
Martingale Theory

Problem set 3

Martingales

3.1 Let ξj , j = 1, 2, . . . be i.i.d. random variables with common distribution

P
(
ξi = +1

)
= p, P

(
ξi = −1

)
= q := 1− p,

and Fn = σ(ξj , 0 ≤ j ≤ n), n ≥ 0, their natural �ltration. Denote Sn :=
∑n

j=1 ξj , n ≥ 0.

(a) Prove that Mn := (q/p)Sn is an (Fn)n≥0-martingale.

(b) For λ > 0 determine C = C(λ) so that

Zλn := CnλSn

be an (Fn)n≥0-martingale.

3.2 Gambler's Ruin, 1

A gambler wins or looses one pound in each round of betting, with equal chances and

independently of the past events. She starts betting with the �rm determination that she

will stop gambling when either she won n pounds or she lost m pounds.

(a) What is the probability that she will be winning when she stops playing further.

(b) What is the expected number of her betting rounds before she will stop playing further.

3.3 HW

Gambler's Ruin, 2

Answer the same questions as in problem 2 when the probability of winning or loosing one

pound in each round is p, respectively, 1− p, with p ∈ (0, 1).

Hint: Use the martingales constructed in problem 1

3.4 Let ξj , j = 1, 2, 3, . . . , be independent and identically distributed random variables and

Fn := σ(ξj , 0 ≤ j ≤ n), n ≥ 0, the natural �ltration generated by them. Assume that

for some γ ∈ R the exponential moment m(γ) := E
(
eγξj

)
< ∞ exists. Denote S0 := 0,

Sn :=
∑n

j=1 ξj , n ≥ 1. Prove that the process

Mn := m(γ)−n exp{γSn}, n ∈ N,
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is an (Fn)n≥0-martingale.

3.5 Let (Ω,F , (Fn)n≥0,P) be a �ltered probability space and Yn, n ≥ 0, a sequence of absolutely

integrable random variables adapted to the �ltration (Fn)n≥0. Assume that there exist real

numbers un, vn, n ≥ 0, such that

E
(
Yn+1

∣∣ Fn) = unYn + vn.

Find two real sequences an and bn, n ≥ 0, so that the sequence of random variables

Mn := anYn + bn, n > 1, be martingale w.r.t. the same �ltration.

3.6 HW

We place N balls in K urns (in whatever way) and perform the following discrete time

process. At each time unit we choose one of the balls uniformly at random (that is : each

ball is chosen with probability 1/N) and place it in one of the urns also uniformly chosen

at random (that is: each urn is chosen with probability 1/K). Denote by Xn the number

of balls in the �rst urn at time n and let Fn := σ(Xj , 1 ≤ j ≤ n), n ≥ 0, be the natural

�ltration generated by the process n 7→ Xn.

(a) Compute E
(
Xn+1

∣∣ Fn).
(b) Using the result from problem 5, �nd real numbers an, bn, n ≥ 0, such that Zn :=

anXn + bn be martingale with respect to the �ltration (Fn)n≥0.

3.7 Let Xj , j ≥ 1, be absolutely integrable random variables and Fn := σ(Xj , , 1 ≤ j ≤ n),

n ≥ 0, their natural �ltration. De�ne the new random variables

Z0 := 0, Zn :=

n−1∑
j=0

(
Xj+1 −E

(
Xj+1

∣∣ Fj)) .
Prove that the process n 7→ Zn is an (Fn)n≥0-martingale.

3.8 A biased coin shows HEAD=1 with probability θ ∈ (0, 1), and TAIL=0 with probability

1− θ. The value θ of the bias is not known.

For t ∈ [0, 1] and n ∈ N we de�ne pn,t : {0, 1}n → [0, 1] by

pn,t(x1, . . . , xn) := t
∑n

j=1 xj (1− t)n−
∑n

j=1 xj .

We make two hypotheses about the possible value of θ: either θ = a, or θ = b, where

a, b ∈ [0, 1] and a 6= b. We toss the coin repeatedly and form the sequence of random

variables

Zn :=
pn,a(ξ1, . . . , ξn)

pn,b(ξ1, . . . , ξn)
,
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where ξj , j = 1, 2, . . . , are the results of the successive trials (HEAD=1, TAIL=0).

Prove that the process n 7→ Zn is a martingale (with respect to the natural �ltration

generated by the coin tosses) if and only if the true bias of the coin is θ = b.

3.9 Bonus

Bellman's Optimality Principle

We model a sequence of gambling as follows. Let ξj , j = 1, 2, . . . , be independent random

variables with the following identical distribution;

P
(
ξj = +1

)
= p, P

(
ξj = −1

)
= 1− p := q, 1/2 < p < 1.

We denote

α := p log2 p+ q log2 q + 2,

the entropy of the distribution of ξj .

ξj is the return of unit bet in the jth round. A gambler starts playing with initial fortune

Y0 > 0 and her fortune after round n is

Yn = Yn−1 + Cnξn

where Cn is the amount she bets in this round. Cn may depend on the values of ξ1, . . . , ξn−1,

and 0 ≤ Cn ≤ Yn−1. The expected rate of winnings within n rounds is:

rn := E
(

log2(Yn/Y0)
)
.

The gambler's goal is to maximize rn within a �xed number of rounds.

(a) Prove that no matter what strategy the gambler chooses (that is: no matter how she

chooses Cn = Cn(ξ1, . . . , ξn−1) ∈ [0, Yn−1])

Xn := log2 Yn − nα

is a supermartingale and hence it follows that rn ≤ nα. This means that she will not be

able to make her average winning rate, over any number of rounds, larger than α.

(b) However, there exists a gambling strategy which makes Xn de�ned above a martingale

and thus realizes the maximal average winning rate. Find this strategy. That is: determine

the optimal choice of Cn = Cn(ξ1, . . . , ξn).

3.10 Let n 7→ ηn be a homogeneous Markov chain on the countable state space S := {0, 1, 2, . . . }
and Fn := σ(ηj , 0 ≤ j ≤ n), n ≥ 0, its natural �ltration.

For i ∈ S denote by Q(i) the probability that the Markov chain starting from site i ever

reaches the point 0 ∈ S:

Q(i) := P
(
∃n <∞ : ηn = 0

∣∣ η0 = i
)
.

Prove that Zn := Q(ηn) is an (Fn)n≥0-martingale.
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3.11 HW

Galton-Watson Branching Process

Let ξn,k, n = 1, 2, . . . , k = 1, 2, . . . be independent and identically distributed random

variables which take values from N = {0, 1, 2, . . . }. Assume that they have �nite second

moment and denote µ := E
(
ξn,k

)
, σ2 := Var

(
ξn,k

)
. De�ne the Galton-Watson branching

process

Z0 := 1, Zn+1 :=

Zn∑
k=1

ξn+1,k

and let Gn := σ(Zj : 0 ≤ j ≤ n), n ≥ 0, be its natural �ltration.

(a) Prove that

Mn := µ−nZn, n = 0, 1, 2, . . .

is a (Gn)n≥0-martingale.

(b) Prove that

E
(
Z2
n+1

∣∣ Gn) = µ2Z2
n + σ2Zn.

(c) Using the result from (b) prove that

Nn :=


M2
n −

σ2

µn+1

µn − 1

µ− 1
Mn if µ 6= 1,

M2
n − nσ2Mn if µ = 1

is also a (Gn)n≥0-martingale.

(d) Using the result from (c) prove that if µ > 1 then sup0≤n<∞E
(
M2
n

)
<∞ (that is: the

martingale Mn is uniformly bounded in L2) while if µ ≤ 1 then limn→∞E
(
M2
n

)
=∞.

3.12 Bonus

Pólya Urn, 1

At time n = 0, an urn contains B0 = 1 blue, and R0 = 1 red ball. At each time n =

1, 2, 3, . . ., a ball is chosen at random from the urn and returned to the urn, together with

a new ball of the same colour. We denote by Bn and Rn the number of blue, respectively,

red balls in the urn after the n-th turn of this procedure. (Note that Bn + Rn = n + 2.)

Denote by Fn := σ(Bj , 0 ≤ j ≤ n) = σ(Rj , 0 ≤ j ≤ n), n ≥ 0, the natural �ltration of the

process. Let

Mn :=
Bn

Bn +Rn

be the proportion of blue balls in the urn just after time n.

(a) Show that n 7→Mn, is an (Fn)n≥0-martingale.
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(b) Show that P
(
Bn = k

)
= 1/(n+ 2) for 0 ≤ k ≤ n+ 1.

(Hint: Write down the probability of choosing k blue and n− k red balls in whatever �xed

order.)

(c) We will prove soon that M∞ := limMn exist almost surely. What is the distribution of

M∞?

(Hint: What is the limit of the distribution of Mn (identi�ed in the previous point) as

n→∞?)

(d) (To be done after learning about the Optional Stopping Theorem.)

Let T be the number of balls drawn until the �rst blue ball is chosen. Use the optional

stopping theorem to show that E
(

1
T+2

)
= 1/4.

3.13 Pólya Urn, 2

Write a program code to simulate the Pólya Urn. Start with B0 = 1 blue and R0 = 1 red

ball in the urn, perform 1000 steps and record the proportion of blue and red balls after

the 1000th step. Repeat this experiment 2000 times and determine the distribution of the

�nal proportion of blue balls by performing elementary statistical analysis.

3.14 Pólya Urn, 3

We continue the study of Pólya Urn and use the notations of problem 12.

Let θ ∈ [0, 1] be �xed and de�ne

Nn(θ) :=
(Bn +Rn − 1)!

(Bn − 1)!(Rn − 1)!
θBn−1(1− θ)Rn−1.

Show that Nn(θ) is is an (Fn)n≥0-martingale.

3.15 Bonus

Bayes Urn

Assume we have a randomly biased coin which shows

P
(
HEAD

)
= Θ, P

(
TAIL

)
= 1−Θ,

where Θ ∼ UNI[0, 1] is a random variable which is uniformly distributed in [0, 1]. We toss

this coin many times and denote

B0 = 1, Bn := 1 + no. of HEADs in the �rst n trials,

R0 = 1, Rn := 1 + no. of TAILs in the �rst n trials,

and Fn := σ(Bj , 0 ≤ j ≤ n), n ≥ 0, the natural �ltration generated by the sequence of coin

tosses. (Note the +1-s and that Bn +Rn = n+ 2.)
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(a) Prove that for any n ∈ N, the joint distribution of (B0, B1, . . . , Bn) is the same as that

of the sequence denoted the same way in the Pólya Urn, problem 12.

(b) Prove that

Mn :=
Bn

Bn +Rn
,

(with Bn, Rn de�ned in this problem) is an an (Fn)n≥0-martingale.

(c) Prove that

Nn(θ) :=
(Bn +Rn − 1)!

(Bn − 1)!(Rn − 1)!
θBn−1(1− θ)Rn−1.

(with Bn, Rn de�ned in this problem) is exactly the (regular) conditional density function

of the random variable Θ, given Fn.
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