
Assignment 1 (Due Monday 25 Oct 2010 in class)
1 Recall that in the example where we toss a coin infinitely many times, we defined Ω = {H,T}N,
ω = (ω1, ω2, . . .),

F = σ({ω : ωn = W} : n ∈ N,W ∈ {H,T}),

i.e. F is generated by the outcome of each toss, and

Xn =

{
1, if ωn = H
0, if ωn = T

.

We now define

Sn := X1 +X2 + . . .+Xn = number of heads in the first n tosses.

We aim to show Λ := {ω : Sn/n→ p} is a measurable event. We divide this into the following steps: (1)
Show that {ω : supn≥m Sn/n ≤ p} is measurable, and so is {supn≥m Sn/n > p}, {supn≥m Sn/n < p} and
{supn≥m Sn/n ≥ p}; (2) Show that {lim supn Sn/n ≤ p} and {lim infn Sn/n ≥ p} are both measurable.
(3) Show that Λ is measurable.
Proof:Since

{ sup
n≥m

Sn/n ≤ p} = ∩n≥m{Sn ≤ np},

it is F measurable, hence {supn≥m Sn/n > p} = {supn≥m Sn/n ≤ p}c is also F measurable. Furthermore,

{ sup
n≥m

Sn/n < p} = ∪k∈N{ sup
n≥m

Sn/n < p− 1/k}

is also F measurable, and so is {supn≥m Sn/n ≥ p}. Similarly, the corresponding events involving inf are
also F measurable.

Now
{lim sup

n
Sn/n ≥ p} = {inf

m
sup
n≥m

Sn/n ≥ p} = ∩m{ sup
n≥m

Sn/n ≥ p}

is F measurable, and so is {lim infn Sn/n > p} and {lim infn Sn/n ≤ p}. Hence Λ = {lim supn Sn/n ≤
p} ∩ {lim infn Sn/n ≥ p} is F measurable.

2. Prove each property in (a) of Proposition 7 (properties of conditional expectation), without using any
other properties.
Proof:To show E (E (X | G)) = E (X), we calculate

E (E (X | G)) = E (E (X | G)1Ω) = E (X1Ω) = E (X),

where the middle equality is due to the definition of conditional expectation.
To show E (X | constant) := E (X |σ(constant)) = E (X), we observe that σ(constant) = {∅,Ω},

hence E (X | constant) must be a constant. It is plain that E (E (X | constant)1Ω) = E (X1Ω) = E (X) =
E (E (X)1Ω), where the first equality is due to the definition of conditional expectation, the second
due to 1Ω ≡ 1. If one replaces Ω by ∅ in the previous calculation, then everything is 0. Therefore
E (X | {∅,Ω}) = E (X).

To show E (E (X |Y ) |Y ) = E (X |Y ), we take A ∈ σ(Y ), then by the definition of conditional expec-
tation,

E (E (E (X |Y ) |Y )1A) = E (E (X |Y )1A).
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Since A ∈ σ(Y ) is arbitrary, we conclude that E (E (X |Y ) |Y ) = E (X |Y ).

3. Show that if X and Y are random variables with E (Y | G) = X and E (X2) = E (Y 2), then X = Y
a.s..
Proof:We have

E ((X − Y )2) = E (X2 − 2XY + Y 2) = 2E (X2)− 2E (E (XY | G)) = 2E (X2)− 2E (E (XY | G)).

Notice that X is G measurable (since it is defined to be a conditional expectation conditioned on G),
hence we can take out what is known:

E ((X − Y )2) = 2E (X2)− 2E (XE (Y | G)) = 2E (X2)− 2E (X2) = 0.

Hence X = Y a.s..

4. Suppose that X and Y are L1 random variables on (Ω,F ,P) and that almost surely, E (X |Y ) = Y and
E (Y |X) = X. Prove that P(X = Y ) = 1. Hint: Consider E ((X −Y )1X>c,Y≤c) +E ((X −Y )1X≤c,Y≤c).
Proof:Since 1Y≤c and 1X≤c are σ(Y ) and σ(X) measurable, respectively, we have

E (X1Y≤c) = E (Y 1Y≤c), E (X1X≤c) = E (Y 1X≤c).

Now following the hint,

0 = E ((X − Y )1Y≤c) = E ((X − Y )1X>c,Y≤c) + E ((X − Y )1X≤c,Y≤c).

Similarly,
0 = E ((X − Y )1X≤c) = E ((X − Y )1X≤c,Y >c) + E ((X − Y )1X≤c,Y≤c).

Cancelling E ((X − Y )1X≤c,Y≤c) in RHS of the above two equalities, we obtain

E ((X − Y )1X>c,Y≤c) + E ((X − Y )1X≤c,Y≤c).

Similarly,
E ((X − Y )1X>c,Y≤c) = E ((X − Y )1X≤c,Y >c).

In the above, the LHS is ≥ 0, while the RHS is ≤ 0, so they are both 0. But if X and Y are such that
E ((X−Y )1X>c,Y≤c) = 0, then X = Y a.s. (one can get a counterexample if for certain ω’s with positive
probability, X(ω) 6= Y (ω)).

5. Given an example on (Ω,F ,P) where Ω = {a, b, c} in which

E (E (X | F1) | F2) 6= E (E (X | F2) | F1).

Proof:Let F1 = {∅, {a}, {b, c},Ω}, F1 = {∅, {a, b}, {c},Ω}, X(a) = −2, X(b) = 0, X(c) = 2.
(Ω,F1) {a} {b, c}
E (X | F1) -2 1

(Ω,F2) {a, b} {c}
E (E (X | F1) | F2) (-2+1)/2=-1/2 1

(Ω,F2) {a, b} {c}
E (X | F2) -1 2
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(Ω,F1) {a} {b, c}
E (E (X | F2) | F1) -1 (-1+2)/2=1/2

Hence E (E (X | F1) | F2) 6= E (E (X | F2) | F1). This is hardly surprising, since E (E (X | F1) | F2) is F2

measurable, but E (E (X | F2) | F1) is F1 measurable, so they are not even measurable w.r.t. the same
σ-field.

6. Suppose S and T are stopping times in (Ω,F ,P). Show that S ∧ T := min(S, T ), S ∨ T := max(S, T ),
and S + T are stopping times.
Proof:We have {S ≤ n}, {T ≤ n}, {S = n} and {T = n} are all in Fn, hence

{S ∧ T ≤ n} = {S ≤ n} ∪ {T ≤ n},
{S ∨ T ≤ n} = {S ≤ n} ∩ {T ≤ n},

{S + T = n} =

n⋃
k=0

({S = k} ∩ {T = n− k})

are all in Fn.

7. Let S and T be stopping times with S ≤ T . Define the process 1(S,T ] with parameter set N via

1(S,T ](n, ω) :=

{
1, if S(ω) < n ≤ T (ω)
0, otherwise

Show that 1(S,T ] is previsible, and deduce that if X is a supermartingale, then E (XT∧n) ≤ E (XS∧n).
Proof:Since

{1(S,T ](n) = 1} = {S < n} ∩ {T ≥ n} = {S ≤ n− 1} ∩ {T ≤ n− 1}c ∈ Fn−1,

1(S,T ] is indeed previsible. Hence by the optional stopping theorem, if X is a supermartingale, then

0 ≥ E ((1(S,T ] ◦X)n) = E

( ∞∑
k=1

(1n≤T − 1n≤S)(Xk −Xk−1)

)
= E (XT∧n −XS∧n),

from which the conclusion follows.

8. Let (Sn)n≥0 be a simple symmetric random walk on the integers with S0 = k. Show that Sn and
S2
n − n are both martingales.

Proof:Since
E (Sn | Fn−1) = E (Sn−1 +Xn | Fn−1) = Sn−1

and

E (S2
n | Fn−1) = E ((Sn−1 +Xn)2 | Fn−1) = S2

n−1 + 2Sn−1E (Xn | Fn−1) + E (X2
n | Fn−1) = Sn−1 + 1,

Sn and S2
n − n are both martingales.
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Assignment 2 (Due Friday 12 Nov 2010 in class)
1. Let X0, X1, X2, . . . be a sequence of random variables with finite means and satisfying E (Xn+1 | Fn) =
aXn + bXn−1 for n ≥ 1, where Fn = σ(X0, . . . , Xn), 0 < a, b < 1 and a+ b = 1. Find a value α such that
Sn = αXn +Xn−1, n ≥ 1, defines a martingale.
Solution:It is easily seen that Sn is adapted and E (|Sn|) ≤ αE (|Xn|) + E (|Xn−1|) <∞. Also,

E (Sn+1 | Fn) = E (αXn+1 +Xn | Fn) = α(aXn + bXn−1) +Xn = (1 + αa)Xn + αbXn−1,

which is equal to αXn +Xn−1 if 1 + αa = α and αb = 1 (with the condition that a+ b = 1. This means
that α = 1/(1− a).

2. Let X1, X2, . . . be random variables such that Sn = X1 +X2 + . . .+Xn determine a martingale. Show
that E (XiXj) = 0 for i 6= j. Hint: Start with the case i+1 = j. You may need to approximate a random
variable by simple functions such as found in the argument above Proposition 7 on page 6 of notes.
Proof:We observe that for all n ≥ 2,

E (Xn−1Xn) = E (E (Xn−1(Sn − Sn−1) | Fn−1)) = E (Xn−1E (Sn − Sn−1 | Fn−1)) = 0

since S is a martingale. Similarly,

E (Xn−2Xn) + E (Xn−2Xn−1) = E (E (Xn−2(Sn − Sn−2) | Fn−2)) = E (Xn−2E (Sn − Sn−2 | Fn−2)) = 0.

Since we already know E (Xn−2Xn−1) = 0, we can conclude that E (Xn−2Xn) = 0. Similar procedures
lead to that for all i 6= j, E (XiXj) = 0. (note: it turns out that one does not need to use an approximating
procedure. Sorry about any confusion.)

3 (Pòlya’s urn). At time 0, an urn contains 1 black ball and 1 white ball. At each time 1, 2, 3, . . ., a ball
is chosen at random from the urn and returned to the urn. At the same time, a new ball of the same
colour as the chosen ball is added to the urn. Just after time n, there are n+ 2 balls in the urn, of which
Bn + 1 are black, where Bn is the number of black balls chosen by time n.

Let Mn = (Bn + 1)/(n+ 2) be the proportion of black balls in the urn just after time n.
(i) Show that (relative to a natural filtration that you should specify) M is a martingale.
(ii) Show that P(Bn = k) = 1/(n + 1) for 0 ≤ k ≤ n. (Hint: find the probability that one chooses

k black balls at times 1, 2, . . . , k and n − k white balls at times k + 1, k + 2, . . . , n. What about the
probability of getting k black balls in a different order?)

(iii) What is the distribution of M∞ := limMn?
Proof:(i) Let Fn = σ(M1, . . . ,Mn). Let Wn be the number of white balls chosen by time n, then
Bn +Wn = n, and

E (Mn+1 | Fn) =
Bn + 1

n+ 2

Bn + 1 + 1

n+ 2 + 1
+
Wn + 1

n+ 2

Bn + 1

n+ 2 + 1
=

(Bn + 1)(Bn +Wn + 3)

(n+ 2)(n+ 3)
=
Bn + 1

n+ 2
= Mn,

hence M is a martingale.
(ii) The probability of getting black on the first m draws and then white on the next l = n−m draws

is:
1

2

2

3
. . .

m

m+ 1

1

m+ 2

2

m+ 3
. . .

l

n+ 1
=

m!l!

(n+ 1)!
.

Notice that any other outcome of the first n draws with m white and n −m black balls has the same
probability since the denominator stays the same and the numerator is permuted. Hence

P(Bn = k) =

(
n

k

)
k!(n− k)!

(n+ 1)!
=

1

n+ 1
.
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(iii) We first note that M∞ is well defined, since M is a non-negative martingale. And M∞ is
distributed according the uniform distribution in [0, 1].

4. Show that if X is a non-negative supermartingale and T is a stopping time, then

E (XT1T<∞) ≤ E (X0).

(Hint: Recall Fatou’s lemma.) Deduce that cP(supnXn ≥ c) ≤ E (X0).
Proof:By Fatou’s lemma,

E (lim inf
n

Xn∧T1T<∞) ≤ lim inf
n

E (Xn∧T1T<∞) ≤ lim inf
n

E (Xn∧T ) ≤ E (X0)

Define T := min{n : Xn ≥ c}, then

E (XT1T<∞) ≥ cP(sup
n
Xn ≥ c).

The desired conclusion follows.

5. Let X1, X2, . . . be non-negative i.i.d. random variables with E (Xi) = 1 and P(Xi = 1) < 1. Then
Mn =

∏n
i=1Xi defines a martingale.

(i) Use an argument by contradiction to show that Mn → 0 a.s..
(ii) Use the strong law of large numbers to conclude that 1

n logMn → c < 0.
Hint: For (i), assume that with positive probability, Mn → c > 0, then what can you say about the

eventual behaviour of M and consequently Xi? For (ii), you may need Jensen’s inequality.
Proof:(i) We know that M converges to a limit M∞. If M converges to c > 0 with positive probability,
then for all ε > 0,

0 < P(Mn → c) ≤ P(Mn ∈ (c− ε, c+ ε) eventually) ≤ P

(
Xn ∈ (

c− ε
c+ ε

,
c+ ε

c− ε
) eventually

)
= P

( ∞⋃
m=1

Xn ∈ (
c− ε
c+ ε

,
c+ ε

c− ε
) ∀n ≥ m

)
≤ lim inf

m→∞
P

(
Xn ∈ (

c− ε
c+ ε

,
c+ ε

c− ε
) ∀n ≥ m

)
= 0,

since P(Xn ∈ ( c−ε
c+ε ,

c+ε
c−ε )) < 1 for all n and c if we pick ε to be sufficiently small. This is a contradiction,

therefore Mn → 0 a.s..
(ii) Since

1

n
logMn =

1

n

n∑
i=1

logXi

where each logXi is i.i.d., by the law of large numbers, it converges to E (logXi) := c. Since log is a
convex function, by Jensen’s inequality,

c = E (logXi) ≤ logE (Xi) = 0,

with the equality holding only if Xi ≡ E (Xi) a.s., which is excluded by assumption. Hence the inequality
above is strict and as a result c < 0.
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Assignment 3 (Due Monday 6 Dec 2010)
1. Give a reasonable definition for downcrossing of the interval [a, b] by the random sequence X0, X1, . . ..

(a) Show that the number of downcrossings differs from the number of upcrossings by at most 1.
(b) If X is a submartingale in the filtratrion F , show that the number DN [a, b] of downcrossings of

[a, b] by X up to time n satisfies

E (DN [a, b]) ≤ E ((Xn − b)+)

b− a
.

Proof:We define downcrossing DN [a, b] of the interval [a, b] to be the largest integer n so that we can
find 0 ≤ s1 < t1 < s2 < t2 < . . . < sn < tn = N with Xsi > b and Xti < a for all 1 ≤ i ≤ n.

(a) We observe that there are upcrossings of [a, b] in the intervals [t1, s2], [t2, s3], . . . , [tn−1, sn], thus
there are at least n − 1 upcrossings of [a, b] up to time N , i.e. UN [a, b] ≥ DN [a, b] − 1. By symmetry,
DN [a, b] ≥ UN [a, b]− 1. Thus UN [a, b] and DN [a, b] differ by at most 1.

(b) Analogous to the proof of Doob’s upcrossing lemma, we define B1 = 1X0>b,

Bn = 1Bn−1=1,Xn−1≥a + 1Bn−1=0,Xn−1>b.

Then

(B ◦X)N =

N∑
k=1

Ck∆Xk ≥ (a− b)DN [a, b] + (XN − b)+.

Since X is a submartingale, −X is a supermartingale, from which we conclude that E ((B ◦ (−X))N ) ≤ 0,
hence E ((B ◦X)N ) ≥ 0. Taking expection on both sides above, we obtain

0 ≤ (a− b)E (DN [a, b]) + (XN − b)+,

from which the desired conclusion follows.

2. Let X be a UI martingale in the filtration F1 ⊂ F2 ⊂ . . . ⊂ F∞ ⊂ F . Let S and T be finite stopping
times such that S ≤ T a.s.. We denote FT the collection of all events A ∈ F such that A∩{T = n} ∈ Fn

for all n, which can be thought of as the set of events whose occurrence or non-occurrence is known by
time T .

(a) Prove that FT is a σ-field.
(b) Prove that XT = E (X∞ | FT ) and that XS = E (XT | FS). Hint: observe that FT is generated by

sets A ∩ {T = n} where A ∈ F and n ∈ Z+.
Proof:(a) Let A1, A2, . . . ∈ FT , then Ak ∩ {T = n} ∈ Fn for all k. Hence ∪k(Ak ∩ {T = n}) =
(∪kAk) ∩ {T = n} ∈ Fn, which implies that ∪kAk ∈ FT . Similarly, since A1 ∩ {T = n} ∈ Fn, we have
Ac

1 ∪ {T = n}c ∈ Fn. We intersect this set with {T = n} ∈ Fn to obtain that Ac
1 ∩ {T = n} ∈ Fn. Hence

Ac
1 ∈ FT . Hence FT is a σ-field.

(b) On A ∩ {T = n} ∈ Fn, we have

E (X∞1A∩{T=n}) = E (Xn1A∩{T=n}) = E (XT1A∩{T=n})

Since sets of the form A ∩ {T = n} generate FT , we conclude that XT = E (X∞ | FT ). Also,

FS ⊂ FT

since A ∩ {S = n} ∈ Fn =⇒ A ∩ {T = n} = A ∩ {S ≤ n} ∩ {T = n} ∈ Fn. Since, XS = E (X∞ | FS), the
second statement follows from the tower property:

XS = E (E (X∞ | FT ) | FS) = E (XT | FS).
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3. Let Xn ∈ [0, 1] be adapted to Fn. Let α, β > 0 such that α+ β = 1 and suppose

P(Xn+1 = α+ βXn | Fn) = Xn, P(Xn+1 = βXn | Fn) = 1−Xn.

Show:
(a) P(limnXn = 0 or 1) = 1
(b) If X0 = θ then P(limnXn = 1) = θ.
Hint: A possible way to establish (a) is by Kolmogorov’s 0-1 law, but the tricky part is trying to find

an independent sequence Un that generates Xn.
Proof:(a) Let Un be an i.i.d. sequence of uniformly distributed r.v.’s, then we can write

Xn+1 = Xn + (β − 1)Xn + α1Un≤Xn
,

so that the event limnXn = 0 or 1 is in the tail σ-field generated by Un. Kolmogorov’s 0-1 law implies
that its probability is either 0 or 1.

(b) Let X∞ = limnXn. Since Xn ∈ [0, 1] is a martingale, by the bounded convergence theorem,

E (X∞) = lim
n
E (Xn) = E (X0) = θ.

But since X∞ can only takes on values 0 or 1, we have the desired result.

4. Let Y0, Y1, Y2, . . . be independent random variables that takes values ±1 each with probability 1/2.
For n ∈ N, define

Xn := Y0Y1 . . . Yn.

(a) Prove that the random variables X0, X1, . . . are independent.
(b) Define

F := σ(Y1, Y2, . . .), Tn := σ(Xr : r > n).

Prove that
L :=

⋂
n

σ(F , Tn) 6= σ(F ,∩nTn) := R.

Hint: show that Y0 is measurable in L and that Y0 is independent of R.
Proof:(a) For i < j, Yi+1 . . . Yn can only take on values ±1 each with probability 1/2 (by symmetry),
hence

P(Xi = 1, Xj = 1) = P(Xi = 1, Yi+1 . . . Yn = 1) = P(Xi = 1)P(Yi+1 . . . Yn = 1) = 1/4,

P(Xi = 1, Xj = −1) = P(Xi = 1, Yi+1 . . . Yn = −1) = P(Xi = 1)P(Yi+1 . . . Yn = −1) = 1/4.

By symmetry, the other two probabilities are both 1/4 as well. Therefore Xi and Xj are independent for
all i, j.

(b) Y0 is obviously independent of F . Also, Y0 = X0 is independent of Xn for n ≥ 1 as shown in (a),
therefore is independent of Tn. Hence Y0 is independent of R.

On the other hand, knowing Xn+1 (measurable in Tn) and Y1, . . . , Yn+1 enables one to solve Y0

(Xn+1 = Y0 . . . Yn+1), hence Y0 is measurable in σ(F , Tn) for all n. This implies that Y0 is measurable in
L.
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