
Martingale Theory

Problem set 4, with solutions

Stopping

4.1 Let (Ω,F , (Fn)n≥0, P ) be a �ltered probability space and S and T two stopping times.

Prove (without consulting the lecture notes) that S∧T := min{S, T}, S∨T := max{S, T},
and S + T are also stopping times.

SOLUTION:

{ω ∈ Ω : S(ω) ∧ T (ω) ≤ n} = {ω ∈ Ω : S(ω) ≤ n} ∩ {ω ∈ Ω : T (ω) ≤ n},
{ω ∈ Ω : S(ω) ∨ T (ω) ≤ n} = {ω ∈ Ω : S(ω) ≤ n} ∪ {ω ∈ Ω : T (ω) ≤ n},

{ω ∈ Ω : S(ω) + T (ω) ≤ n} =
n⋃

l=0

({ω ∈ Ω : S(ω) = l} ∩ {ω ∈ Ω : T (ω) ≤ n− l}) .

Since the events on the right hand side of these equations are all Fn-measurable, the

statement of the problem follows.

4.2 Martingales for simple symmetric random walk on Z.
Let n 7→ Xn be a simple symmetric random walk on the one-dimensional integer lattice Z
and (Fn)n≥0 its natural �ltration.

(a) Prove that Xn and Yn := X2
n − n are both (Fn)-martingales.

(b) Find a deterministic sequence an ∈ R such that Zn := X3
n+anXn be an (Fn)-martingale.

(c) Find a deterministic sequences bn, cn ∈ R such that Vn := X4
n + bnX

2
n + cn be an

(Fn)-martingale.

SOLUTION:

Let ξj, j = 1, 2, . . . be i.i.d. random variables with the common distributionP (ξj = ±1) =
1/2, Fn := σ(ξj : 1 ≤ j ≤ n) and write

X0 = 0, Xn :=
n∑

j=1

ξj.
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(a)

E
(
Xn+1

∣∣ Fn

)
= E

(
Xn + ξn+1

∣∣ Fn

)
= Xn + E

(
ξn+1

∣∣ Fn

)
= Xn.

E
(
Yn+1

∣∣ Fn

)
= E

(
X2

n+1 − (n+ 1)
∣∣ Fn

)
= E

(
X2

n − n+ 2Xnξn+1 + ξ2n+1 − 1
∣∣ Fn

)
= X2

n − n+ 2XnE
(
ξn+1

∣∣ Fn

)
+ E

(
ξ2n+1

∣∣ Fn

)
− 1

= Yn.

(b) Write �rst

Zn+1 = (Xn + ξn+1)
3 + an+1(Xn + ξn+1)

= Zn + 3X2
nξn+1 + 3Xnξ

2
n+1 + ξ3n+1 + (an+1 − an)Xn + an+1ξn+1.

Hence,

E
(
Zn+1

∣∣ Fn

)
= · · · = Zn + (an+1 − an + 3)Xn.

It follows that Zn is a martingale if and only if

an+1 − an + 3 ≡ 0.

Thus, in order that n 7→ Zn be a martingale we must choose

an = a0 − 3n.

That is,
Zn = X3

n − 3nXn

is a martingale.

(c) Proceed similarly as in (b). Write

Vn+1 = (Xn + ξn+1)
4 + bn+1(Xn + ξn+1)

2 + cn+1

= Vn + 4X3
nξn+1 + 6X2

nξ
2
n+1 + 4Xnξ

3
n+1 + ξ4n+1

+ (bn+1 − bn)X2
n + 2bn+1Xnξn+1 + bn+1ξ

2
n + (cn+1 − cn).

Hence,

E
(
Vn+1

∣∣ Fn

)
= · · · = Vn + (bn+1 − bn + 6)X2

n + (cn+1 − cn + bn+1 + 1).

It follows that Zn is a martingale if and only if

bn+1 − bn + 6 ≡ 0, cn+1 − cn + bn+1 + 1.
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Thus, in order that n 7→ Zn be a martingale we must choose

bn = b0 − 6n,

cn = c0 −
n∑

k=1

bk − n = c0 + (b0 − 1)n− 3n(n− 1) = c0 + (b0 + 2)n− 3n2.

That is,
Vn = X4

n − 6nX2
n − 3n2 + 2n

is a martingale.

4.3 Gambler's Ruin, 1

A gambler wins or looses one pound in each round of betting, with equal chances and

independently of the past events. She starts betting with the �rm determination that she

will stop gambling when either she won n pounds or she lost m pounds.

(a) What is the probability that she will be winning when she stops playing further.

(b) What is the expected number of her betting rounds before she will stop playing further.

SOLUTION: Model the experiment with simple symmetric random walk. Let ξj,
j = 1, 2, . . . be i.i.d. random variables with common distribution

P (ξi = +1) =
1

2
= P (ξi = −1) ,

and Fn = σ(ξj, 0 ≤ j ≤ n), n ≥ 0, their natural �ltration. Denote

S0 = 0, Sn :=
n∑

j=1

ξj, n ≥ 1.

De�ne the stopping times

TL := inf{n > 0 : Sn = −b}, TR := inf{n > 0 : Sn = +a}, T := min{TL, TR}.

Note that

{the gambler wins a pounds} = {T = TR},
{the gambler looses b pounds} = {T = TL}.

(a) By the Optional Stopping Theorem

E (ST ) = E (S0) = 0.

Hence

−bP (T = TL) + aP (T = Tr) = 0.
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On the other hand,

P (T = TL) + P (T = Tr) = 1.

Solving the last two equations we get

P (T = TL) =
a

a+ b
, P (T = TR) =

b

a+ b
.

(b) First prove that Mn := S2
n − n is yet another martingale:

E
(
Mn+1

∣∣ Fn

)
= E

(
S2
n+1

∣∣ Fn

)
− (n+ 1)

= E
(
S2
n + 2Snξn+1 + 1

∣∣ Fn

)
− (n+ 1) = · · · = Mn.

Now, apply the Optional Stopping Theorem

0 = E (MT ) = E
(
S2
T − T

)
= P (T = TL) b2 + P (T = TR) a2 − E (T ) .

Hence, using the result from (a)

E (T ) = ab.

4.4 Gambler's Ruin, 2

Let the lazy random walk Xn be a Markov chain on Z with the following transition proba-

bilities

P
(
Xn+1 = i± 1

∣∣ Xn = i
)

=
3

8
, P

(
Xn+1 = i

∣∣ Xn = i
)

=
1

4
.

Denote

Tk := inf{n ≥ 0 : Xn = k}.

Let a, b ≥ 1 be �xed integer numbers.

Compute P
(
Ta < T−b

∣∣ X0 = 0
)
and E

(
Ta ∧ T−b

∣∣ X0 = 0
)
.

SOLUTION:

Very similar to problem 3.

4.5 Gambler's Ruin, 3

Answer the same questions as in problem 3 when the probability of winning or loosing one

pound in each round is p, respectively, 1− p, with p ∈ (0, 1).

Hint: Use the martingales constructed in problem 3.1.

SOLUTION: Model the experiment with simple biased random walk. Let ξj, j =
1, 2, . . . be i.i.d. random variables with common distribution

P (ξi = +1) = p, P (ξi = −1) = q,
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and Fn = σ(ξj, 0 ≤ j ≤ n), n ≥ 0, their natural �ltration. Denote

S0 = 0, Sn :=
n∑

j=1

ξj, n ≥ 1.

De�ne the stopping times

TL := inf{n > 0 : Sn = −b}, TR := inf{n > 0 : Sn = +a}, T := min{TL, TR}.

Note that

{the gambler wins a pounds} = {T = TR},
{the gambler looses b pounds} = {T = TL}.

(a) Use the Optional Stopping Theorem for the martingale (q/p)Sn :

1 = E
(
(q/p)Sn

)
= (p/q)bP (T = TL) + (q/p)aP (T = TR) .

On the other hand,

P (T = TL) + P (T = Tr) = 1.

Solving the last two equations we get

P (T = TL) =
1− (q/p)a

(p/q)b − (q/p)a
, P (T = TR) =

1− (p/q)b

(q/p)a − (p/q)b
.

(b) Now, apply the Optional Stopping Theorem to the martingale Sn − (p − q)n.
Hence

E (T ) = (p− q)−1E (ST ) = (p− q)−1
(
a

1− (p/q)b

(q/p)a − (p/q)b
− b 1− (q/p)a

(p/q)b − (q/p)a

)
= (p− q)−1a(1− (p/q)b) + b(1− (q/p)a)

(q/p)a − (p/q)b
.

4.6 Let (Ω,F , (Fn)n≥0,P) be a �ltered probability space and S and T two stopping times such

that P (S ≤ T ) = 1.

(a) De�ne the process n 7→ Cn := 11{S<n≤T}. Prove that (Cn)n≥1 is predictable process.

That is: for all n ≥ 1, Cn is Fn−1-measurable.

(b) Let the process (Xn)n≥0 be (Fn)-supermartingale and de�ne the process n 7→ Yn as

follows

Y0 := 0, Yn :=
n∑

k=1

Ck(Xk −Xk−1).
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Prove that (Yn)n≥0 is also (Fn)-supermartingale.

(c) Prove that if S and T two stopping times such that P (S ≤ T ) = 1 and (Xn)n≥0 is

supermartingale then for all n ≥ 0, E (Xn∧T ) ≤ E (Xn∧S).

SOLUTION:

(a)

{ω : Cn(ω) = 1} = {ω : S(ω) < n, T (ω) ≥ n}
= {ω : S(ω) ≤ n− 1} ∩ {ω : T (ω) ≤ n− 1}c.

Since both events on the right hand side are Fn−1-measurable, the process n 7→ Cn

is predictable, indeed.

(b) Yn is clearly Fn measurable. We check the supermartingale condition:

E
(
Yn+1

∣∣ Fn

)
= Yn + E

(
Cn+1(Xn+1 −Xn)

∣∣ Fn

)
= Yn + Cn+1E

(
Xn+1 −Xn

∣∣ Fn

)
≤ Yn.

In the second step we use the result from (a). In the last step we use Cn+1 ≥ 0.

(c) Note that
Xn∧T −Xn∧S = Yn,

and use (b).

4.7 A two-dimensional random walk.

HW

Let Xn be the following two dimensional random walk: n 7→ Xn is a Markov chain on the

two dimensional integer lattice Z2 with the following transition probabilities:

P
(
Xn+1 = (i± 1, j)

∣∣ Xn = (i, j)
)

=
1

8
,

P
(
Xn+1 = (i, j ± 1)

∣∣ Xn = (i, j)
)

=
1

8
.

P
(
Xn+1 = (i± 1, j ± 1)

∣∣ Xn = (i, j)
)

=
1

8
.

(a) Prove that

Mn := |Xn|2 −
3

2
n

is a martingale with respect to the natural �ltration of the process. (We denote by |x| the
Euclidean norm of x ∈ Z2.)

(b) For R ∈ R+ de�ne the stopping time

TR := inf{n ≥ 0 : |Xn|2 ≥ R2}.
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Give sharp lower and upper bounds for

E
(
TR
∣∣ X0 = (0, 0)

)
.

SOLUTION:

Let ξj, j = 1, 2, . . . be i.i.d. random two-dimensional vectors with the common
distribution

P (ξj = (±1, 0)) = P (ξj = (0,±1)) = P (ξj = (±1,±1)) = frac18,

Fn := σ(ξj : 1 ≤ j ≤ n) and write

X0 = 0, Xn :=
n∑

j=1

ξj.

Note that

E (ξj) = 0, E
(
|ξj|2

)
=

3

2
.

(a)

E

(
|Xn+1|2 −

3

2
(n+ 1)

∣∣ Fn

)
= E

(
|Xn|2 + 2Xn · ξn+1 + |ξn+1|2 −

3

2
(n+ 1)

∣∣ Fn

)
= |Xn|2 −

3

2
n+ E

(
|ξn+1|2

∣∣ Fn

) 3

2
= |Xn|2 −

3

2
n.

(b) Note �rst that

R2 ≤ |XTR
|2 ≤ (R +

√
2)2.

Apply the Optional Stopping Theorem,

E (TR) =
2

3
E
(
|XTR

|2
)
.

From these two relations we get

2

3
R2 ≤ E (TR) ≤ 2

3
(R +

√
2)2.

4.8 We toss repeatedly a fair coin.

(a) What is the expected number of tosses until we have seen the pattern HTHT for the

�rst time?

(b) Give an example of a four letter pattern of H-s and T-s that has the maximal expected

number of tosses, of any four letter patterns, until it is seen.
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SOLUTION:

(a) Apply the "Monkey Typing ABRACADABRA" method. You will �nd

E (THTHT) = 24 + 22 = 20.

(b) Obviously, from the same argument, the expected waiting time is maximal for
the sequences HHHH and TTTT:

E (THHHH) = E (TTTTT) = 24 + 23 + 22 + 2 = 30.

4.9 HW

We throw two fair dice and record the their sum at consecutive rounds. Compute the

expected number of rounds before the string 7,2,12,7,2 is recorded

SOLUTION:

This is yet again a "Monkey Typing ABRACADABRA" type of problem. Now, the
alphabet is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, with non-uniform distribution:

P (2) = P (12) =
1

36
; P (3) = P (11) =

2

36
; P (4) = P (10) =

3

36
;

P (5) = P (9) =
4

36
; P (6) = P (8) =

6

36
; P (7) =

6

36
.

So, the winnings should be changed accordingly: 2 and 12 pay 36-to-1; 3 and 11 pay
18-to-1; 4 and 10 pay 12-to-1; 5 and 9 pay 9-to-1; 7 pays 6-to-1.

Applying the method of the "Monkey Typing ABRACADABRA" problem we get

E (T7,2,12,7,2) = 6 · 36 · 36 · 6 · 36 + 6 · 36 = 1, 679, 832

4.10 Birth-and-death process.

Bonus.

Let Xn, n ≥ 0 be a (discrete time) birth and death process and (Fn)n≥0 its natural �ltration.

That is: n 7→ Xn is a Markov chain on the state space S : {0, 1, 2, . . . } with transition

probabilities:

P
(
Xn+1 = k + 1

∣∣ Xn = k
)

= pk,= 1−P
(
Xn+1 = k − 1

∣∣ Xn = k
)
,

where pk ∈ (0, 1), k ∈ S, are �xed and p0 = 1 is assumed. Let Fn := σ(Xj , 0 ≤ j ≤ n),

n ≥ 0, be tha natural σ-algebra generated by the process.

Denote qk := 1− pk and de�ne the function g : S → R,

g(k) := 1 +
k−1∑
j=1

j∏
i=1

qi
pi
.
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(As always, empty sum is equal to 0, empty product is equal to 1.)

(a) Prove that the process

Zn := g(Xn)

is an (Fn)-martingale.

(b) Denote

Tk := inf{n ≥ 0 : Xn = k}, k ∈ S,

the �rst hitting time of k ∈ S. Let 0 ≤ k ≤ K be given. Compute

P
(
TK < T0

∣∣ X0 = k
)
.

That is: the probability that the process starting from k hits K before hitting 0.

SOLUTION:

4.11 Random permutations.

Bonus.

N gentlemen throw their identical bowler hats in a heap and collect them in random order.

(That is: the hats get randomly permuted between them, with uniform distribution among

all N ! possibilities.) Those gentlemen who by chance get back their own hats happily go

home. The remaining ones yet again throw their hats in a heap and collect them randomly.

Those who get back their own hats happily go home. . . . The procedure continues till all

gentlemen go home with their own hats on. Compute the expected number of rounds before

the happy ending.

Hint: Compute �rst the expected number of �xed points in a random permutation of n

elements (uniformly distributed among all n! possibilities).

SOLUTION:

4.12 HW

Let m ∈ N and m ≥ 2. At time n = 0, an urn contains 2m balls, of which m are red and

m are blue. At each time n = 1, . . . , 2m we draw a randomly chosen ball from the urn and

record its colour. We do not replace it. Therefore, at time n the urn contains 2m−n balls.

For n = 0, . . . , 2m− 1 let Nn denote the number and

Pn =
Nn

2m− n
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be the fraction of red balls remaining in the urn after time n. Let (Gn)0≤n≤2m be the natural

σ-algebra generated by the process (Nn)0≤n≤2m.

(a) Show that n 7→ Pn is a (Gn)-martingale.

(b) Let T be the �rst time at which the ball that we draw is red. (Note that T < 2m,

because the urn initially contains m > 1 red balls.) Show that the probability that the

(T + 1)-st ball is red is 1
2 .

SOLUTION:

(a) n 7→ Nn, 0 ≤ n < 2m, is a time-inhomogeneous Markov chain with transition
probabilities

P
(
Nn+1 = l

∣∣ Nn = k
)

=


k

2m−n if l = k − 1,

1− k
2m−n if l = k,

0 otherwise.

Hence we compute

E
(
Pn+1

∣∣ Fn

)
=

1

2m− (n+ 1)
E
(
Nn+1

∣∣ Fn

)
=

1

2m− (n+ 1)
(Nn(1− Pn) + (Nn − 1)Pn)

= Pn
2m− n

2m− (n+ 1)
− 1

2m− (n+ 1)
Pn

= Pn.

(b)

P (ball drawn at T + 1 is red) = E
(
P
(
ball drawn at T + 1 is red

∣∣ FT

))
= E (PT )

= P0 =
1

2

In the �rst step we condition on the (random) state at the stopping time. In the last

step we use OST.
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