
Martingale Theory

Problem set 1, with solutions

Measure and integration

1.1 Let (Ω,F) be a measurable space. Prove that if An ∈ F , n ∈ N, then ∩n∈NAn ∈ F .

HINT FOR SOLUTION:

Apply repeatedly De Morgan's identities:⋂
n∈N

An = Ω \
⋃
n∈N

(Ω \ An).

1.2 Let (Ω,F) be a measurable space and Ak ∈ F , k ∈ N an in�nite sequence of events. Prove

that for all ω ∈ Ω

11∩n∪m≥nAm(ω) = lim
n→∞

11An(ω), 11∪n∩m≥nAm(ω) = lim
n→∞

11An(ω).

HINT FOR SOLUTION:

Note that

lim
n→∞

11An(ω) =

{
0 if #{n ∈ N : ω ∈ An} <∞,
1 if #{n ∈ N : ω ∈ An} =∞.

lim
n→∞

11An(ω) =

{
0 if #{m ∈ N : ω /∈ Am} =∞,
1 if #{m ∈ N : ω /∈ Am} <∞.

1.3 HW

(a) Let Ω be a set and Fα ⊂ P(Ω), α ∈ I, an arbitrary collection of σ-algebras on Ω. We

assume I 6= ∅, otherwise we don't make any assumption about the index set I. Prove that

F :=
⋂
α∈I
Fα

is a σ-algebra.

(b) Let C ⊂ P(Ω) be an arbitrary collection of subsets of Ω. Prove that there exists a unique
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smallest σ-algebra σ(C) ⊂ P(Ω) containing C. (We call σ(C) the σ-algebra generated by the

collection C.)
(c) Let (Ω,F) and (Ξ,G) be measurable spaces where G = σ(C) is the σ-algebra generated

by the collection of subsets C ⊂ P(Ω). Prove that the map T : Ω→ Ξ is measurable if and

only if for any A ∈ C, T−1(A) ∈ F .
Hint for (c): Prove that {A ⊂ Ξ : T−1(A) ∈ F} is a σ-algebra.

SOLUTION:

(a) Check the axioms of σ-algebra for F :

(i)

(∀α ∈ I) : Ω ∈ Fα =⇒ Ω ∈
⋂
α∈I

Fα

(ii)

(∀n ∈ N) : An ∈
⋂
α∈I

Fα =⇒ (∀α ∈ I)(∀n ∈ N) : An ∈ Fα

=⇒ (∀α ∈ I) :
⋃
n∈N

An ∈ Fα

=⇒
⋃
n∈N

An ∈
⋂
α∈I

Fα

(b) Denote
I(C) := {F ⊂ P(Ω) : F is a σ-algebra and C ⊂ F}.

Since P(Ω) ∈ I(C), I(C) 6= ∅. Hence, by applying (a)

σ(C) :=
⋂
F∈I(C)

F ,

is a σ-algebra which contains C as subset. By construction it is the smallest such
object.

(c) We prove that
H := {A ⊂ Ξ : T−1(A) ∈ F} ⊂ P(Ξ)

is a σ-algebra. Indeed:

(i)
T−1(Ξ) = Ω ∈ F =⇒ Ξ ∈ H.

(ii)

(∀n ∈ N) : An ∈ H =⇒ (∀n ∈ N) : T−1(An) ∈ F

=⇒
⋃
n∈N

T−1(An) = T−1(
⋃
n∈N

An) ∈ F

=⇒
⋃
n∈N

An ∈ H.
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By assumption, C ⊂ H and thus due to (b) G = σ(C) ⊂ H.

1.4 (a) Let f : R→ R and assume that for any a ∈ R, f−1((−∞, a)) ∈ B, where B denotes the

σ-algebra of Borel-measurable subsets of R. Prove that f is Borel-measurable, i.e. for any

A ∈ B, f−1(A) ∈ B.
(b) Let f : R→ R and g : R→ R be Borel-measurable functions. Prove that f ◦ g : R→ R
is also Borel-measurable.

(c) Let f : R→ R be piece-wise monotone function. Prove that f is Borel-measurable.

HINT FOR SOLUTION:

(a) This is special case of part (c) of problem 3, with the particular choice: (Ω,F) =
(Ξ,G) = (R,B) (B denotes the Borel-sigma-algebra on R, generated by the topol-
ogy.), and C = {(−∞, a) : a ∈ R} ⊂ P(R). Note that B = σ(C).

(b) Let A ⊂ R, then (f ◦g)−1(A) = g−1(f−1(A)). Hence, since both functions f and g
are assumed to be Borel-measurable A ∈ B =⇒ f−1(A) ∈ B =⇒ g−1(f−1(A)) ∈ B.

(c) Prove �rst that if f : R → R is piecewise monotone then inverse images of

intervals are countable unions of intervals.

1.5 HW

Let Ω = {1, 2, 3, 4} and

F := {∅, {1}, {3}, {1, 3}, {2, 4}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3, 4}}

G := {∅, {1}, {2}, {1, 3}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}

H := {∅, {1}, {4}, {1, 4}, {2, 3}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}}

(a) Decide, which of the collections F , G and/or H are σ-algebras and which are not.

(b) Let f : Ω → R be de�ned as f(n) := (−1)n. Decide whether f is measurable or not

with respect to the σ-algebras identi�ed in question (a).

SOLUTION:

(a) F and H are σ-algebras. G is not a σ-algebra.

(b) f is F -measurable but not H-measurable.

1.6 Let Ω = N, F := P(N) and de�ne µ : F → [0,∞] as follows:

µ(A) =

{
0 if |A| <∞,
∞ if |A| =∞.

Prove that µ is an additive but not a σ-additive measure on (N,P(N)).
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HINT FOR SOLUTION:

Finite additivity follows from the fact that �nite union of �nite sets is �nite. However
σ-additivity doesn't hold. Indeed N = ∪n∈N{n}, but

µ(N) = 1 6= 0 =
∑
n∈N

µ({n}).

1.7 Bonus

Let Ω = N and

C := {A ⊂ N : lim
n→∞

#A ∩ [0, n]

n
=: ρ(A) exists }.

For A ∈ C we call the number ρ(A) ∈ [0, 1] the Césaro density of the set A. The Césaro

density measures in a sense the relative weight of the subset A within N. Unfortunately,

the collection C ⊂ P(N) is not even an algebra of subsets, and thus the Césaro density can

not serve as a decent measure.

Give an example of two sets A,B ∈ C for which A ∩B 6∈ C.

HINT FOR SOLUTION:

Let

E := {22k + 2l : k ∈ N, 0 ≤ l < 22k},
F := {22k+1 + 2l : k ∈ N, 0 ≤ l < 22k+1},
G := {22k+1 + 2l + 1 : k ∈ N, 0 ≤ l < 22k+1}.

In plain words:

- E is the set of all even numbers in intervals of the form [22k, 22k+1), k ∈ N.
- F is the set of all even numbers in intervals of the form [22k+1, 22(k+1)), k ∈ N.
- G is the set of all odd numbers in intervals of the form [22k+1, 22(k+1)), k ∈ N.

These are clearly disjoint sets. De�ne A := E ∪ F , B := E ∪G. Then check that

lim
n→∞

#A ∩ [0, n]

n
= lim

n→∞

#B ∩ [0, n]

n
=

1

2

while

lim
n→∞

#E ∩ [0, n]

n
=

1

3
6= 2

3
= lim

n→∞

#E ∩ [0, n]

n
.

1.8 Bonus

Construction of the Vitali set � example of a subset of [0, 1) which can't be Lebesgue
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measurable.

Let Ω := [0, 1) and de�ne on Ω the following equivalence relation:

x ∼ y if and only if x− y ∈ Q.

Let V ⊂ [0, 1) consist of exactly one representative element from each equivalence class

according to ∼. (Note, that this construction relies on the Axiom of Choice.) For q ∈
Q ∩ [0, 1) denote

Vq := {y = x+ q (mod 1) : x ∈ V }.

Prove that

(i) The sets Vq, q ∈ Q ∩ [0, 1), are congruent: for any q, q′ ∈ Q ∩ [0, 1), Vq′ = (q′ − q) +

Vq (mod 1).

(ii) For any q, q′ ∈ Q ∩ [0, 1), if q 6= q′ then Vq ∩ Vq′ = ∅.

(iii)
⋃
q∈Q∩[0,1) Vq = [0, 1).

Conclude that the Vitali set V can not be Lebesgue measurable.

HINT SOLUTION:

(i) By construction, for all q ∈ [0, 1) ∩Q, Vq is congruent with V0 = V . So, they are
all congruent between them.

(ii) Assume that for q 6= q′ there is x ∈ Vq ∩ Vq′ . Then there are y, y′ ∈ V , so that
x = y+q and x = y′+q′ (mod 1), and hence y−y′ = q′−q 6= 0. But, by construction,
V contains one single representative from each class of equivalence, so can't contain
two di�erent elements whose di�erence is non-zero rational.

(iii) Let x ∈ [0, 1). Denote by x∗ the representative of the class [x] := {y ∈ [0, 1) :
y ∼ x} in V and let q = x− x∗. Then clearly x ∈ Vq.
Assume now, that V is assigned Lebesgue measure λ(V ) ∈ [0, 1]. Then, since Vq-s are
all congruent with V , all must have the same Lebesgue measure: for all q ∈ [0, 1)∩Q

λ(Vq) = λ(V ).

On the other hand,

[0, 1) =
⋃

q∈[0,1)∩Q

Vq,

where the sets Vq are pairwise disjoint and they are countably many. By σ-additivity
of measure we must have ∑

q∈[0,1)∩Q

λ(Vq) = λ([0, 1)) = 1.

Now, assuming λ(V ) = 0 we get λ([0, 1)) = 0, assuming λ(V ) > 0 we get λ([0, 1)) =
∞. Both possible assumptions lead to contradiction. The case is that the set V is
not measurable and there is no way to assign Lebesgue measure to it.
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1.9 HW

(a) Let r, rn ∈ R, n ∈ N and assume limn→∞ rn = r. Prove that

r = sup
m

(
inf
n≥m

rn

)
= inf

m

(
sup
n≥m

rn

)
.

(b) Let (Ω,F) be a measurable space, fn : Ω→ R a sequence of real valued functions and

f : Ω→ R, de�ned as f(ω) := infn fn(ω). Prove that for any a ∈ R �xed

f−1([a,∞)) =
⋂
n

f−1
n ([a,∞)),

f−1((a,∞)) =
⋃
m

f−1([a+ 1/m,∞)).

Using these conclude that the point-wise in�mum of a sequence of real valued measurable

functions is measurable.

(c) Using (a) and (b) above prove that the point-wise limit of a sequence of measurable

functions is measurable. (In other words: the class of real valued measurable functions is

closed under point-wise limits.)

(d) Using (a) deduce the Dominated Convergence Theorem from the Monotone Convergence

Theorem.

SOLUTION:

(a) We clearly have for any sequence rk of real numbers (without assuming conver-
gence)

−∞ ≤ inf
n≥m−1

rn ≤ inf
n≥m

rn ≤ sup
n≥m

rn ≤ sup
n≥m−1

rn ≤ ∞,

and hence

−∞ ≤ sup
m

(
inf
≥>m

rn

)
=: r∗ ≤ r∗ := inf

m

(
sup
n≥m

rn

)
≤ ∞.

Assume r∗ < r∗. Then for any m <∞ there are n, n′ ≥ m so that

rn ≤ r∗ < r∗ ≤ rn′ ,

and thus
lim
n→∞

rn ≤ r∗ < r∗ ≤ lim
n→∞

rn,

in con�ict with the assumption that limn→∞ rn =: r exists.
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(b)

f−1([a,∞) = {ω ∈ Ω : inf
n
fn(ω) ≥ a}

=
⋂
n

{ω ∈ Ω : fn(ω) ≥ a}

=
⋂
n

f−1
n ([a,∞)),

f−1((a,∞) = {ω ∈ Ω : f(ω) > a}

=
⋃
m

{ω ∈ Ω : f(ω) ≥ a+ 1/m}

=
⋃
m

f−1([a+ 1/m))

=
⋃
m

⋂
n

f−1
n ([a+ 1/m)).

Let now −∞ < a < b <∞. Using the above we get

f−1((a, b)) = f−1((a,∞)) \ f−1([b,∞))

=
⋃
m

⋂
n

f−1
n ([a+ 1/n,∞)) \

⋂
n

f−1
n ([b,∞)).

Since by assumption for all c ∈ R, and all ∈ N f−1
n ([c,∞)) ∈ F and the right hand

side of the last equation contains countable elementary set theoretical operations with
these kind of subsets of Ω, it follows that for any −∞ < a < b <∞, f−1((a, b)) ∈ F .
By the conclusion of (c) in problem 3 it follows that f := infn fn is measurable
function.

(c) Let now fn : Ω→ R, n ∈ N, be measurable and assume that for all ω ∈ Ω

lim
n→∞

fn(ω) =: f(ω)

exists. Then, by (a)

f(ω) = sup
m

(
inf
n≥m

fn(ω)

)
= − inf

m

(
− inf

n≥m
fn(ω)

)
.

Since the in�mum of a sequence of measurable functions is measurable and the limit
is expressed in terms of in�ma, the result follows.

(d) Let the functions f, fn, ϕ ∈ L1(Ω,F , µ) be as in the statement of DCT. Without
loss of generality assume fn, f ≥ 0. (Otherwise, write f = f+− f−, fn = fn,+− fn,−,
and, noting that fn → f is equivalent to fn,± → f±, go on separately for f+, fn,+, ϕ ∈
L1(Ω,F , µ) and f−, fn,−, ϕ ∈ L1(Ω,F , µ).)

Let
gn(ω) := inf

m≥n
fn(ω), hn(ω) := sup

m≥n
fn(ω).
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Then, for all ω ∈ Ω and all n ∈ N

gn−1(ω) ≤ gn(ω) ≤ fn(ω) ≤ hn(ω) ≤ hn−1(ω),

and, by (a)
gn(ω)↗ f(ω), hn(ω)↘ f(ω),

as n→∞. By applying MCT to the sequences gn and h̃n := ϕ− hn we get

lim
n→∞

∫
Ω

(f − gn)dµ = lim
n→∞

∫
Ω

(hn − f)dµ = 0.

Putting all these together we obtain∫
Ω

|fn − f | dµ ≤
∫

Ω

(hn − gn)dµ =

∫
Ω

(hn − f)dµ+

∫
Ω

(f − gn)dµ→ 0,

as n→∞.

1.10 In this problem we model the in�nite sequence of coin tosses and prove that the events

appearing in the strong law of large numbers is measurable.

Let

Ω = {0, 1}N = {ω = (ωj)
∞
j=1 : ωj ∈ {0, 1}},

and

F = σ ({ω ∈ Ω : ωj = εj}, j ∈ N, εj ∈ {0, 1}) .

(In plain words: F is the σ-algebra generated by the �nite base cylinder sets.) Let for

j, n ∈ N, Xj , Sn : Ω→ R be

Xj(ω) := ωj , Sn(ω) :=

n∑
j=1

Xj(ω).

(a) Prove that for any p ∈ [0, 1] the event

Ap := {ω ∈ Ω : lim
n→∞

n−1Sn(ω) = p}

is F-measurable.

(b) Prove that the event

B := {ω ∈ Ω : lim
n→∞

n−1Sn(ω) exists.}

is F-measurable.

(c) Does (b) follow directly from (a)?

Hint for (a) and (b): Using basic de�nitions from analysis (limit, Cauchy property) write

the events Ap and B in terms of countable elementary set theoretic operations applied to

�nite cylinder events.
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HINT FOR SOLUTION:

The functions Xn : Ω→ R, Sn : Ω→ R are clearly F -measurable.

(a) More generally, it is true that given sequence of measurable functions functions
fn : Ω→ R and x ∈ R, the set

Ax := {ω ∈ Ω : lim
n→∞

fn(ω) = x}

is measurable. Indeed

Ax = {ω ∈ Ω : (∀k ∈ N) (∃l ∈ N) (∀m ≥ l) : fm(ω) ∈
(
x− 1

k
, x+

1

k

)
}

=
⋂
k∈N

⋃
l∈N

⋂
m≥l

f−1
m (

(
x− 1

k
, x+

1

k

)
).

This is produced by countable elementary set theoretical operations applied to mea-
surable sets. Thus, it is measurable.

(b) More generally, it is true that given sequence of measurable functions functions
fn : Ω→ R, the set

B := {ω ∈ Ω : lim
n→∞

fn(ω) exists}

is measurable. Indeed

B = {ω ∈ Ω : the sequence fn(ω) ∈ R is Cauchy}

= {ω ∈ Ω : (∀k ∈ N) (∃l ∈ N) (∀m,n ≥ l) (∃p ∈ Z) : fn(ω), fm(ω) ∈
(
p− 1

k
,
p+ 1

k

)
}

=
⋂
k∈N

⋃
l∈N

⋂
m≥l

⋂
n≥l

⋃
p∈Z

(
f−1
n (

(
p− 1

k
,
p+ 1

k

)
)
⋂

f−1
m (

(
p− 1

k
,
p+ 1

k

)
)

)
.

This is produced by countable set elementary theoretical operations applied to mea-
surable sets. Thus, it is measurable.

(c) No! One can write

B =
⋃
x∈R

Ax,

but the union on the right hand side is not countable. Thus, (b) needs and indepen-

dent separate proof, as shown above.

1.11 Let f : [0,∞)× [0,∞)→ R be de�ned as follows:

f(x, y) =


+1 if x ≥ 0, y ≥ 0, 0 < x− y ≤ 1,

−1 if x ≥ 0, y ≥ 0, 0 < y − x ≤ 1,

0 otherwise.
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Compute the following double integrals

I :=

∫ ∞
0

(∫ ∞
0

f(x, y)dy

)
dx, J :=

∫ ∞
0

(∫ ∞
0

f(x, y)dx

)
dy.

Interpret the results in view of Fubini's theorem.

HINT FOR SOLUTION: Mind the order of integration in both cases!

I = +
1

2
, J = −1

2
.

Since the function under the integral signs is not absolutely integrable it is not allowed

to change the order of integration. (Fubini's theorem says that that the order of

integration in a double � or multiple � integral can be interchanged if the function

under the integrals is absolutely integrable.)

1.12 Bonus

Let Y be a random variable whose probability distribution function is F (y) := P
(
Y < y

)
.

Assume E
(
Y 2
)
<∞ and denotem := E

(
Y
)
, σ2 := Var

(
Y
)
. Compute the following double

integral

I :=

∫ ∞
−∞

(∫ ∞
x

(y −m)dF (y)

)
dx.

Interpret the result in view of Fubini's theorem.

HINT FOR SOLUTION:

Let
I := lim

N→∞
IN

where

IN :=

∫ ∞
−N

(∫ ∞
x

(y −m)dF (y)

)
dx =

∫ ∞
−N

∫ ∞
−N

11{x ≤ y}(y −m)dF (y)dx.

Then In is absolutely integrable on [−N,∞)× [−N,∞):∫ ∞
−N

∫ ∞
−N

11{x ≤ y} |y −m| dF (y)dx =

∫ ∞
−N
|y +N | |y −m| dF (y)

≤
∫ ∞
−N

(|y|+N)(|y|+ |m|)dF (y)

≤
∫ ∞
−∞

(
y2 + (N + |m|) |y|+N |m|

)
dF (y)

= E
(
Y 2
)

+ (N + |m|)E
(
|Y |
)

+N |m|
<∞.
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Therefore, by Fubini's theorem, we can interchange the order of integration in IN to
obtain

IN =

∫ ∞
−N

(y +N)(y −m)dF (y) =

∫ ∞
−N

(y −m)2dF (y) + (m+N)

∫ ∞
−N

(y −m)dF (y).

Note that, since ∫ ∞
−∞

y2dF (y) <∞

we have, as N →∞∫ ∞
−N

(y −m)dF (y)→
∫ ∞
−∞

(y −m)dF (y) = 0,∫ ∞
−N

(y −m)2dF (y)→
∫ ∞
−∞

(y −m)2dF (y) = σ2

and

N

∣∣∣∣∫ ∞
−N

(y −m)dF (y)

∣∣∣∣ = N

∣∣∣∣∫ −N
−∞

(y −m)dF (y)

∣∣∣∣
≤ NE

(
|Y | 11{|Y | ≥ N}

)
+NmP

(
|Y | ≥ N

)
≤ N

√
E
(
Y 2
)√

P
(
|Y | ≥ N

)
+NmP

(
|Y | ≥ N

)
→ 0.

In the very last step we use that

E
(
Y 2
)
<∞ =⇒ lim

N→∞
N2P

(
|Y | ≥ N

)
= 0,

which is a straightforward consequence of Markov's inequality.

Putting all these together we get

I := lim
N→∞

IN = σ2.

Note, that one couldn't apply Fubini's theorem and couldn't interchange the order

of integration directly in I, without the truncation at −N .
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