Assignment 1 (Due Monday 25 Oct 2010 in class)
1 Recall that in the example where we toss a coin infinitely many times, we defined Q = {H, T}¥,
w = (wl,wg, .. .),

F=oc({w:w, =W}:neNWe{HT}),

i.e. F is generated by the outcome of each toss, and

1, ifw,=H
X"_{ 0, ifw,=T

‘We now define
S, = X1+ X5+ ...+ X,, = number of heads in the first n tosses.

We aim to show A := {w : S,,/n — p} is a measurable event. We divide this into the following steps: (1)
Show that {w : sup,,~,, Sn/n < p} is measurable, and so is {sup,,>,,, Sn/n > p}, {Sup,;>m, Sn/n < p} and
{sup,;>m Sn/n > p}; (2) Show that {limsup,, S,/n < p} and {liminf, S, /n > p} are both measurable.
(3) Show that A is measurable.
Proof : Since

{sup Sp/n < p} = Nnzmi{Sn < np},

n>m

it is 7 measurable, hence {sup,,>,, Sn/n > p} = {sup,,>,, Sn/n < p}¢is also F measurable. Furthermore,

{sgp Sp/n < p}= UkeN{sgp Sp/n <p—1/k}

is also F measurable, and so is {sup,,>,, Sn/n > p}. Similarly, the corresponding events involving inf are
also F measurable.
Now

{limsup S, /n > p} = {inf sup S, /n > p} = Nyp{sup S,/n > p}
n m n>m n>m

is F measurable, and so is {liminf,, S,/n > p} and {liminf, S,/n < p}. Hence A = {limsup,, Sp/n <
p} N {liminf, S, /n > p} is F measurable. [ |

2. Prove each property in (a) of Proposition 7 (properties of conditional expectation), without using any
other properties.
Proof:To show E (E(X |G)) = E (X), we calculate

E(E(X]9)) =E([E(X[G)la) =E(X1a) = E(X),

where the middle equality is due to the definition of conditional expectation.

To show E (X |constant) := E (X |o(constant)) = E(X), we observe that o(constant) = {0,Q},
hence E (X | constant) must be a constant. It is plain that E (E (X | constant)lqg) = E(X1g) =E(X) =
E(E(X)Llg), where the first equality is due to the definition of conditional expectation, the second
due to 1o = 1. If one replaces 2 by () in the previous calculation, then everything is 0. Therefore
E(X[{0,Q}) =E(X).

To show E(E(X |Y)|Y)=E(X|Y), we take A € o(Y), then by the definition of conditional expec-
tation,

E(E(E(X|Y)[Y)1a) = E(E(X |Y)L).
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Since A € o(Y) is arbitrary, we conclude that E(E (X |Y)|Y)=E(X|Y). [ |

3. Show that if X and Y are random variables with E(Y |G) = X and E (X?) = E(Y?), then X =Y
a.s..
Proof : We have

E(X -Y)?)=E(X?-2XY +Y?) =2F(X?) - 2E(E(XY |G)) = 2E (X?) — 2E (E (XY | G)).

Notice that X is G measurable (since it is defined to be a conditional expectation conditioned on G),
hence we can take out what is known:

E((X —-Y)%) =2F(X?) - 2E(XE(Y|G)) = 2E (X?) — 2E(X?) = 0.
Hence X =Y a.s.. ]
4. Suppose that X and Y are £! random variables on (£, F,P) and that almost surely, E (X |Y) =Y and

E(Y|X) = X. Prove that P(X =Y) = 1. Hint: Consider E((X —Y)1xscv<e) tE(X —Y)lx<cy<c)-
Proof :Since 1y <. and 1x<. are o(Y) and (X ) measurable, respectively, we have

E(Xly<.) =E(Yly<.), E(Xlx<.) =E(Y1lx<.).
Now following the hint,
0=E(X —Y)ly<.) =E(X =Y)Ixscy<e) + E(X = Y)Lx<cy<e)

Similarly,
0=E((X -Y)lx<) =E((X = Y)lx<cvse) +E((X = Y)lx<cy<e)

Cancelling E ((X —Y)lx<.y<.) in RHS of the above two equalities, we obtain
E((X —Y)lxsey<e) TE((X = Y)Ix<ey<e)

Similarly,
E(X —Y)lxsey<e) =E(X —Y)lx<cyse)

In the above, the LHS is > 0, while the RHS is < 0, so they are both 0. But if X and Y are such that
E(X—-Y)lxscv<e) =0, then X =Y a.s. (one can get a counterexample if for certain w’s with positive
probability, X (w) # Y (w)). [ |

5. Given an example on (9, F,P) where Q = {a, b, c} in which
E(E(X|[F1)[F2) # E(E(X|F2) | F1).

Proof:Let F1 = {0, {a}, {b,c}, Q}, F1 = {0,{a,b},{c},Q}, X(a) = -2, X(b) =0, X(c) =2.

(Qv}—l) {a} {b,C}
E(X|F) | 2 | 1

(9, F2) {a,b} {c}
EE(X|F)|F) || (2+1)/2=1/2 | 1

(€, F5) || {a,b} | {c}
E(X[F) || -1 2
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(Qafl) {Cl} {bv C}
E(EX|F)[FA) [ -1 [ (142)/2=1/2
Hence E (E (X | F1) | F2) # E(E(X | F2) | F1). This is hardly surprising, since E (E (X | Fy) | F2) is Fa
measurable, but E (E (X | F2) | F1) is F1 measurable, so they are not even measurable w.r.t. the same
o-field. [ |

6. Suppose S and T are stopping times in (Q, F, P). Show that SAT := min(S,T), SV T := max(S,T),
and S + T are stopping times.
Proof:We have {S < n}, {T <n}, {S=n} and {T = n} are all in F,,, hence

{SAT<n} = {S<n}U{T <n},
{SvT <n} = {S<n}n{T <n}
{§4+T=n} = U({S’zk}ﬂ{Tzn—k})
k=0
are all in F,,. |

7. Let S and T' be stopping times with S < T'. Define the process 1(g 1) with parameter set N via

(1, ifSw) <n<T(w)
Lism) (n,w) := { 0, otherwise

Show that 1(g 7] is previsible, and deduce that if X is a supermartingale, then E (X7n) < E(Xsan)-
Proof : Since

{1smn) =1} ={S<n}n{T>n}={S<n—1}N{T <n—1}°€ F, 1,

1(s,1) is indeed previsible. Hence by the optional stopping theorem, if X is a supermartingale, then

o0
0>E((1(sz)0X)n)=E (Z(]lngT — Lpes)(Xi — Xk_1)> = E(X7an — Xsan),
k=1
from which the conclusion follows. |

8. Let (Sp)n>0 be a simple symmetric random walk on the integers with Sy = k. Show that S,, and
S2 — n are both martingales.
Proof : Since

E (Sn | -Fn—l) =Lk (Sn—l + Xn |‘Fn—1) = Sn-1

and

E(S2|Frn1) =E((Sp_1+X0)? | Fn1) =82, +2S, 1E (X | Frn1) +E(X2 | Fr1) = Sn1 + 1,

n

S, and S2 — n are both martingales. ]


mabat
Highlight

mabat
Highlight

mabat
Highlight

mabat
Highlight

mabat
Highlight

mabat
Highlight


Assignment 2 (Due Friday 12 Nov 2010 in class)

1. Let Xg, X1, Xo,... be a sequence of random variables with finite means and satisfying E (X,,11 | F,) =
aX, +bX,_1 for n > 1, where F,, = 0(Xo,...,X,), 0<a,b<1and a+b=1. Find a value « such that
Sn = aX, +X,_1, n > 1, defines a martingale.

Solution:It is easily seen that S, is adapted and E (|S,|) < oF (| X,|) + E (| Xn-1]) < co. Also,

E(Snt1|Fn) =E(aXnt1 + Xn | Fn) = a(aX, +0Xpno1) + X = (1 + aa) X, + abX, -1,

which is equal to a X, + X,,—1 if 1 + aa = o and ab = 1 (with the condition that @ + b = 1. This means
that « = 1/(1 — a). [ |

2. Let X7, X5, ... be random variables such that S,, = X7 + Xs+...4+ X, determine a martingale. Show
that E (X;X;) = 0 for ¢ # j. Hint: Start with the case i +1 = j. You may need to approximate a random
variable by simple functions such as found in the argument above Proposition 7 on page 6 of notes.
Proof : We observe that for all n > 2,

E (anan> =L ([E (anl(Sn - Snfl) ‘]:nfl)> =L (anl[E (Sn - Snfl |]:n71)) =0
since S is a martingale. Similarly,
L (Xn—2Xn) +E (Xn—2Xn—1) =L ([E (Xn—Q(Sn - Sn—2) |]:n—2)) =L (Xn—2[E (Sn - Sn—2 | ]:n—2)) =0.

Since we already know E (X,,_2X,_1) = 0, we can conclude that E (X,,_2X,) = 0. Similar procedures
lead to that for all ¢ # j, E (X;X;) = 0. (note: it turns out that one does not need to use an approximating
procedure. Sorry about any confusion.) [ |

3 (Polya’s urn). At time 0, an urn contains 1 black ball and 1 white ball. At each time 1,2,3,..., a ball
is chosen at random from the urn and returned to the urn. At the same time, a new ball of the same
colour as the chosen ball is added to the urn. Just after time n, there are n + 2 balls in the urn, of which
B,, + 1 are black, where B,, is the number of black balls chosen by time n.

Let M,, = (B, +1)/(n+ 2) be the proportion of black balls in the urn just after time n.

(i) Show that (relative to a natural filtration that you should specify) M is a martingale.

(ii) Show that P(B, = k) = 1/(n+1) for 0 < k < n. (Hint: find the probability that one chooses
k black balls at times 1,2,...,k and n — k white balls at times k + 1,k + 2,...,n. What about the
probability of getting & black balls in a different order?)

(iii) What is the distribution of M, := lim M,,?
Proof: (i) Let F,, = o(My,...,M,). Let W, be the number of white balls chosen by time n, then
B, + W, =n, and

By +1B,+1+1 W,+1 B,+1 (B, +1)(B,+W,+3) B,+1

[EMn fn = - - —Mna
(Mn1 [ Fn) n+2 n+2+1 n+2 n+2+1 (n+2)(n+3) n+ 2

hence M is a martingale.
(ii) The probability of getting black on the first m draws and then white on the next I = n —m draws
is:
12 m 1 2 L mll!
23" " "m+1m+2m+3"""n+l  (n+ 1)
Notice that any other outcome of the first n draws with m white and n — m black balls has the same
probability since the denominator stays the same and the numerator is permuted. Hence
n) El(n —k)! 1

P(Bn = k) = (k m+1)!  n+l
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(iii) We first note that M. is well defined, since M is a non-negative martingale. And M. is
distributed according the uniform distribution in [0, 1]. [ |

4. Show that if X is a non-negative supermartingale and 7" is a stopping time, then
E(Xrlres) < E(Xp).

(Hint: Recall Fatou’s lemma.) Deduce that ¢P(sup,, X, > ¢) < E (Xj).
Proof : By Fatou’s lemma,

E(liminf Xyarlrcoo) < liminf E(Xoarlrcso) < liminf E (X, A7) < E (X))

Define T := min{n : X,, > ¢}, then

E(Xrlres) > dP(sup X, > ¢).
The desired conclusion follows. ]

5. Let X1, Xa,... be non-negative i.i.d. random variables with E (X;) = 1 and P(X; = 1) < 1. Then
M, =T]"_, X; defines a martingale.

(i) Use an argument by contradiction to show that M, — 0 a.s..

(ii) Use the strong law of large numbers to conclude that %log M, — c<O.

Hint: For (i), assume that with positive probability, M,, — ¢ > 0, then what can you say about the
eventual behaviour of M and consequently X;? For (ii), you may need Jensen’s inequality.
Proof: (i) We know that M converges to a limit M.,. If M converges to ¢ > 0 with positive probability,
then for all € > 0,

c—€¢ c+e¢
c+e'c—e¢

0 < P(M,—c) <P(M,¢< (c—¢,c+e) eventually) <P <Xn € ( ) 6ventually>

- P UXeEE v m <liminf[P<XnG(C_€7C+E)Vn>m):0,
1 ct+e c—¢ m—»00 cte c—¢

since P(X,, € (&=, <)) < 1 for all n and c if we pick € to be sufficiently small. This is a contradiction,

ct+e’ c—¢
therefore M,, — 0 a.s..
(ii) Since
! log M,, = Ly log X
plosMn =25 log Xi
where each log X; is i.i.d., by the law of large numbers, it converges to E (log X;) := c. Since log is a

convex function, by Jensen’s inequality,
c=E(logX;) <logE(X;) =0,

with the equality holding only if X; = E (X;) a.s., which is excluded by assumption. Hence the inequality
above is strict and as a result ¢ < 0. [ ]
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Assignment 3 (Due Monday 6 Dec 2010)
1. Give a reasonable definition for downcrossing of the interval [a, b] by the random sequence Xg, X1, .. ..

(a) Show that the number of downcrossings differs from the number of upcrossings by at most 1.

(b) If X is a submartingale in the filtratrion F, show that the number Dy|a,b] of downcrossings of
[a,b] by X up to time n satisfies
E((X, —0)")

b—a '
Proof: We define downcrossing Dyla,b] of the interval [a,b] to be the largest integer n so that we can
find0<s1 <t <sa<ta<... <8, <ty =N with X;, >band Xy, <aforalll<i<n.

(a) We observe that there are upcrossings of [a,b] in the intervals [t1, so], [t2, 3], - - ., [tn—1, Sn], thus
there are at least n — 1 upcrossings of [a,b] up to time N, i.e. Uy[a,b] > Dy[a,b] — 1. By symmetry,
Dyla,b] > Unla,b] — 1. Thus Uy|a,b] and Dy]a,b] differ by at most 1.

(b) Analogous to the proof of Doob’s upcrossing lemma, we define B; = 1x,>,

E(Dyla,b]) <

B, =1, ,=1,X,_1>a + 1B, 1=0,X,_1>b-
Then
N
(BoX)y =Y _ CpAXy > (a—b)Dyla,b] + (Xn —b)*.
k=1

Since X is a submartingale, —X is a supermartingale, from which we conclude that E ((Bo(—X))n) <0,
hence E ((B o X)n) > 0. Taking expection on both sides above, we obtain

0 < (a—b)E(Dyla,b]) + (Xy —b)7,

from which the desired conclusion follows. |

2. Let X be a Ul martingale in the filtration /3 C Fo C ... C Foo C F. Let S and T be finite stopping
times such that S < T a.s.. We denote Fr the collection of all events A € F such that AN{T =n} € F,
for all n, which can be thought of as the set of events whose occurrence or non-occurrence is known by
time T'.

(a) Prove that Fr is a o-field.

(b) Prove that Xp = E (X | Fr) and that Xg = E (X7 | Fs). Hint: observe that Fr is generated by
sets AN{T =n} where A€ Fandn e Z".
Proof:(a) Let Ay, As,... € Fr, then Ay N {T = n} € F, for all k. Hence Up(Ar N {T = n}) =
(UgAr) N{T = n} € F,, which implies that U A € Fr. Similarly, since A; N {T = n} € F,, we have
ASU{T = n}° € F,,. We intersect this set with {T'=n} € F,, to obtain that AN {T =n} € F,. Hence
A§ € Fr. Hence Fr is a o-field.

(b) On AN{T =n} € F,, we have

E(Xoolan{r=n}) = E(Xnlanir=n}) = E(X1Lan{r=n})
Since sets of the form A N {T = n} generate Fr, we conclude that X; = E (X | Fr). Also,
.7:5 C Fr

since AN{S=n}eF, = An{T =n}=An{S <n}N{T =n} € F,. Since, Xg = E (X | Fs), the
second statement follows from the tower property:

Xs =E(E (X | Fr)|Fs) = E(Xr|Fs).
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3. Let X,, € [0,1] be adapted to F,. Let o, 8 > 0 such that a + 8 = 1 and suppose
[P(Xn+1 =a+ ﬂXn | ‘Fn) = X, |P(Xn+1 = ﬁXn ‘-Fn) =1-X,.

Show:

(a) P(lim, X,, =0or 1) =1

(b) If X = 6 then P(lim, X,, = 1) = 6.

Hint: A possible way to establish (a) is by Kolmogorov’s 0-1 law, but the tricky part is trying to find
an independent sequence U,, that generates X,,.
Proof:(a) Let U, be an i.i.d. sequence of uniformly distributed r.v.’s, then we can write

Xpt1=Xn + (5 — 1)Xn + oy, <x,.,

so that the event lim, X,, = 0 or 1 is in the tail o-field generated by U,,. Kolmogorov’s 0-1 law implies
that its probability is either 0 or 1.
(b) Let X = lim,, X,,. Since X,, € [0,1] is a martingale, by the bounded convergence theorem,

E(Xe)=lImE(X,)=E(Xy) =6.
n
But since X, can only takes on values 0 or 1, we have the desired result. [ ]

4. Let Yy, Y1,Ys, ... be independent random variables that takes values 1 each with probability 1/2.
For n € N, define
Xn = YOY1 N Yn

(a) Prove that the random variables Xg, X1, ... are independent.
(b) Define
Fi=ocW,Y2,...), Tn:i=0(X,:7>n).

Prove that
L= ma(}",ﬁ) #o(F,N,Tn) :=R.
Hint: show that Y is measurable in £ and that Yj is independent of R.
Proof:(a) For i < j, Y;11...Y, can only take on values 1 each with probability 1/2 (by symmetry),
hence

P(X;=1,X,=1)=P(Xi =1,Yiy1...Y, = 1) =P(X; = )P(Yiyy ... Y, = 1) = 1/4,

P(X;=1,X;=-1)=P(X; =1,Yiy; ...V, = 1) =P(X; = 1)P(Yigy...Y, = —1) = 1/4.

By symmetry, the other two probabilities are both 1/4 as well. Therefore X; and X; are independent for
all 4, 5.

(b) Yy is obviously independent of F. Also, Yy, = Xy is independent of X,, for n > 1 as shown in (a),
therefore is independent of 7,. Hence Yj is independent of R.

On the other hand, knowing X, .1 (measurable in 7,) and Y7,...,Y, 1 enables one to solve Yy
(Xn41=Yo...Y,41), hence Yy is measurable in o(F, 7, ) for all n. This implies that Y} is measurable in
L. [ |
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