Assignment 1 (Due Monday 25 Oct 2010 in class)

1 Recall that in the example where we toss a coin infinitely many times, we defined $\Omega=\{H, T\}^{\mathbb{N}}$, $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right)$,

$$
\mathcal{F}=\sigma\left(\left\{\omega: \omega_{n}=W\right\}: n \in \mathbb{N}, W \in\{H, T\}\right)
$$

i.e. \mathcal{F} is generated by the outcome of each toss, and

$$
X_{n}=\left\{\begin{array}{ll}
1, & \text { if } \omega_{n}=H \\
0, & \text { if } \omega_{n}=T
\end{array} .\right.
$$

We now define

$$
S_{n}:=X_{1}+X_{2}+\ldots+X_{n}=\text { number of heads in the first } n \text { tosses. }
$$

We aim to show $\Lambda:=\left\{\omega: S_{n} / n \rightarrow p\right\}$ is a measurable event. We divide this into the following steps: (1) Show that $\left\{\omega: \sup _{n \geq m} S_{n} / n \leq p\right\}$ is measurable, and so is $\left\{\sup _{n \geq m} S_{n} / n>p\right\},\left\{\sup _{n \geq m} S_{n} / n<p\right\}$ and $\left\{\sup _{n \geq m} S_{n} / n \geq p\right\} ;(2)$ Show that $\left\{\limsup _{n} S_{n} / n \leq p\right\}$ and $\left\{\liminf _{n} S_{n} / n \geq p\right\}$ are both measurable. (3) Show that Λ is measurable.

Proof:Since

$$
\left\{\sup _{n \geq m} S_{n} / n \leq p\right\}=\cap_{n \geq m}\left\{S_{n} \leq n p\right\}
$$

it is \mathcal{F} measurable, hence $\left\{\sup _{n \geq m} S_{n} / n>p\right\}=\left\{\sup _{n \geq m} S_{n} / n \leq p\right\}^{c}$ is also \mathcal{F} measurable. Furthermore,

$$
\left\{\sup _{n \geq m} S_{n} / n<p\right\}=\cup_{k \in \mathbb{N}}\left\{\sup _{n \geq m} S_{n} / n<p-1 / k\right\}
$$

is also \mathcal{F} measurable, and so is $\left\{\sup _{n \geq m} S_{n} / n \geq p\right\}$. Similarly, the corresponding events involving inf are also \mathcal{F} measurable.

Now

$$
\left\{\limsup _{n} S_{n} / n \geq p\right\}=\left\{\inf _{m} \sup _{n \geq m} S_{n} / n \geq p\right\}=\cap_{m}\left\{\sup _{n \geq m} S_{n} / n \geq p\right\}
$$

is \mathcal{F} measurable, and so is $\left\{\liminf _{n} S_{n} / n>p\right\}$ and $\left\{\liminf _{n} S_{n} / n \leq p\right\}$. Hence $\Lambda=\left\{\limsup _{n} S_{n} / n \leq\right.$ $p\} \cap\left\{\liminf _{n} S_{n} / n \geq p\right\}$ is \mathcal{F} measurable.
2. Prove each property in (a) of Proposition 7 (properties of conditional expectation), without using any other properties.
Proof: To show $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))=\mathbb{E}(X)$, we calculate

$$
\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))=\mathbb{E}\left(\mathbb{E}(X \mid \mathcal{G}) \mathbb{1}_{\Omega}\right)=\mathbb{E}\left(X \mathbb{1}_{\Omega}\right)=\mathbb{E}(X)
$$

where the middle equality is due to the definition of conditional expectation.
To show $\mathbb{E}(X \mid$ constant $):=\mathbb{E}(X \mid \sigma($ constant $))=\mathbb{E}(X)$, we observe that $\sigma($ constant $)=\{\emptyset, \Omega\}$, hence $\mathbb{E}(X \mid$ constant $)$ must be a constant. It is plain that $\mathbb{E}\left(\mathbb{E}(X \mid\right.$ constant $\left.) \mathbb{1}_{\Omega}\right)=\mathbb{E}\left(X \mathbb{1}_{\Omega}\right)=\mathbb{E}(X)=$ $\mathbb{E}\left(\mathbb{E}(X) \mathbb{1}_{\Omega}\right)$, where the first equality is due to the definition of conditional expectation, the second due to $\mathbb{1}_{\Omega} \equiv 1$. If one replaces Ω by \emptyset in the previous calculation, then everything is 0 . Therefore $\mathbb{E}(X \mid\{\emptyset, \Omega\})=\mathbb{E}(X)$.

To show $\mathbb{E}(\mathbb{E}(X \mid Y) \mid Y)=\mathbb{E}(X \mid Y)$, we take $A \in \sigma(Y)$, then by the definition of conditional expectation,

$$
\mathbb{E}\left(\mathbb{E}(\mathbb{E}(X \mid Y) \mid Y) \mathbb{1}_{A}\right)=\mathbb{E}\left(\mathbb{E}(X \mid Y) \mathbb{1}_{A}\right)
$$

Since $A \in \sigma(Y)$ is arbitrary, we conclude that $\mathbb{E}(\mathbb{E}(X \mid Y) \mid Y)=\mathbb{E}(X \mid Y)$.
3. Show that if X and Y are random variables with $\mathbb{E}(Y \mid \mathcal{G})=X$ and $\mathbb{E}\left(X^{2}\right)=\mathbb{E}\left(Y^{2}\right)$, then $X=Y$ a.s..

Proof: We have

$$
\mathbb{E}\left((X-Y)^{2}\right)=\mathbb{E}\left(X^{2}-2 X Y+Y^{2}\right)=2 \mathbb{E}\left(X^{2}\right)-2 \mathbb{E}(\mathbb{E}(X Y \mid \mathcal{G}))=2 \mathbb{E}\left(X^{2}\right)-2 \mathbb{E}(\mathbb{E}(X Y \mid \mathcal{G}))
$$

Notice that X is \mathcal{G} measurable (since it is defined to be a conditional expectation conditioned on \mathcal{G}), hence we can take out what is known:

$$
\mathbb{E}\left((X-Y)^{2}\right)=2 \mathbb{E}\left(X^{2}\right)-2 \mathbb{E}(X \mathbb{E}(Y \mid \mathcal{G}))=2 \mathbb{E}\left(X^{2}\right)-2 \mathbb{E}\left(X^{2}\right)=0
$$

Hence $X=Y$ a.s..
4. Suppose that X and Y are \mathcal{L}^{1} random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ and that almost surely, $\mathbb{E}(X \mid Y)=Y$ and $\mathbb{E}(Y \mid X)=X$. Prove that $\mathbb{P}(X=Y)=1$. Hint: Consider $\mathbb{E}\left((X-Y) \mathbb{1}_{X>c, Y \leq c}\right)+\mathbb{E}\left((X-Y) \mathbb{1}_{X \leq c, Y \leq c}\right)$. Proof: Since $\mathbb{1}_{Y \leq c}$ and $\mathbb{1}_{X \leq c}$ are $\sigma(Y)$ and $\sigma(X)$ measurable, respectively, we have

$$
\mathbb{E}\left(X \mathbb{1}_{Y \leq c}\right)=\mathbb{E}\left(Y \mathbb{1}_{Y \leq c}\right), \mathbb{E}\left(X \mathbb{1}_{X \leq c}\right)=\mathbb{E}\left(Y \mathbb{1}_{X \leq c}\right) .
$$

Now following the hint,

$$
0=\mathbb{E}\left((X-Y) \mathbb{1}_{Y \leq c}\right)=\mathbb{E}\left((X-Y) \mathbb{1}_{X>c, Y \leq c}\right)+\mathbb{E}\left((X-Y) \mathbb{1}_{X \leq c, Y \leq c}\right)
$$

Similarly,

$$
0=\mathbb{E}\left((X-Y) \mathbb{1}_{X \leq c}\right)=\mathbb{E}\left((X-Y) \mathbb{1}_{X \leq c, Y>c}\right)+\mathbb{E}\left((X-Y) \mathbb{1}_{X \leq c, Y \leq c}\right)
$$

Cancelling $\mathbb{E}\left((X-Y) \mathbb{1}_{X \leq c, Y \leq c}\right)$ in RHS of the above two equalities, we obtain

$$
\mathbb{E}\left((X-Y) \mathbb{1}_{X>c, Y \leq c}\right)+\mathbb{E}\left((X-Y) \mathbb{1}_{X \leq c, Y \leq c}\right)
$$

Similarly,

$$
\mathbb{E}\left((X-Y) \mathbb{1}_{X>c, Y \leq c}\right)=\mathbb{E}\left((X-Y) \mathbb{1}_{X \leq c, Y>c}\right) .
$$

In the above, the LHS is ≥ 0, while the RHS is ≤ 0, so they are both 0 . But if X and Y are such that $\mathbb{E}\left((X-Y) \mathbb{1}_{X>c, Y \leq c}\right)=0$, then $X=Y$ a.s. (one can get a counterexample if for certain ω 's with positive probability, $X(\omega) \neq Y(\omega))$.
5. Given an example on $(\Omega, \mathcal{F}, \mathbb{P})$ where $\Omega=\{a, b, c\}$ in which

$$
\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{1}\right) \mid \mathcal{F}_{2}\right) \neq \mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{2}\right) \mid \mathcal{F}_{1}\right)
$$

Proof:Let $\mathcal{F}_{1}=\{\emptyset,\{a\},\{b, c\}, \Omega\}, \mathcal{F}_{1}=\{\emptyset,\{a, b\},\{c\}, \Omega\}, X(a)=-2, X(b)=0, X(c)=2$.

$\left(\Omega, \mathcal{F}_{1}\right)$	$\{a\}$	$\{b, c\}$
$\mathbb{E}\left(X \mid \mathcal{F}_{1}\right)$	-2	1

$\left(\Omega, \mathcal{F}_{2}\right)$	$\{a, b\}$	$\{c\}$
$\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{1}\right) \mid \mathcal{F}_{2}\right)$	$(-2+1) / 2=-1 / 2$	1

$\left(\Omega, \mathcal{F}_{2}\right)$	$\{a, b\}$	$\{c\}$
$\mathbb{E}\left(X \mid \mathcal{F}_{2}\right)$	-1	2

$\left(\Omega, \mathcal{F}_{1}\right)$	$\{a\}$	$\{b, c\}$
$\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{2}\right) \mid \mathcal{F}_{1}\right)$	-1	$(-1+2) / 2=1 / 2$

Hence $\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{1}\right) \mid \mathcal{F}_{2}\right) \neq \mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{2}\right) \mid \mathcal{F}_{1}\right)$. This is hardly surprising, since $\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{1}\right) \mid \mathcal{F}_{2}\right)$ is \mathcal{F}_{2} measurable, but $\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{2}\right) \mid \mathcal{F}_{1}\right)$ is \mathcal{F}_{1} measurable, so they are not even measurable w.r.t. the same σ-field.
6. Suppose S and T are stopping times in $(\Omega, \mathcal{F}, \mathbb{P})$. Show that $S \wedge T:=\min (S, T), S \vee T:=\max (S, T)$, and $S+T$ are stopping times.
Proof: We have $\{S \leq n\},\{T \leq n\},\{S=n\}$ and $\{T=n\}$ are all in \mathcal{F}_{n}, hence

$$
\begin{aligned}
& \{S \wedge T \leq n\}=\{S \leq n\} \cup\{T \leq n\} \\
& \{S \vee T \leq n\}=\{S \leq n\} \cap\{T \leq n\} \\
& \{S+T=n\}=\bigcup_{k=0}^{n}(\{S=k\} \cap\{T=n-k\})
\end{aligned}
$$

are all in \mathcal{F}_{n}.
7. Let S and T be stopping times with $S \leq T$. Define the process $\mathbb{1}_{(S, T]}$ with parameter set \mathbb{N} via

$$
\mathbb{1}_{(S, T]}(n, \omega):= \begin{cases}1, & \text { if } S(\omega)<n \leq T(\omega) \\ 0, & \text { otherwise }\end{cases}
$$

Show that $\mathbb{1}_{(S, T]}$ is previsible, and deduce that if X is a supermartingale, then $\mathbb{E}\left(X_{T \wedge n}\right) \leq \mathbb{E}\left(X_{S \wedge n}\right)$. Proof: Since

$$
\left\{\mathbb{1}_{(S, T]}(n)=1\right\}=\{S<n\} \cap\{T \geq n\}=\{S \leq n-1\} \cap\{T \leq n-1\}^{c} \in \mathcal{F}_{n-1},
$$

$\mathbb{1}_{(S, T]}$ is indeed previsible. Hence by the optional stopping theorem, if X is a supermartingale, then

$$
0 \geq \mathbb{E}\left(\left(\mathbb{1}_{(S, T]} \circ X\right)_{n}\right)=\mathbb{E}\left(\sum_{k=1}^{\infty}\left(\mathbb{1}_{n \leq T}-\mathbb{1}_{n \leq S}\right)\left(X_{k}-X_{k-1}\right)\right)=\mathbb{E}\left(X_{T \wedge n}-X_{S \wedge n}\right),
$$

from which the conclusion follows.
8. Let $\left(S_{n}\right)_{n \geq 0}$ be a simple symmetric random walk on the integers with $S_{0}=k$. Show that S_{n} and $S_{n}^{2}-n$ are both martingales.
Proof:Since

$$
\mathbb{E}\left(S_{n} \mid \mathcal{F}_{n-1}\right)=\mathbb{E}\left(S_{n-1}+X_{n} \mid \mathcal{F}_{n-1}\right)=S_{n-1}
$$

and

$$
\mathbb{E}\left(S_{n}^{2} \mid \mathcal{F}_{n-1}\right)=\mathbb{E}\left(\left(S_{n-1}+X_{n}\right)^{2} \mid \mathcal{F}_{n-1}\right)=S_{n-1}^{2}+2 S_{n-1} \mathbb{E}\left(X_{n} \mid \mathcal{F}_{n-1}\right)+\mathbb{E}\left(X_{n}^{2} \mid \mathcal{F}_{n-1}\right)=S_{n-1}+1,
$$

S_{n} and $S_{n}^{2}-n$ are both martingales.

Assignment 2 (Due Friday 12 Nov 2010 in class)

1. Let $X_{0}, X_{1}, X_{2}, \ldots$ be a sequence of random variables with finite means and satisfying $\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=$ $a X_{n}+b X_{n-1}$ for $n \geq 1$, where $\mathcal{F}_{n}=\sigma\left(X_{0}, \ldots, X_{n}\right), 0<a, b<1$ and $a+b=1$. Find a value α such that $S_{n}=\alpha X_{n}+X_{n-1}, n \geq 1$, defines a martingale.
Solution: It is easily seen that S_{n} is adapted and $\mathbb{E}\left(\left|S_{n}\right|\right) \leq \alpha \mathbb{E}\left(\left|X_{n}\right|\right)+\mathbb{E}\left(\left|X_{n-1}\right|\right)<\infty$. Also,

$$
\mathbb{E}\left(S_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\alpha X_{n+1}+X_{n} \mid \mathcal{F}_{n}\right)=\alpha\left(a X_{n}+b X_{n-1}\right)+X_{n}=(1+\alpha a) X_{n}+\alpha b X_{n-1}
$$

which is equal to $\alpha X_{n}+X_{n-1}$ if $1+\alpha a=\alpha$ and $\alpha b=1$ (with the condition that $a+b=1$. This means that $\alpha=1 /(1-a)$.
2. Let X_{1}, X_{2}, \ldots be random variables such that $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$ determine a martingale. Show that $\mathbb{E}\left(X_{i} X_{j}\right)=0$ for $i \neq j$. Hint: Start with the case $i+1=j$. You may need to approximate a random variable by simple functions such as found in the argument above Proposition 7 on page 6 of notes.
Proof: We observe that for all $n \geq 2$,

$$
\mathbb{E}\left(X_{n-1} X_{n}\right)=\mathbb{E}\left(\mathbb{E}\left(X_{n-1}\left(S_{n}-S_{n-1}\right) \mid \mathcal{F}_{n-1}\right)\right)=\mathbb{E}\left(X_{n-1} \mathbb{E}\left(S_{n}-S_{n-1} \mid \mathcal{F}_{n-1}\right)\right)=0
$$

since S is a martingale. Similarly,

$$
\mathbb{E}\left(X_{n-2} X_{n}\right)+\mathbb{E}\left(X_{n-2} X_{n-1}\right)=\mathbb{E}\left(\mathbb{E}\left(X_{n-2}\left(S_{n}-S_{n-2}\right) \mid \mathcal{F}_{n-2}\right)\right)=\mathbb{E}\left(X_{n-2} \mathbb{E}\left(S_{n}-S_{n-2} \mid \mathcal{F}_{n-2}\right)\right)=0
$$

Since we already know $\mathbb{E}\left(X_{n-2} X_{n-1}\right)=0$, we can conclude that $\mathbb{E}\left(X_{n-2} X_{n}\right)=0$. Similar procedures lead to that for all $i \neq j, \mathbb{E}\left(X_{i} X_{j}\right)=0$. (note: it turns out that one does not need to use an approximating procedure. Sorry about any confusion.)

3 (Pòlya's urn). At time 0 , an urn contains 1 black ball and 1 white ball. At each time $1,2,3, \ldots$, a ball is chosen at random from the urn and returned to the urn. At the same time, a new ball of the same colour as the chosen ball is added to the urn. Just after time n, there are $n+2$ balls in the urn, of which $B_{n}+1$ are black, where B_{n} is the number of black balls chosen by time n.

Let $M_{n}=\left(B_{n}+1\right) /(n+2)$ be the proportion of black balls in the urn just after time n.
(i) Show that (relative to a natural filtration that you should specify) M is a martingale.
(ii) Show that $\mathbb{P}\left(B_{n}=k\right)=1 /(n+1)$ for $0 \leq k \leq n$. (Hint: find the probability that one chooses k black balls at times $1,2, \ldots, k$ and $n-k$ white balls at times $k+1, k+2, \ldots, n$. What about the probability of getting k black balls in a different order?)
(iii) What is the distribution of $M_{\infty}:=\lim M_{n}$?

Proof:(i) Let $\mathcal{F}_{n}=\sigma\left(M_{1}, \ldots, M_{n}\right)$. Let W_{n} be the number of white balls chosen by time n, then $B_{n}+W_{n}=n$, and

$$
\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=\frac{B_{n}+1}{n+2} \frac{B_{n}+1+1}{n+2+1}+\frac{W_{n}+1}{n+2} \frac{B_{n}+1}{n+2+1}=\frac{\left(B_{n}+1\right)\left(B_{n}+W_{n}+3\right)}{(n+2)(n+3)}=\frac{B_{n}+1}{n+2}=M_{n}
$$

hence M is a martingale.
(ii) The probability of getting black on the first m draws and then white on the next $l=n-m$ draws is:

$$
\frac{1}{2} \frac{2}{3} \cdots \frac{m}{m+1} \frac{1}{m+2} \frac{2}{m+3} \cdots \frac{l}{n+1}=\frac{m!l!}{(n+1)!}
$$

Notice that any other outcome of the first n draws with m white and $n-m$ black balls has the same probability since the denominator stays the same and the numerator is permuted. Hence

$$
\mathbb{P}\left(B_{n}=k\right)=\binom{n}{k} \frac{k!(n-k)!}{(n+1)!}=\frac{1}{n+1} .
$$

(iii) We first note that M_{∞} is well defined, since M is a non-negative martingale. And M_{∞} is distributed according the uniform distribution in $[0,1]$.
4. Show that if X is a non-negative supermartingale and T is a stopping time, then

$$
\mathbb{E}\left(X_{T} \mathbb{1}_{T<\infty}\right) \leq \mathbb{E}\left(X_{0}\right)
$$

(Hint: Recall Fatou's lemma.) Deduce that $c \mathbb{P}\left(\sup _{n} X_{n} \geq c\right) \leq \mathbb{E}\left(X_{0}\right)$.
Proof:By Fatou's lemma,

$$
\mathbb{E}\left(\liminf _{n} X_{n \wedge T} \mathbb{1}_{T<\infty}\right) \leq \liminf _{n} \mathbb{E}\left(X_{n \wedge T} \mathbb{1}_{T<\infty}\right) \leq \liminf _{n} \mathbb{E}\left(X_{n \wedge T}\right) \leq \mathbb{E}\left(X_{0}\right)
$$

Define $T:=\min \left\{n: X_{n} \geq c\right\}$, then

$$
\mathbb{E}\left(X_{T} \mathbb{1}_{T<\infty}\right) \geq c \mathbb{P}\left(\sup _{n} X_{n} \geq c\right)
$$

The desired conclusion follows.
5. Let X_{1}, X_{2}, \ldots be non-negative i.i.d. random variables with $\mathbb{E}\left(X_{i}\right)=1$ and $\mathbb{P}\left(X_{i}=1\right)<1$. Then $M_{n}=\prod_{i=1}^{n} X_{i}$ defines a martingale.
(i) Use an argument by contradiction to show that $M_{n} \rightarrow 0$ a.s..
(ii) Use the strong law of large numbers to conclude that $\frac{1}{n} \log M_{n} \rightarrow c<0$.

Hint: For (i), assume that with positive probability, $M_{n} \rightarrow c>0$, then what can you say about the eventual behaviour of M and consequently X_{i} ? For (ii), you may need Jensen's inequality.
Proof: (i) We know that M converges to a limit M_{∞}. If M converges to $c>0$ with positive probability, then for all $\varepsilon>0$,

$$
\begin{aligned}
0 & <\mathbb{P}\left(M_{n} \rightarrow c\right) \leq \mathbb{P}\left(M_{n} \in(c-\varepsilon, c+\varepsilon) \text { eventually }\right) \leq \mathbb{P}\left(X_{n} \in\left(\frac{c-\varepsilon}{c+\varepsilon}, \frac{c+\varepsilon}{c-\varepsilon}\right) \text { eventually }\right) \\
& =\mathbb{P}\left(\bigcup_{m=1}^{\infty} X_{n} \in\left(\frac{c-\varepsilon}{c+\varepsilon}, \frac{c+\varepsilon}{c-\varepsilon}\right) \forall n \geq m\right) \leq \liminf _{m \rightarrow \infty} \mathbb{P}\left(X_{n} \in\left(\frac{c-\varepsilon}{c+\varepsilon}, \frac{c+\varepsilon}{c-\varepsilon}\right) \forall n \geq m\right)=0
\end{aligned}
$$

since $\mathbb{P}\left(X_{n} \in\left(\frac{c-\varepsilon}{c+\varepsilon}, \frac{c+\varepsilon}{c-\varepsilon}\right)\right)<1$ for all n and c if we pick ϵ to be sufficiently small. This is a contradiction, therefore $M_{n} \rightarrow 0$ a.s..
(ii) Since

$$
\frac{1}{n} \log M_{n}=\frac{1}{n} \sum_{i=1}^{n} \log X_{i}
$$

where each $\log X_{i}$ is i.i.d., by the law of large numbers, it converges to $\mathbb{E}\left(\log X_{i}\right):=c$. Since \log is a convex function, by Jensen's inequality,

$$
c=\mathbb{E}\left(\log X_{i}\right) \leq \log \mathbb{E}\left(X_{i}\right)=0
$$

with the equality holding only if $X_{i} \equiv \mathbb{E}\left(X_{i}\right)$ a.s., which is excluded by assumption. Hence the inequality above is strict and as a result $c<0$.

Assignment 3 (Due Monday 6 Dec 2010)

1. Give a reasonable definition for downcrossing of the interval $[a, b]$ by the random sequence X_{0}, X_{1}, \ldots..
(a) Show that the number of downcrossings differs from the number of upcrossings by at most 1.
(b) If X is a submartingale in the filtratrion \mathcal{F}, show that the number $D_{N}[a, b]$ of downcrossings of $[a, b]$ by X up to time n satisfies

$$
\mathbb{E}\left(D_{N}[a, b]\right) \leq \frac{\mathbb{E}\left(\left(X_{n}-b\right)^{+}\right)}{b-a} .
$$

Proof: We define downcrossing $D_{N}[a, b]$ of the interval $[a, b]$ to be the largest integer n so that we can find $0 \leq s_{1}<t_{1}<s_{2}<t_{2}<\ldots<s_{n}<t_{n}=N$ with $X_{s_{i}}>b$ and $X_{t_{i}}<a$ for all $1 \leq i \leq n$.
(a) We observe that there are upcrossings of $[a, b]$ in the intervals $\left[t_{1}, s_{2}\right],\left[t_{2}, s_{3}\right], \ldots,\left[t_{n-1}, s_{n}\right]$, thus there are at least $n-1$ upcrossings of $[a, b]$ up to time N, i.e. $U_{N}[a, b] \geq D_{N}[a, b]-1$. By symmetry, $D_{N}[a, b] \geq U_{N}[a, b]-1$. Thus $U_{N}[a, b]$ and $D_{N}[a, b]$ differ by at most 1 .
(b) Analogous to the proof of Doob's upcrossing lemma, we define $B_{1}=\mathbb{1}_{X_{0}>b}$,

$$
B_{n}=\mathbb{1}_{B_{n-1}=1, X_{n-1} \geq a}+\mathbb{1}_{B_{n-1}=0, X_{n-1}>b}
$$

Then

$$
(B \circ X)_{N}=\sum_{k=1}^{N} C_{k} \Delta X_{k} \geq(a-b) D_{N}[a, b]+\left(X_{N}-b\right)^{+} .
$$

Since X is a submartingale, $-X$ is a supermartingale, from which we conclude that $\mathbb{E}\left((B \circ(-X))_{N}\right) \leq 0$, hence $\mathbb{E}\left((B \circ X)_{N}\right) \geq 0$. Taking expection on both sides above, we obtain

$$
0 \leq(a-b) \mathbb{E}\left(D_{N}[a, b]\right)+\left(X_{N}-b\right)^{+}
$$

from which the desired conclusion follows.
2. Let X be a UI martingale in the filtration $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots \subset \mathcal{F}_{\infty} \subset \mathcal{F}$. Let S and T be finite stopping times such that $S \leq T$ a.s.. We denote \mathcal{F}_{T} the collection of all events $A \in \mathcal{F}$ such that $A \cap\{T=n\} \in \mathcal{F}_{n}$ for all n, which can be thought of as the set of events whose occurrence or non-occurrence is known by time T.
(a) Prove that F_{T} is a σ-field.
(b) Prove that $X_{T}=\mathbb{E}\left(X_{\infty} \mid \mathcal{F}_{T}\right)$ and that $X_{S}=\mathbb{E}\left(X_{T} \mid \mathcal{F}_{S}\right)$. Hint: observe that \mathcal{F}_{T} is generated by sets $A \cap\{T=n\}$ where $A \in \mathcal{F}$ and $n \in \mathbb{Z}^{+}$.
Proof: (a) Let $A_{1}, A_{2}, \ldots \in \mathcal{F}_{T}$, then $A_{k} \cap\{T=n\} \in \mathcal{F}_{n}$ for all k. Hence $\cup_{k}\left(A_{k} \cap\{T=n\}\right)=$ $\left(\cup_{k} A_{k}\right) \cap\{T=n\} \in \mathcal{F}_{n}$, which implies that $\cup_{k} A_{k} \in \mathcal{F}_{T}$. Similarly, since $A_{1} \cap\{T=n\} \in \mathcal{F}_{n}$, we have $A_{1}^{c} \cup\{T=n\}^{c} \in \mathcal{F}_{n}$. We intersect this set with $\{T=n\} \in \mathcal{F}_{n}$ to obtain that $A_{1}^{c} \cap\{T=n\} \in \mathcal{F}_{n}$. Hence $A_{1}^{c} \in \mathcal{F}_{T}$. Hence \mathcal{F}_{T} is a σ-field.
(b) On $A \cap\{T=n\} \in \mathcal{F}_{n}$, we have

$$
\mathbb{E}\left(X_{\infty} \mathbb{1}_{A \cap\{T=n\}}\right)=\mathbb{E}\left(X_{n} \mathbb{1}_{A \cap\{T=n\}}\right)=\mathbb{E}\left(X_{T} \mathbb{1}_{A \cap\{T=n\}}\right)
$$

Since sets of the form $A \cap\{T=n\}$ generate \mathcal{F}_{T}, we conclude that $X_{T}=\mathbb{E}\left(X_{\infty} \mid \mathcal{F}_{T}\right)$. Also,

$$
\mathcal{F}_{S} \subset \mathcal{F}_{T}
$$

since $A \cap\{S=n\} \in \mathcal{F}_{n} \Longrightarrow A \cap\{T=n\}=A \cap\{S \leq n\} \cap\{T=n\} \in \mathcal{F}_{n}$. Since, $X_{S}=\mathbb{E}\left(X_{\infty} \mid \mathcal{F}_{S}\right)$, the second statement follows from the tower property:

$$
X_{S}=\mathbb{E}\left(\mathbb{E}\left(X_{\infty} \mid \mathcal{F}_{T}\right) \mid \mathcal{F}_{S}\right)=\mathbb{E}\left(X_{T} \mid \mathcal{F}_{S}\right)
$$

3. Let $X_{n} \in[0,1]$ be adapted to \mathcal{F}_{n}. Let $\alpha, \beta>0$ such that $\alpha+\beta=1$ and suppose

$$
\mathbb{P}\left(X_{n+1}=\alpha+\beta X_{n} \mid \mathcal{F}_{n}\right)=X_{n}, \mathbb{P}\left(X_{n+1}=\beta X_{n} \mid \mathcal{F}_{n}\right)=1-X_{n}
$$

Show:
(a) $\mathbb{P}\left(\lim _{n} X_{n}=0\right.$ or 1$)=1$
(b) If $X_{0}=\theta$ then $\mathbb{P}\left(\lim _{n} X_{n}=1\right)=\theta$.

Hint: A possible way to establish (a) is by Kolmogorov's 0-1 law, but the tricky part is trying to find an independent sequence U_{n} that generates X_{n}.
Proof: (a) Let U_{n} be an i.i.d. sequence of uniformly distributed r.v.'s, then we can write

$$
X_{n+1}=X_{n}+(\beta-1) X_{n}+\alpha \mathbb{1}_{U_{n} \leq X_{n}}
$$

so that the event $\lim _{n} X_{n}=0$ or 1 is in the tail σ-field generated by U_{n}. Kolmogorov's 0-1 law implies that its probability is either 0 or 1 .
(b) Let $X_{\infty}=\lim _{n} X_{n}$. Since $X_{n} \in[0,1]$ is a martingale, by the bounded convergence theorem,

$$
\mathbb{E}\left(X_{\infty}\right)=\lim _{n} \mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X_{0}\right)=\theta
$$

But since X_{∞} can only takes on values 0 or 1 , we have the desired result.
4. Let $Y_{0}, Y_{1}, Y_{2}, \ldots$ be independent random variables that takes values ± 1 each with probability $1 / 2$. For $n \in \mathbb{N}$, define

$$
X_{n}:=Y_{0} Y_{1} \ldots Y_{n} .
$$

(a) Prove that the random variables X_{0}, X_{1}, \ldots are independent.
(b) Define

$$
\mathcal{F}:=\sigma\left(Y_{1}, Y_{2}, \ldots\right), \mathcal{T}_{n}:=\sigma\left(X_{r}: r>n\right) .
$$

Prove that

$$
\mathcal{L}:=\bigcap_{n} \sigma\left(\mathcal{F}, \mathcal{T}_{n}\right) \neq \sigma\left(\mathcal{F}, \cap_{n} \mathcal{T}_{n}\right):=\mathcal{R}
$$

Hint: show that Y_{0} is measurable in \mathcal{L} and that Y_{0} is independent of \mathcal{R}.
Proof: (a) For $i<j, Y_{i+1} \ldots Y_{n}$ can only take on values ± 1 each with probability $1 / 2$ (by symmetry), hence

$$
\begin{gathered}
\mathbb{P}\left(X_{i}=1, X_{j}=1\right)=\mathbb{P}\left(X_{i}=1, Y_{i+1} \ldots Y_{n}=1\right)=\mathbb{P}\left(X_{i}=1\right) \mathbb{P}\left(Y_{i+1} \ldots Y_{n}=1\right)=1 / 4, \\
\mathbb{P}\left(X_{i}=1, X_{j}=-1\right)=\mathbb{P}\left(X_{i}=1, Y_{i+1} \ldots Y_{n}=-1\right)=\mathbb{P}\left(X_{i}=1\right) \mathbb{P}\left(Y_{i+1} \ldots Y_{n}=-1\right)=1 / 4 .
\end{gathered}
$$

By symmetry, the other two probabilities are both $1 / 4$ as well. Therefore X_{i} and X_{j} are independent for all i, j.
(b) Y_{0} is obviously independent of \mathcal{F}. Also, $Y_{0}=X_{0}$ is independent of X_{n} for $n \geq 1$ as shown in (a), therefore is independent of \mathcal{T}_{n}. Hence Y_{0} is independent of \mathcal{R}.

On the other hand, knowing X_{n+1} (measurable in \mathcal{T}_{n}) and Y_{1}, \ldots, Y_{n+1} enables one to solve Y_{0} $\left(X_{n+1}=Y_{0} \ldots Y_{n+1}\right)$, hence Y_{0} is measurable in $\sigma\left(\mathcal{F}, \mathcal{T}_{n}\right)$ for all n. This implies that Y_{0} is measurable in \mathcal{L}.

