Martingale Theory Problem set 2, with solutions Conditional expectation

- 2.1 Prove directly from the definition the following basic properties of the conditional expectation. (Numbering corresponds to that in the handwritten lecture notes.)
 - (1) $\mathbf{E}(X \mid \mathcal{T}) = \mathbf{E}(X), \mathbf{E}(X \mid \mathcal{F}) = X;$
 - (2) linearity;
 - (3) positivity;
 - (10) the Tower Rule;
 - (11) the "take out what you know" rule;

SOLUTION:

2.2 Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and $X, Y \in L^1(\Omega, \mathcal{F}, \mu)$. Prove that if $\mathbf{E}(X \mid \sigma(Y)) = Y$ and $\mathbf{E}(Y \mid \sigma(X)) = X$ then X = Y a.s.

SOLUTION:

Let $c \in \mathbb{R}$ be fixed.

$$\mathbf{E}(X\mathbb{1}_{\{Y \leq c\}}) = \mathbf{E}(\mathbb{1}_{\{Y \leq c\}}\mathbf{E}(X \mid \sigma(Y))) = \mathbf{E}(Y\mathbb{1}_{\{Y \leq c\}}),$$

$$\mathbf{E}(Y\mathbb{1}_{\{X \leq c\}}) = \mathbf{E}(\mathbb{1}_{\{X \leq c\}}\mathbf{E}(Y \mid \sigma(X))) = \mathbf{E}(X\mathbb{1}_{\{X \leq c\}}).$$

Hence,

$$0 = \mathbf{E}((X - Y) \mathbb{1}_{\{Y \le c\}}) = \mathbf{E}((X - Y) \mathbb{1}_{\{X > c, Y \le c\}}) + \mathbf{E}((X - Y) \mathbb{1}_{\{X \le c, Y \le c\}}),$$

$$0 = \mathbf{E}((X - Y) \mathbb{1}_{\{X \le c\}}) = \mathbf{E}((X - Y) \mathbb{1}_{\{X \le c, Y > c\}}) + \mathbf{E}((X - Y) \mathbb{1}_{\{X \le c, Y \le c\}}),$$

and, equating the two

$$\mathbf{E}((X-Y)1_{\{X>c,Y\leq c\}}) = \mathbf{E}((X-Y)1_{\{X\leq c,Y>c\}}).$$

But, obviously

$$\mathbf{E}((X-Y)1_{\{X>c,Y\leq c\}}) \geq 0, \quad \mathbf{E}((X-Y)1_{\{X\leq c,Y>c\}}) \leq 0.$$

From the last two displays it follows that

$$\mathbf{E}((X-Y)\mathbb{1}_{\{X>c,Y\leq c\}})=0, \qquad \mathbf{E}((X-Y)\mathbb{1}_{\{X\leq c,Y>c\}}).=0.$$

since this is true for any $c \in \mathbb{R}$, the assertion follows.

2.3 HW

Let $\Omega = \{-1, 0, +1\}, \ \mathcal{F} = \mathcal{P}(\Omega) \text{ and } \mu(\{-1\}) = \mu(\{0\}) = \mu(\{+1\}) = 1/3, \text{ and consider}$ also the sub- σ -algebras

$$\mathcal{G} = \{\emptyset, \{-1\}, \{0, +1\}, \{-1, 0, +1\}\}, \qquad \mathcal{H} = \{\emptyset, \{-1, 0\}, \{+1\}, \{-1, 0, +1\}\}.$$

Let $X: \Omega \to \mathbb{R}$, $X(\omega) = \omega$. Compute

$$\mathbf{E}(\mathbf{E}(X \mid \mathcal{G}) \mid \mathcal{H})$$
 and $\mathbf{E}(\mathbf{E}(X \mid \mathcal{H}) \mid \mathcal{G})$.

SOLUTION:

$$\mathbf{E}(X \mid \mathcal{G})(-1, 0, 1) = (-1, 1/2, 1/2),$$

$$\mathbf{E}(X \mid \mathcal{H})(-1, 0, 1) = (-1/2, -1/2, 1),$$

$$\mathbf{E}(\mathbf{E}(X \mid \mathcal{G}) \mid \mathcal{H})(-1, 0, 1) = (-1/4, -1/4, 1/2),$$

$$\mathbf{E}(\mathbf{E}(X \mid \mathcal{G}) \mid \mathcal{H})(-1, 0, 1) = (-1/2, 1/4, 1/4).$$

2.4 HW

Let X_j , j = 1, 2, ... i.i.d. random variables with the common distribution $\mathbf{P}(X_j = -1) =$ $\mathbf{P}(X_j = +1) = 1/2$ and $S_n := X_1 + \cdots + X_n$. Compute the following conditional expectations:

$$\mathbf{E}(X_1 \mid \sigma(S_n)), \quad \mathbf{E}(S_n \mid \sigma(X_1)), \quad \mathbf{E}(S_{n+m}^2 \mid \sigma(S_n)).$$

SOLUTION:

 $\mathbf{E}(X_1 \mid \sigma(S_n)) = \frac{S_n}{n},$ $\mathbf{E}(S_n \mid \sigma(X_1)) = X_1,$ $\mathbf{E}(S_{n+m}^2 \mid \sigma(S_n)) = S_n^2 + m.$

2.5 HW

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra of \mathcal{F} . Let $X \in L^2(\Omega, \mathcal{F}, \mu)$ and $Y := \mathbf{E}(X \mid \mathcal{G})$. Prove that if $\mathbf{E}(X^2) = \mathbf{E}(Y^2)$ then X = Y a.s. and thus, X is \mathcal{G} -measurable.

SOLUTION:

Note first that Y and X - Y are orthogonal:

$$\mathbf{E}(Y(X - Y)) = \mathbf{E}(\mathbf{E}(X \mid \mathcal{G})(X - \mathbf{E}(X \mid \mathcal{G})))$$

$$= \mathbf{E}(\mathbf{E}(\mathbf{E}(X \mid \mathcal{G})(X - \mathbf{E}(X \mid \mathcal{G})) \mid \mathcal{G}))$$

$$= \mathbf{E}(\mathbf{E}(X \mid \mathcal{G}) \underbrace{\mathbf{E}((X - \mathbf{E}(X \mid \mathcal{G})) \mid \mathcal{G})}_{=0})$$

$$= 0.$$

Hence

$$\mathbf{E}(Y^2) = \mathbf{E}(X^2) = \mathbf{E}(Y^2) + \mathbf{E}((X - Y)^2),$$

and

$$\mathbf{E}((X-Y)^2) = 0.$$

Thus X = Y almost surely.

2.6 Bonus

[Change of conditional expectation]

Let ν and μ be two probability measures on (Ω, \mathcal{F}) , with $\nu \ll \mu$, and Radon-Nikodym derivative $\frac{d\nu}{d\mu}(\omega) = \varrho(\omega)$. Let $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ -algebra. Show that, for any \mathcal{F} -measurable random variable X, we have

$$\mathbf{E}_{\nu}(X \mid \mathcal{G}) = \frac{\mathbf{E}_{\mu}(\varrho X \mid \mathcal{G})}{\mathbf{E}_{\mu}(\varrho \mid \mathcal{G})}$$
(1)

- (a) First prove (1) for discrete probability space, by applying the elementary notion of conditional probability and conditional expectation.
- (a) Then prove (1) for general case, by applying basic properties of the (general, measure theoretic notion of) conditional expectation.

SOLUTION:

(a) Assume that the σ -algebra \mathcal{G} is discretely generated by the partition H_k , $k = 1, 2, \ldots$, where $\mu(H_k) > 0$ for all k. Then

$$\mathbf{E}_{\nu}(X \mid H_{k}) = \frac{\int_{H_{k}} X d\nu}{\int_{H_{k}} d\nu} = \frac{\int_{H_{k}} X \varrho d\mu}{\int_{H_{k}} \varrho d\mu} = \frac{\int_{H_{k}} X \varrho d\mu}{\mu(H_{k})} \cdot \frac{\mu(H_{k})}{\int_{H_{k}} \varrho d\mu} = \frac{\mathbf{E}_{\mu}(\varrho X \mid H_{k})}{\mathbf{E}_{\mu}(\varrho \mid H_{k})}.$$

(b) Let Z be \mathcal{G} -measurable and bounded random variable. Then

$$\mathbf{E}_{\nu}(Z\mathbf{E}_{\nu}(X \mid \mathcal{G})) = \mathbf{E}_{\nu}(\mathbf{E}_{\nu}(ZX \mid \mathcal{G})) = \mathbf{E}_{\nu}(ZX) = \mathbf{E}_{\mu}(\varrho ZX).$$

On the other hand:

$$\begin{split} \mathbf{E}_{\nu} \big(Z \frac{\mathbf{E}_{\mu} \big(\varrho X \mid \mathcal{G} \big)}{\mathbf{E}_{\mu} \big(\varrho \mid \mathcal{G} \big)} \big) &= \mathbf{E}_{\mu} \big(\varrho Z \frac{\mathbf{E}_{\mu} \big(\varrho X \mid \mathcal{G} \big)}{\mathbf{E}_{\mu} \big(\varrho \mid \mathcal{G} \big)} \big) = \mathbf{E}_{\mu} \big(\varrho \frac{\mathbf{E}_{\mu} \big(\varrho Z X \mid \mathcal{G} \big)}{\mathbf{E}_{\mu} \big(\varrho \mid \mathcal{G} \big)} \big) \\ &= \mathbf{E}_{\mu} \big(\mathbf{E}_{\mu} \big(\varrho \mid \mathcal{G} \big) \frac{\mathbf{E}_{\mu} \big(\varrho Z X \mid \mathcal{G} \big)}{\mathbf{E}_{\mu} \big(\varrho \mid \mathcal{G} \big)} \big) = \mathbf{E}_{\mu} \big(\varrho Z X \big). \end{split}$$

We have proved that for any \mathcal{G} -measurable and bounded random variables Z,

$$\mathbf{E}_{\nu}(Z\mathbf{E}_{\nu}(X \mid \mathcal{G})) = \mathbf{E}_{\nu}(Z\frac{\mathbf{E}_{\mu}(\varrho X \mid \mathcal{G})}{\mathbf{E}_{\mu}(\varrho \mid \mathcal{G})}),$$

which implies (6).