of as the time
when you decide to stop the game. In order to decide whether to stop the game at time n, you can only
consider information up to and including time n.
Example: T = inf{n ≥ 0 : Xn ∈ B} is a stopping time, L = sup{n : n ≤ 10, Xn ∈ B} is not.

Theorem 2 Let Xn be a martingale (resp. supermartingale), T a stopping time. Then XT is also such.
Hence E (Xn∧T ) = E (X0) (resp. E (Xn∧T ) ≤ E (X0)).

Note: cannot omit “n∧”, e.g. simple symmetric random walk (SSRW) X on Z is a martingale. Let
T := inf{n : Xn = 1}. Then it is well known that P(T < ∞) = 1. But E (Xn∧T ) = E (X0) and
1 = E (XT ) = E (X0) = 0.
Proof:Let Cn := 1T≥n. It is previsible as {Cn = 0} = {T ≤ n− 1}. Moreover,

(C ◦X)n =

n∑
k=1

1n≤T (Xk −Xk−1) =

n∧T∑
k=1

(Xk −Xk−1) = XT∧n −X0.

Hence C ◦X is a martingale (resp. supermartingale) by Theorem 1.

Theorem 3 (Doob’s Optional Stopping Theorem) Let Xn be martingale (resp. supermartingale),
T a stopping time. Then E (XT ) = E (X0) (resp. ”≤”) if one of these conditions holds:

a. T bounded;

b. X bounded, T finite a.s.;

c. E (T ) finite, jumps of Xn bounded uniformly.

Proof:We shall prove this for the supermartingale case. Observe that E (Xn∧T −X0) ≤ 0. For (a), we
take n = supT and the conclusion follows. For (b), we use the Bounded Convergence Theorem and let
n→∞. For (c), we observe that

|Xn∧T −X0| =

∣∣∣∣∣
n∧T∑
k=1

(Xk −Xk−1)

∣∣∣∣∣ ≤ T (sup
n
|Xn −Xn−1|).

Since E (T (supn |Xn − Xn−1|)) < ∞, we can use the Dominated Convergence Theorem to obtain the
desired conclusion.

Corollary 1 If M is a martingale with bounded increments (i.e. ∃K, |Mn −Mn−1| ≤ K for all n), C
is previsible and bounded, T is a stopping time such that E (T ) <∞, then

E [(C ◦M)T ] = 0.

Example (Asymmetric simple random walk): Let Sn = X1 + . . .+Xn with P(Xi = 1) = p > 1/2
and P(Xi = −1) = q = 1 − p. We define Mn = (q/p)Sn . Since Mn =

∏n
i=1(q/p)Xi and E ((q/p)Xi) =

p qp + q pq = 1, M is a martingale (w.r.t. the filtration Fn = σ(S1, . . . , Sn) = σ(X1, . . . , Xn)).

Let Tx = inf{n : Sn = x} and T = Ta ∧ Tb for a < 0 < b. It can be shown that T <∞ (for a specific
case of this proof, see the next example). By the optional stopping theorem,

1 = M0 = E (MT∧n).

Now MT∧n is bounded between (q/p)a and (q/p)b, so by the bounded convergence theorem, E (MT∧n)→
E (MT ) as n→∞, so that

1 = E (MT ) = P(Ta < Tb)(
q

p
)a + (1− P(Ta < Tb))(

q

p
)b.

Solving the above yields

P(Ta < Tb) =
(q/p)b − 1

(q/p)b − (q/p)a
.
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This also means for a < 0 < b,

P(Ta <∞) = P(min
n
Sn < a) = (q/p)−a, P(Tb <∞) = 1,

so that one can also calculate explicitly E (minn Sn), which is > −∞. We can also use the martingale
method to calculate E (Tb). Since Xn = Sn− (p− q)n is also a martingale, the optional stopping theorem
implies that

0 = E (STb∧n − (p− q)(Tb ∧ n)).

Now STb∧n is bounded above by b and below by minm Sm, both of which have finite expectation, so by the
dominated convergence theorem (careful), E (STb∧n) → E (STb) as n → ∞. The monotone convergence
theorem implies that E (Tb ∧ n)→ E (Tb). Hence

E (Tb) = b/(p− q).

Example (SSRW): Let Sn = X1 + . . .+Xn be a SSRW, then Sn is a martingale (w.r.t. the filtration
Fn = σ(S1, . . . , Sn) = σ(X1, . . . , Xn)). Set

T := inf{n : Sn = 1}.

We hope to calculate the distribution of T .
Define

M (θ)
n := eθSn/(cosh θ)n,

then M
(θ)
n :=

∏n
i=1(eθXi/ cosh θ). Since E (eθXi/ cosh θ) = 1

2 (eθ + e−θ)/ cosh θ = 1, M (θ) is a martingale.
By the optional stopping theorem,

1 = E (M
(θ)
T∧n) = E (eθST∧n/(cosh θ)T∧n).

In order to apply the bounded convergence theorem, we make two observations: (1) eθST∧n is bounded

above by eθ since ST∧n is in (−∞, 1]; (2) as n → ∞, M
(θ)
T∧n → M

(θ)
T , where the latter is defined to be 0

if T =∞. So bounded convergence theorem implies

1 = E (M
(θ)
T ) = E (eθST /(cosh θ)T ) = E (eθ/(cosh θ)T ).

Hence
E ((cosh θ)−T ) = e−θ

for θ > 0 and T ∈ [0,∞]. If T = ∞, then (cosh θ)−T = 0 for θ > 0. But if T < ∞, then (cosh θ)−T ↑ 1
as θ ↓ 0. So bounded convergence theorem as θ ↓ 0 implies

P(T <∞) = E (1T<∞) = 1.

Hence we can ignore the possiblity T =∞.
Put α = 1/ cosh θ = 2/(eθ + e−θ), then e−θ = 1

α (1 −
√

1− α2) (the equation α = 2/(x + 1/x) has
two roots, of which this is one; the other root leads to a function that cannot be a probability generating
function), hence

E (αT ) =
1

α
(1−

√
1− α2) =

∑
n

αnP(T = n).

Since for arbitrary α ∈ C,

(1 + x)α =

∞∑
k=0

(
α

k

)
xk,

where
(
α
k

)
:= α(α− 1) . . . (α− k + 1)/k!, we have

P(T = 2m− 1) = (−1)m+1

(
1/2

m

)
.

Example (ABRACADABRA): At each times 1, 2, 3, . . ., a monkey types a capital letter (out of a
choice of 26) at random (i.e. independently of the letters he has typed previously). We would like to find
out how long one expects to wait before the phrase ABRACADABRA to come out of the typewriter.

Just before each time n = 1, 2 . . ., a new gambler arrives and bets £1 that
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the nth letter will be “A”.

If he loses, he leaves. If he wins, he receives £26, all of which he bets on the event that

the (n+ 1)th letter will be “B”.

If he loses, he leaves. If he wins, he bets his whole fortune of £262 that

the (n+ 2)th letter will be “R”,

and so through the sequence ABRACADABRA. Let M (n) be the winning of the nth gambler (hence

M
(n)
k = 0 for k < n since the nth gambler has not even started gambling before time n), then each M (n)

is a martingale, and so is Mn :=
∑n
k=1M

(k)
n . Furthermore, M has uniformly bounded increments. Let T

be the first time by which the monkey has produced the consecutive sequence ABRACADABRA, then
E (T ) <∞. Doob’s optional stopping theorem implies

0 = E (MT ) = E

(
T∑
n=1

M
(n)
T

)
= E ((2611 − 1) + (264 − 1) + (26− 1) + (−1)(T − 3)),

hence E (T ) = 2611 + 264 + 26.
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4 Martingale Convergence

In this chapter, we are concerned with almost sure convergence of supermartingales (of which martingales
are a special case) as n → ∞. We will deal with L1 convergence in the next chapter. We first define
upcrossing UN [a, b] of the interval [a, b] by X1, . . . , XN . (Refer to Figure 11.1 in Williams). Let C1 =
1X0<a and recursively define

Cn = 1Cn−1=1,Xn−1≤b + 1Cn−1=0,Xn−1<a.

Then

(C ◦X)N =

N∑
k=1

Ck∆Xk ≥ (b− a)UN [a, b]− (XN − a)−.

Lemma 1 (Doob’s Upcrossing Lemma) Let X be a supermartingale. Then

(b− a)E (UN [a, b]) ≤ E ((XN − a)−).

Proof:Since C is previsible, bounded (by N) and non-negative, we can conclude that C ◦X is a super-
martingale. Thus E ((C ◦X)N ) ≤ 0, from which the desired conclusion follows.

Define U∞[a, b] = limN↑∞ UN [a, b]. The following can be proved using the Monotone Convergence
Theorem.

Corollary 2 Suppose X is a supermartingale bounded in L1 (i.e. supn E (|Xn|) <∞). Then

(b− a)E (U∞[a, b]) ≤ |a|+ sup
n
E (|Xn|) <∞,

which implies that
P (U∞[a, b] =∞) = 0.

Theorem 4 (Martingale Convergence Theorem) Suppose X is a supermartingale bounded in L1.
Then X∞ := limn→∞Xn exists and is finite almost surely.

Proof:Set Λa,b = {ω : lim inf Xn(ω) < a < b < lim supXn(ω)}. We observe that Λa,b ⊂ {U∞[a, b] =∞},
which has probability 0 by the corollary above. But since

{ω : Xn(ω) does not converge to a limit in [−∞,∞]} =
⋃
a,b∈Q

Λa,b,

we conclude that
P(Xn converges to some X∞ ∈ [−∞,+∞]) = 1.

Now Fatou’s Lemma shows that E (|X∞|) = E (lim inf |Xn|) ≤ lim inf E (|Xn|) ≤ supE (|Xn|) < ∞,
whence P(|X| <∞) = 1.

Remark: might be not true Xn → X in L1 (e.g. see critical branching process below).

Corollary 3 A non-negative supermartingale X converges a.s.. The limit X∞ satisfies E (X∞) ≤ E (X0).

Proof:Trivial since E (|Xn|) = E (Xn) ≤ E (X0).

The following example shows that one can only obtain ≤ in the above corollary even if X is a
martingale.
Example: Let Sn = 1 +X1 + . . .+Xn be a SSRW started at 1, T := T0 be the first time Sn hits 0, and
Yn = ST∧n. Then Y is a non-negative martingale, hence it converges to a limit Y∞ < ∞ a.s.. Indeed,
Y∞ ≡ 0. Therefore we have E (Yn) = E (Y0) = 1 but E (Y∞) = 0.
Example (branching process): LetXn

i , n, i ≥ 0, be i.i.d. nonnegative integer-valued random variables.
Define a sequence (Zn;n ≥ 0) by Z0 = 1 and

Zn+1 =

{
Xn+1

1 + . . .+Xn+1
Zn

, if Zn > 0
0, if Zn = 0

11



Then Z is known as a branching process, or Galton-Watson process. The idea is that Zn represents the
number of individuals in the nth generation, each of whom gives birth to an i.i.d. number of children.
The distribution of Xn

i is known as the offspring distribution.
Let µ = E (Xn

i ), then Zn/µ
n is a martingale by the following calculation:

E (Zn+1 | Fn) =

∞∑
k=1

E (Zn+11Zn=k | Fn) =

∞∑
k=1

E ((Xn+1
1 + . . .+Xn+1

k )1Zn=k | Fn)

=

∞∑
k=1

1Zn=kE (Xn+1
1 + . . .+Xn+1

k | Fn) =

∞∑
k=1

kµ1Zn=k = µZn.

Now we will establish that the process Z dies out (i.e. it becomes 0 eventually) if µ ≤ 1. For µ < 1, we
observe that

P(Zn > 0) ≤ E (Zn1Zn≥0) = E (Zn) = µn.

Since µ < 1,
∑∞
n=1 P(Zn > 0) < ∞, therefore by the Borel-Cantelli lemma, P(Zn > 0 i.o.) = 0, i.e.

Zn = 0 eventually a.s.. Note that we did not use martingale theory for this.
For µ = 1 (critical branching process), the situation is slightly trickier and we shall use the martingale

convergence theorem. In this case, Zn is a non-negative martingale, therefore it converges to a limit Z∞
a.s.. Since Z is integer valued, we must have Zn = Z∞ for all sufficiently large n a.s.. Therefore it must
be that Z∞ ≡ 0. (Note that again, E (Zn) = 1 for all n, but the Z∞ ≡ 0.)
Proof:The number of particles Zn is a non-negative integer-valued martingale, so Zn = Z∞ for large n.
The only possibility is Zn = 0 for large n.
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5 Uniformly Integrable Martingales

Definition 12 A class C of random variables is said to be uniformly integrable (UI) if given ε > 0, there
exists K ∈ [0,∞) such that

E (|X|1|X|>K) < ε, ∀X ∈ C.

M is said to be a UI martingale if M is a martingale and the family (Mn : n ∈ Z+) is UI.

A UI family (Xn) is bounded in L1 (i.e. ∃K,E (|Xn|) < K for all n), by the following calculation:

E (|Xn|) = E (|Xn|1|Xn|≥K) + E (|Xn|1|Xn|<K) ≤ 1 +K.

The converse is not true, i.e. a family of random variables bounded in L1 is not necessarily UI, by the
following couter-example.
Example: Let Ω = [0, 1] with uniform probability measure. Define Xn = n1(0,1/n). Then E (|Xn|) = 1,
but for any K > 0, we have for n > K,

E (|Xn|1|Xn|≥K) = nP((0, 1/n)) = 1.

Here, Xn → 0, but E (Xn) 6→ 0.
An important example of a UI family is the following

Theorem 5 Let X ∈ L1(Ω,F ,P). Then the class

{E (X | G) : G is a sub-σ-field of F}

is uniformly integrable.

Proof:Let ε be given. By a standard result (see e.g. Lemma 13.1 in Williams), we can choose δ > 0 so
that, for F ∈ F , P(F ) < δ implies that E ( |X | 1F ) < ε. We also choose K so that E (|X|) < Kδ.

Now let G be a sub-σ-field of F and Y = E (X | G). Then by Jensen’s inequality,

|Y | ≤ E (|X| | G). (1)

Hence E (|Y |) ≤ E (|X|) and
KP(|Y | > K) ≤ E (|Y |) ≤ E (|X|),

so that
P(|Y | > K) < δ.

By (1),
E (|Y |1|Y |≥K) ≤ E (|X|1|Y |≥K) < ε.

Hence {E (X | G) : G is a sub-σ-field of F} is uniformly integrable.

The reason we study UI martingales is a sequence of UI random variables Xn that converges to X
in probability will also converge in L1 if and only if (Xn) is a UI class. We state the following theorem
without proof, which mainly involves some analysis.

Theorem 6 Let (Xn) be a sequence in L1 and let X∞ ∈ L1. Then Xn → X∞ in L1 (i.e. E (|Xn −
X∞|)→ 0), if and only if the following two conditions hold:

1. Xn → X∞ in probability,

2. the sequence (Xn) is UI.

The above theorem guarantees that a UI martingale Xn that converges almost surely also have the
corresponding convergence property for expectations.

Corollary 4 Let M be a UI martingale on (Ω,F ,P). Then M∞ := limn→∞Mn exists a.s. and further-
more, as n→∞,

E (|Mn −M∞|)→ 0.

Moreover, Mn = E (M∞ | Fn).
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Proof:The L1 convergence to X∞ is immediate by Theorem 6. Only the last part is nontrivial. For that,
we take F ∈ Fn and r ≥ n. The martingale property of M implies that

E (Mr1F ) = E (Mn1F ). (2)

But
|E (Mr1F )− E (M∞1F )| ≤ E (|Mr −M∞|1F ) ≤ E (|Mr −M∞|),

which converges to 0 as r →∞. Plugging this into (2) yields that E (M∞1F ) = E (Mn1F ), which implies
the desired property since this holds for all F ∈ Fn.

Theorem 7 (Levy’s ‘Upward’ Theorem) Let ξ be an L1 random variable on (Ω,F ,P) and define
Mn := E (ξ | Fn). Then M is a UI martingale and Mn → η := E (ξ | F∞) almost surely and in L1.

Proof:We know M is a martingale because of the tower property. It is UI by Theorem 5. Hence
M∞ := limn→∞Mn exists a.s. and in L1. It only remains to show that M∞ = η. We first note that both
M∞ and η are F∞ measurable, hence in order to show that M∞ = η a.s., it suffices to show that for all
F ∈ F∞,

E (M∞1F ) = E (η1F ).

Since F∞ = σ(∪nFn), it suffices to show that for all n and F ∈ Fn, the above identitiy holds. This
follows from the following calculation:

E (η1F ) = E (ξ1F ) = E (Mn1F ) = E (M∞1F ),

the last equality due to Corollary 4. (Aside: how to show the following: if X and Y are both F
measurable and E (X1F ) = E (Y 1F ) for all F ∈ F , then X = Y a.s.. Since 0 = E ((X − Y )1X−Y >0) ≥∑∞
n=1

1
n11/n≤X−Y <1/(n−1), we must have P(1/n ≤ X − Y < 1/(n − 1)) = 0 for all n ≥ 1. Hence

P(X > Y ) = 0, and similarly P(X < Y ) = 0.

Example: Let Z1, Z2, . . . be i.i.d. random variables with mean 0 and E (|Zi|) < ∞. Let θ be an inde-
pendent random variable with finite mean. Let Yi = Zi + θ and Fn = σ(Y1, . . . , Yn). The distribution of
θ is called the prior distribution, and P(θ ∈ · | Fn) is called the posterior distribution after n observations.
Then we can use martingale techniques to show that E (θ | Fn)→ θ a.s. as n→∞.
Proof:Mn := E (θ | Fn) is a UI martingale and therefore converges to some M∞ both a.s. and in L1, and
furthermore M∞ = E (θ | F∞), which is = θ if we can show that θ is F∞ measurable. This is indeed the
case since for an arbitrary a,

{θ ≤ a} =

∞⋂
k=1

{
1

n

n∑
i=1

Yi ≤ a+
1

k
eventually

}
∈ F∞.

Hence M∞ = θ a.s..

UI Martingales can be used to give a simple proof of the Kolmogorov’s 0-1 law (it is also possible to
prove this just using measure theory), which concerns events in the tail σ-field T , defined as

Tn := σ(Xn+1, Xn+2, . . .), T :=
⋂
n

Tn.

The tail σ-field is a sub-σ-field of F∞ and contains many important events about the limiting behaviour
of the sequence Xn, e.g. (you will show this in the homework)

F1 := {ω : lim
n
Xn(ω) exists}

F2 := {ω :
∑
n

Xn(ω) converges}

F3 := {ω :
1

n

n∑
k=1

Xk(ω) ≤ c}.

Examples of random variables measurable in T include:

lim inf Xk, lim sup
1

n

n∑
k=1

Xk.

Note that limXk is not necessary measurable in T , since it may not even exist.
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Theorem 8 (Kolmogorov’s 0-1 law) Let X1, X2, . . . be a sequence of independent random variables
and T be the corresponding tail σ-field. If F ∈ T , then P(F ) = 0 or 1.

Proof:Define Fn := σ(X1, . . . , Xn), then it is independent of Tn (two σ-fields G1 and G2 are independent
if any G1 ∈ G1 and G2 ∈ G2 are independent). Let F ∈ T ⊂ F∞ and η = 1F . Then Levy’s Upward
Theorem says

η = E (η | F∞) = limE (η | Fn).

But η is also independent of every Fn, hence

E (η | Fn) = E (η) = P(F ).

Hence η = P(F ). Since η can only take on values 0 or 1, the result follows.

Corollary 5 Let X1, X2, . . . be an independent sequence and T be the tail σ-field. Suppose Y is a random
variable measurable in T , then there exists k ∈ [−∞,∞] such that P(Y = k) = 1.

Proof:Let k := inf{y : P(Y ≤ y) = 1} (infimum of an empty set is +∞). Then

P(Y ≤ y) =

{
0, if y < k
1, if y ≥ k .

Examples: If X1, X2, . . . is a sequence of independent random variables, Kolmogorov’s 0-1 law implies
that

P(
∑

Xn converges) = 0 or 1.

If Sn = X1 + . . .+Xn, then

Z1 := lim inf
n

Sn
n
, Z2 := lim sup

n

Sn
n

are almost surely constant.
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6 L2 Martingales

A martingale M is said to be bounded in L2 if supn E (M2
n) <∞. It is often easier to work in L2 because

of the following Pythagorean formula

E (M2
n) = E (M2

0 ) +

n∑
k=1

E [(Mk −Mk−1)2].

This can be proved using the fact that for 0 < s < t, E (Mt −Ms | Fs) = 0.

Theorem 9 Let M be a martingale for which Mn ∈ L2 for all n. Then M is an L2 martingale if and
only if

∑∞
k=1 E [(Mk −Mk−1)2] <∞. In this case, Mn →M∞ almost surely and in L2.

7 Inequalities for martingales

Set Z∗n = sup1≤k≤n Zk .

Lemma 2 (Doob’s submartingale inequality) Let Z ≥ 0 sub-mart, c > 0. Then

cP(Z∗n ≥ u) ≤ E (Zn1Z∗n≥u) ≤ EZn

Proof:Let Ak = {Z0, . . . , Zk−1 < u ≤ Zk}, A0 = {Z0 ≥ u}, that is Ak = {W = k} where W = inf{k ≥
0 : Zk ≥ u}. Note Ak ∈ Fk, Z ≥ u on Ak. Hence E (Zn1Ak) ≥ E (Zk1Ak) ≥ uP(Ak). Sum

∑n
k=1 and

note Ak’s are disjoint and sum up to {supk≤n Zk ≥ u}.

Young inequality: if a, b > 0, p−1 + q−1 = 1, then ab ≤ 1
pa

p + 1
q b
q.

Proof:Since log is concave log(ab) = 1
p log ap + 1

q log bq ≤ log
(

1
pa

p + 1
q b
q
)

.

Let ‖X‖p = p
√
E |X|p.

Hölder inequality: if p, q > 1: 1/p+ 1/q = 1, then E |XY | ≤ ‖X‖p‖Y ‖q
Proof:Using Young inequality,

E |XY |
‖X‖p‖Y ‖q

= E

(
|X|
‖X‖p

|Y |
‖Y ‖q

)
≤ E

(
|X|p

p(‖X‖p)p
+

|Y |q

q(‖Y ‖q)q

)
=

1

p
+

1

q
= 1

Lemma 3 X,Y ≥ 0 r.vs. with uP(X ≥ u) ≤ E (Y 1X≥u) ∀u > 0, and p, q as above. Then

‖X‖p ≤ q‖Y ‖p

Proof:Using Fubini a few times and that p/(p− 1) = q, and Hölder, we have

EXp =

∫ ∞
0

pup−1
P(X ≥ u)du ≤

∫ ∞
0

pup−2
E (Y 1X≥u)du = E (Y

∫ X

0

pup−2dx) = qE (Xp−1Y ) ≤ q‖Y ‖p‖Xp−1‖q

Since (p− 1)q = p, ‖Xp−1‖q = E (Xp)1/q, hence above is equivalent to lemma since 1− 1/q = 1/p.

Theorem 10 (Doob inequality) Let p, q as before. Let Z ≥ 0 sub-mart bounded in Lp. Set Z∗ =
supk Zk = limZ∗n. Then Z∗ is in Lp and

(∗) ‖Z∗n‖p ≤ q‖Zn‖p ⇒ ‖Z∗‖p ≤ q sup
k
‖Zk‖p

Moreover, Z∞ = limZn exists and

(∗∗) ‖Z∞‖p = sup
k
‖Zk‖p = lim

k↑∞
‖Zk‖p

Proof:From two Lemmas above, ‖Z∗n‖p ≤ q‖Zn‖p ≤ supk q‖Zk‖p. Now (*) follows from Monotone CT.
Next, −Z is super-mart bounded in Lp and hence in L1 whence the limit exists.
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8 Martingale criteria from the “red book”

Define Markov chain Xn on countable state space S, recurrence, transience.

Theorem 11 Irreducible, aperiodic, homogeneous MC is recurrent iff ∃ f : A 7→ R+ and a finite set
A ⊂ S such that

E (f(Xn+1)− f(Xn) |Xn = s) ≤ 0 if s 6∈ A

and f(s)→∞.

Proof:(⇒) Start chain at X0 = α 6∈ A, and let τα be the time of first entry into A, and set Yn = f(Xn∧τα).
Yn ≥ 0 is supermartingale, hence converges a.s. to Y = limn→∞ Yn, moreover from Fatou EY ≤ Y0 =
f(α). If the chain were not recurrent, there would exist an α such that P(∀n Xn 6∈ A and f(Xn) →
∞|X0 = α) > 0. This implies P(Yn →∞) > 0 leading to a contradiction. Hence MC is recurrent.

(⇐) Let us prove the existence of f in case MC is recurrent. Suppose S = {0, 1, 2 . . . }. Set 0 be the
absorbing state: p00 = 1. Let

φ(i, n) = P(∃k : Xk ∈ {n, n+ 1, . . . } |X0 = i).

Recurrence implies that for each i we have φ(i, n)→ 0 as n→∞. For each k set nk s.t. supi∈{1,..,k} φ(i, nk) <

2−k. Observe that for a fixed n

E (φ(Xm+1, n)− φ(Xm, n) |Xm = j) ≤ 0 for j 6= 0.

Define now f(i) =
∑∞
k=1 φ(i, nk) which verifies the conditions.

Theorem 12 MC is transient iff ∃ f : A 7→ R+ and a set A ⊂ S such that

E (f(Xn+1)− f(Xn) |Xn = s) ≤ 0 if s 6∈ A
f(α∗) < inf

x∈A
f(x) for at least one α∗ 6∈ A (∗)

and f(s)→∞.

Proof:(⇒) Let τα∗ same as before (first entry into A time) and suppose chain is not transient, then
P(τα∗ < ∞) = 1, hence Xn∧τα∗ → Xτα∗ a.s., and by Fatou’s we get E f(Xτα∗ ) ≤ E f(X0) = f(α∗) since
f(Xn∧τα∗ ) is supermartingale. This contradicts (∗) however.

(⇐) Fix any α0 ∈ S and set A = {α0}. Because of transience, there is an α∗ s.t. P(∀n Xn 6= α0 |X0 =
α∗) > 0. Define

f(s) =

{
1, if s = α0,
P(ever to reach α0 |X0 = s), othewise.

Then E (f(Xn+1)− f(Xn) |Xn = s) = 0 unless s = α0, and f(α∗) < 1. Hence f is what we need.
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9 School lecture on monkey typing Shakespeare

Monkey typing the complete works of Shakespeare (WS) amounts to typing a particular sequence of
N symbols on a typewriter (with M possible characters). A monkey types a symbol per unit of time,
producing an infinite sequence of i.i.d. r.v.’s with values {1, 2, . . . ,M}. Prob(the monkey eventually types
out WS) = 1.

Simpler example: coin (fair) tossing, 0 (head) or 1 (tail), outcome of tosses X0, X1, . . ., Xi is a “random
variable”, P(Xi = 0) = P(Xi = 1) = 1/2, notion of independence, P(X0 = 0, X1 = 0) = . . .,

Now we count the number of tosses T required for 1 (tail) to appear, P(T = 1) = 1/2,P(T = 2) =
1/4, . . . ,

∑∞
n=1 P(T = n) = 1, therefore the probability that eventually a tail appears is 1. What if the

coin is not fair, e.g. P(Xi = 0) = 1 − p,P(Xi = 1) = p, then P(T = 1) = p,P(T = 2) = (1 − p)p,P(T =
3) = (1 − p)2p, . . . ,

∑∞
n=1 P(T = n) =

∑∞
n=1(1 − p)n−1p = p 1

1−(1−p) = 1, so whether the coin is fair or

not makes not difference. How can show that Prob(the monkey eventually types out WS) = 1?
A slightly more difficult question: how long do I need to wait before the first tail appears in a sequence

of coin tosses? Notion of expected value (long-run average), e.g. E (X0) = 1/2 for a fair coin, E (X0) =
for an unfair coin, 1

n

∑n
k=1Xk approaches the expected value of X0 as n becomes large. What about the

expected time of waiting for a tail for a fair coin: E (Y ) =
∑∞
n=1 nP(Y = n) =

∑
n n

1
2n = . . . = 2.

At each toss of the fair coin, I bet £1 on tail, let Xn be my winning on the nth toss, then P(Xn =
1) = P(Xn = −1) = 1/2 and E (Xn) = 0 (fair game). Let Yn = X1 + . . .+Xn, then E (Yn) = 0 for all n,
i.e. Y is a martingale. A more intriguing result is that E (YT ) = 0. This amounts for stopping the game
when the first tail appears. And

0 = E (YT ) = E (

T∑
n=1

Xn) = E ((−1)(T − 1) + 1),

which means E (T ) = 2.
What if the coin is not fair? Bet £1 on tail each time, but be compensated £(1− 2p) after each toss.

Then

0 = E (YT ) = E (

T∑
n=1

Xn) = E ((−1 + 1− 2p)(T − 1) + 1 + 1− 2p),

which means E (T ) = 1/p.
A slightly trickier question: if I toss a fair coin repeatedly, how long do I expect to wait until the first

TT appears?

0 = E (MT ) = E

(
T∑
n=1

M
(n)
T

)
= E ((22 − 1) + (2− 1) + (−1)(T − 2)),

so E (T ) = 6.
Example (ABRACADABRA): At each times 1, 2, 3, . . ., a monkey types a capital letter (out of a
choice of 26) at random (i.e. independently of the letters he has typed previously). We would like to find
out how long one expects to wait before the phrase ABRACADABRA to come out of the typewriter.

Just before each time n = 1, 2 . . ., a new gambler arrives and bets £1 that

the nth letter will be “A”.

If he loses, he leaves. If he wins, he receives £26, all of which he bets on the event that

the (n+ 1)th letter will be “B”.

If he loses, he leaves. If he wins, he bets his whole fortune of £262 that

the (n+ 2)th letter will be “R”,

and so through the sequence ABRACADABRA. Let M (n) be the winning of the nth gambler (hence

M
(n)
k = 0 for k < n since the nth gambler has not even started gambling before time n), then each M (n)

is a martingale, and so is Mn :=
∑n
k=1M

(k)
n . Furthermore, M has uniformly bounded increments. Let T

be the first time by which the monkey has produced the consecutive sequence ABRACADABRA, then
E (T ) <∞. Doob’s optional stopping theorem implies

0 = E (MT ) = E

(
T∑
n=1

M
(n)
T

)
= E ((2611 − 1) + (264 − 1) + (26− 1) + (−1)(T − 3)),

hence E (T ) = 2611 + 264 + 26.
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