Martingale Theory Problem set 2 Conditional expectation

- 2.1 Prove directly from the definition the following basic properties of the conditional expectation. (Numbering corresponds to that in the handwritten lecture notes.)
 - (1) $\mathbf{E}(X \mid \mathcal{T}) = \mathbf{E}(X), \mathbf{E}(X \mid \mathcal{F}) = X;$
 - (2) linearity;
 - (3) positivity;
 - (10) the Tower Rule;
 - (11) the "take out what you know" rule;
- **2.2** Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and $X, Y \in L^1(\Omega, \mathcal{F}, \mu)$. Prove that if $\mathbf{E}(X \mid \sigma(Y)) = Y$ and $\mathbf{E}(Y \mid \sigma(X)) = X$ then X = Y a.s.

2.3 HW

Let $\Omega = \{-1, 0, +1\}$, $\mathcal{F} = \mathcal{P}(\Omega)$ and $\mu(\{-1\}) = \mu(\{0\}) = \mu(\{+1\}) = 1/3$, and consider also the sub- σ -algebras

$$\mathcal{G} = \{\emptyset, \{-1\}, \{0, +1\}, \{-1, 0, +1\}\}, \qquad \mathcal{H} = \{\emptyset, \{-1, 0\}, \{+1\}, \{-1, 0, +1\}\}.$$

Let $X: \Omega \to \mathbb{R}$, $X(\omega) = \omega$. Compute

$$\mathbf{E}(\mathbf{E}(X \mid \mathcal{G}) \mid \mathcal{H})$$
 and $\mathbf{E}(\mathbf{E}(X \mid \mathcal{H}) \mid \mathcal{G})$.

2.4 HW

Let X_j , j = 1, 2, ... i.i.d. random variables with the common distribution $\mathbf{P}(X_j = -1) = \mathbf{P}(X_j = +1) = 1/2$ and $S_n := X_1 + \cdots + X_n$. Compute the following conditional expectations:

$$\mathbf{E}(X_1 \mid \sigma(S_n)), \quad \mathbf{E}(S_n \mid \sigma(X_1), \quad \mathbf{E}(S_{n+m}^2 \mid \sigma(S_n)).$$

2.5 HW

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra of \mathcal{F} . Let $X \in L^2(\Omega, \mathcal{F}, \mu)$ and $Y := \mathbf{E}(X \mid \mathcal{G})$. Prove that if $\mathbf{E}(X^2) = \mathbf{E}(Y^2)$ then X = Y a.s. and thus, X is \mathcal{G} -measurable.

2.6 Bonus

[Change of conditional expectation]

Let ν and μ be two probability measures on (Ω, \mathcal{F}) , with $\nu \ll \mu$, and Radon-Nikodym derivative $\frac{d\nu}{d\mu}(\omega) = \varrho(\omega)$. Let $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ -algebra. Show that, for any \mathcal{F} -measurable random variable X, we have

$$\mathbf{E}_{\nu}(X \mid \mathcal{G}) = \frac{\mathbf{E}_{\mu}(\varrho X \mid \mathcal{G})}{\mathbf{E}_{\mu}(\varrho \mid \mathcal{G})}$$
(1)

- (a) First prove (1) for discrete probability space, by applying the elementary notion of conditional probability and conditional expectation.
- (a) Then prove (1) for general case, by applying basic properties of the (general, measure theoretic notion of) conditional expectation.