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Chapter 1

Conditional Expectation

In this chapter we review probability spaces, introduce σ-fields and discuss the expectation of

random variables. In particular, we introduce the concept of a random variable being measur-

able with respect to a given σ-field. We then introduce the conditional expectation of random

variables and discuss its properties.

1.1 Probability spaces and σ-fields

Let Ω be a set. In probability theory, the symbol Ω is typically (and always, in this course)

used to denote the sample space. Intuitively, we think of ourselves as conducting some random

experiment, with an unknown outcome. The set Ω contains an ω ∈ Ω for every possible outcome

of the experiment.

Subsets of Ω correspond to collections of possible outcomes; such a subset is referred as an

event. For instance, if we roll a dice we might take Ω = {1, 2, 3, 4, 5, 6} and the set {1, 3, 5} is

the event that our dice roll is an odd number.

Definition 1.1.1 Let F be a set of subsets of Ω. We say F is a σ-field if it satisfies the following

properties:

1. ∅ ∈ F .

2. if A ∈ F then Ω \A ∈ F .

3. if A1, A2, . . . ∈ F then
⋃∞
i=1Ai ∈ F .

The role of a σ-field is to choose which subsets of outcomes we are actually interested in.

The power set F = P(Ω) is always a σ-field, meaning that every subset of Ω is an event. But

P(Ω) can be very big, and if our experiment is complicated, with many or even infinitely many

possible outcomes, we might want to consider a smaller choice of F instead.

Sometimes we will need to deal with more than one σ-field at a time. A σ-field G such that

G ⊆ F is known as a sub-σ-field of F .

We say that a subset A ⊆ Ω is measurable, or that it is an event (or measurable event), if

A ∈ F . To make to it clear which σ-field we mean to use in this definition, we sometimes write

that an event is F-measurable.

Example 1.1.2 Some examples of experiments and the σ-fields we might choose for them are

the following:
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• We toss a coin, which might result in heads H or tails T . We take Ω = {H,T} and

F =
{
{H,T}, {H}, {T}, ∅

}
to be the power set of Ω.

• We toss two coins, both of which might result in heads H or tails T . We take Ω =

{HH,TT,HT, TH}. However, we are only interested in the outcome that both coins are

heads. We take F =
{

Ω,Ω \ {HH}, {HH}, ∅
}

.

There are natural ways to choose a σ-field, even if we think of Ω as just an arbitrary set. For

example, F = {Ω, ∅} is a σ-field. If A is a subset of Ω, then the set F = {Ω, A,Ω \ A, ∅} is a

σ-field (check it!).

Given Ω and F , the final ingredient of a probability space is a measure P, which tells us how

likely the events in F are to occur.

Definition 1.1.3 A probability measure P is a function P : F → [0, 1] satisfying:

1. P[Ω] = 1.

2. If A1, A2, . . . ∈ F are pair-wise disjoint, i.e. Ai ∩Aj = ∅ for all i, j such that i 6= j, then

P

[ ∞⋃
i=1

Ai

]
=

∞∑
i=1

P[Ai].

The second of these conditions if often called σ-additivity. Note that we needed Definition 1.1.1

to make sense of Definion 1.1.3, because we needed something to tell us that P [
⋃∞
i=1Ai] was

defined!

Definition 1.1.4 A probability space is a triple (Ω,F ,P), where F is a σ algebra and P is a

probability measure.

We commented above that often we want to choose F to be smaller than P(Ω), but we have

not yet shown how to choose a suitably small F . Fortunately, there is a general way of doing

so, for which we need the following lemma.

Lemma 1.1.5 Let I be any set and for each i ∈ I let Fi be a σ-field. Then

F =
⋂
i∈I
Fi (1.1)

is a σ-field

Proof: We check the three conditions of Definition 1.1.1 for F .

(1) Since each Fi is a σ-field, we have ∅ ∈ Fi. Hence ∅ ∈ ∩iFi.
(2) If A ∈ F = ∩iFi then A ∈ Fi for each i. Since each Fi is a σ-field, Ω \A ∈ Fi for each i.

Hence Ω \A ∈ ∩iFi.
(3) If Aj ∈ F for all j, then Aj ∈ Fi for all i and j. Since each Fi is a σ-field, ∪jAj ∈ Fi for

all i. Hence ∪jAj ∈ ∩iFi. �

Corollary 1.1.6 In particular, if F1 and F2 are σ-fields, so is F1 ∩ F2.
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Now, suppose that we have our Ω and we have a finite or countable collection of E1, E2, . . . ⊆
Ω, which we want to be events. Let F be the set of all σ-fields that contain E1, E2, . . .. We

enumerate F as F = {Fi ; i ∈ I}, and apply Lemma 1.1.5. We thus obtain a σ-field F , which

contains the events that we wanted.

The key point here is that F is the smallest σ-field that has E1, E2, . . . as events. To see why,

note that by (1.1), F is contained inside any σ-field F ′ which has E1, E2, . . . as events.

Definition 1.1.7 Let E1, E2, . . . be subsets of Ω. We write σ(E1, E2, . . . , ) for the smallest

σ-field containing E1, E2, . . ..

With Ω = R, the Borel σ-field is (by definition) the smallest σ-field containing all subintervals

of R. With Ω as any set, and A ⊆ Ω, our example {∅, A,Ω \ A,Ω} is clearly σ(A). In general,

though, the point of Definition 1.1.7 is that we know useful σ-fields exist without having to

construct them explicitly.

In the same style, if F1,F2 . . . are σ-fields then we write σ(F1,F2, . . .) for the smallest σ-

algebra with respect to which all events in F1,F2, . . . are measurable.

From Definition 1.1.1 and 1.1.3 we can deduce the ‘usual’ properties of probability. For

example:

• If A ∈ F then Ω \A ∈ F , and since Ω = A ∪ (Ω \A) we have P[Ω \A] = 1− P[A].

• If A,B ∈ F and A ⊆ B then we can write B = A ∪ (B \ A), which gives us that P[B] =

P[B \A] + P [A], which implies that P[A] ≤ P[B].

And so on. In this course we are concerned with applying probability theory rather than with

relating its properties right back to the definition of a probability space; but you should realize

that it is always possible to do so.

Definitions 1.1.1 and 1.1.3 both involve countable unions. Its convenient to be able to use

countable intersections too, for which we need the following lemma.

Lemma 1.1.8 Let A1, A2, . . . ∈ F , where F is a σ-field. Then
⋂∞
i=1Ai ∈ F .

Proof: We can write

∞⋂
i=1

Ai =

∞⋂
i=1

Ω \ (Ω \Ai) = Ω \

( ∞⋃
i=1

Ω \Ai

)
.

Since F is a σ-field, Ω \Ai ∈ F for all i. Hence also
⋃∞
i=1 Ω \Ai ∈ F , which in turn means that

Ω \ (
⋃∞
i=1 Ω \Ai) ∈ F . �

In general, uncountable unions and intersections of measurable sets need not be measurable.

The reasons why we only allow countable unions/intersections in probability are complicated

and beyond the scope of this course. Loosely speaking, the bigger we make F , the harder it

is to make a probability measure P, because we need to define P[A] for all A ∈ F in a way

that satisfies Definition 1.1.3. Allowing uncountable set operations would (in several natural

situations, including the Borel σ-field on R) result in F being so large that it would actually be

impossible to find a suitable P.

From now on, the symbols Ω, F and P always denote the three elements of the

probability space (Ω,F ,P).
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1.2 Random Variables

Our probability space gives us a label ω ∈ Ω for every possible outcome. Sometimes it is more

convenient to think about a property of ω, rather than about Ω itself. For this, we use a random

variable, X : Ω→ R. We write

X−1(A) = {ω ∈ Ω ; X(ω) ∈ A},

for A ⊆ R, which is called the pre-image of A under X.

Definition 1.2.1 A function X : Ω→ R is said to be F-measurable if

for all subintervals I ⊆ R, X−1(I) is F-measurable.

If it is already clear which σ-field F should be used in the definition, which simply say that X is

measurable or, equivalently, that X is a random variable. We will often shorten this to writing

simply X ∈ mF . The relationship to the notation you have used before in probability is that

P[X ∈ A] means P[X−1(A)], so as e.g. P [a < X < b] = P[ω ∈ Ω ; X(w) ∈ (a, b)].

The key point in Definition 1.2.1 is that, when we choose how big we want our F to be, we

are also choosing which functions X : Ω → R are random variables. This will become very

important to us later in the course.

For example, suppose we toss a coin twice, with Ω = {HH,HT, TH, TT} as in Example 1.1.2.

If we chose F = P(Ω) then any subset of Ω is F-measurable, and consequently any function

X : Ω→ R is F-measurable. However, suppose we chose

F =
{

Ω,Ω \ {HH}, {HH}, ∅
}

(as we did in Example 1.1.1). Then if we look at function

X(ω) = the total number of tails which occurred

we have

X−1(0, 3) = {HT, TH, TT} /∈ F .

So X is not F-measurable. However, the function

Y (ω) =

{
0 if both coins were heads

1 otherwise

is F-measurable; in fact we can list

Y −1(a, b) =


∅ if 0, 1 /∈ (a, b)

{HH} if 0 ∈ (a, b), 1 /∈ (a, b)

Ω \ {HH} if 0 /∈ (a, b), 1 ∈ (a, b)

Ω if 0, 1 ∈ (a, b).

(1.2)

The interaction between random variables and σ-fields can be summarised as follows:

σ-field F ↔ which information we care about

X is F-measurable ↔ X depends only on information that we care about
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It is easiest to think of this in the finite setting, when the function X : Ω→ R takes only finitely

many values. Then, as you might already suspect from (1.2), to check if X is measurable its

enough just to check if the subsets of Ω corresponding to the values that X actually takes are

measurable. In fact, we can allow countably many values too. That is to say:

Lemma 1.2.2 Let X : Ω→ R. Suppose that Q = {x1, . . . , xn} is a finite subset of R, and that

X(ω) ∈ Q for all ω ∈ Ω. Then

X is F-measurable ⇔ for all i ≤ n, X−1(xi) ∈ F .

Proof: We prove each direction in turn.

(⇒): Without loss of generality we assume that x1 < x2 < . . . < xn. Since {x1, . . . , xn} is

finite, for each j ≤ n we can find a, b ∈ R such that

xj−1 < a < xj < b < xj+1.

Then X−1(xj) = X−1(a, b), which is ∈ F because X is F-measurable.

(⇐): Let a < b ∈ R and let I = (a, b). Let J = {j ; xi ∈ I}. Note that J is finite. Then

X−1(a, b) =
⋃
j∈J

X−1(xj)

Since each X−1(xj) ∈ F , and F is a σ-field, X−1(a, b) ∈ F too. The case of closed or half-open

intervals I is similar. �

For example, in place of (1.2), using Lemma 1.2.2 we would only need to check that Y −1(0) ∈
F and Y −1(1) ∈ F . If X takes many values, then σ(X) can be very large, and Lemma 1.2.2 can

save a lot of work.

There is a natural σ-algebra associated to each random variable:

Definition 1.2.3 The σ-field generated by the random variable X, denoted σ(X), is the smallest

σ-field F such that X is F-measurable.

More generally, the σ-field σ(X1, X2, . . .) generated by a collection of random variables X1, X2, . . .

is the smallest σ-field in which each Xn is measurable.

The intuition here is that σ(X) is the minimal σ-field of events on which the random behaviour

of X depends. By definition, σ(X) = σ(X−1(I) ; I is a subinterval of R). If X takes only a

finite or countable set of values x1, x2, . . ., this means that σ(X) = σ(X−1(xi) ; i = 1, 2, . . .).

Example 1.2.4 Consider throwing a fair die. Let Ω = {1, 2, 3, 4, 5, 6}, let F = P(Ω). Let

X(ω) =


1 if ω = 1

3 if ω = 2

0 otherwise.

Then X(ω) ∈ {0, 1, 3}, and X−1(0) = {3, 4, 5, 6}, X−1(1) = {1} and X−1(3) = {2}. So

σ(X) = σ({1}, {2}, {3, 4, 5, 6}).

Lemma 1.2.5 Let X be a random variable. Then X is σ(X)-measurable.
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Proof: Let I be a subinterval of R. Then, if G is any σ-field such that X is G-measurable,

X−1(I) ∈ G. Hence, X−1(I) ∈ σ(X). Since I was arbitrary, X ∈ σ(X). �

In particular, if A ∈ F then the indicator function of the set A, which we write as 1A, satisfies

1A ∈ σ(A) ⊆ F .

Given a collection of random variables, it is useful to be able to construct other random

variables from them. To do so we have the following proposition.

Proposition 1.2.6 Let α ∈ R and let X,Y,X1, X2, . . . be F-measurable functions from Ω→ R.

Then

αX, X + Y, XY, lim sup
n→∞

Xn, lim inf
n→∞

Xn, (1.3)

are all F-measurable. Further, if X∞ given by X∞(ω) = limn→∞Xn(ω) exists almost surely,

then X∞ is F-measurable.

Essentially, every natural way of combining random variables together leads to other random

variables. Proposition 1.2.6 can usually be used to show this.

For example, suppose X is a random variable and let Y = eX , which means that Y (ω) =

limn→∞
∑n

i=1
X(ω)i

i! . Recall that we know from analysis that this limit exists since ex =

lim
n→∞

∑n
i=1

xi

i! exists for all x ∈ R. Each of the partial sums Yn(ω) =
∑n

1
X(ω)i

i! is a random

variable (we could repeatedly use the first two parts of (1.3) to show this) and, since the limit

exists, Y (ω) = lim
n→∞

Yn(ω) = lim sup
n→∞

Yn(ω) is measurable.

Remark 1.2.7 (?) Recall that if Ω = R, we can take F = B(R) to be the Borel σ-field on R. In

this case, there are examples of functions X : R → R that are not B(R)-measurable. But they

are very difficult to find and they do not occur naturally.

In general, if X is a random variable and g : R → R is any ‘nice’ deterministic function

then g(X) is also a random variable. This includes polynomials, all trig functions, all monotone

functions, all piecewise linear functions, all integrals/derivatives, etc etc.

1.2.1 Independence

We can express the concept of independence, which you already know about for random variables,

in terms of σ-fields. Recall that two events E1, E2 ∈ F are said to be independent if P[E1]P[E2] =

P[E1 ∩ E2].

Definition 1.2.8 Sub-σ-fields G1,G2 of F are said to be independent if, whenever Gi ∈ Gi,
i = 1, 2, we have P(G1 ∩G2) = P(G1)P(G2).

Random variables X1 and X2 are said to be independent if the σ-fields σ(X1) and σ(X2) are

independent.

The extension of Definition 1.2.8 to sets of events/σ-fields/etc should be clear (and is not

needed for this course), but remember that pairwise independence does not imply independence.
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1.3 Two kinds of examples

In this section we consolidate our knowledge from the previous two sections by looking at two

important contrasting examples.

1.3.1 Finite Ω

Let n ∈ N, and let Ω = {x1, x2, . . . xn} be a finite set. Let F = P(Ω), which is also a finite set.

We have seen how it is possible to construct other σ-fields on Ω too. Since F contains every

subset of Ω, any σ-field on Ω is a sub-σ-field of F .

In this case we can define a probability measure on Ω by choosing a finite sequence a1, a2, . . . , an
such that each ai ∈ [0, 1] and

∑n
1 ai = 1. We set P[xi] = ai. This naturally extends to defining

P[A] for any subset A ⊆ Ω, by setting

P[A] =
∑

{i ;xi∈A}

P[xi] =
∑

{i ;xi∈A}

ai. (1.4)

It is hopefully obvious (and tedious to check) that, with this definition, P is a probability

measure. Consequently (Ω,F ,P) is a probability space.

All experiments with only finitely many outcomes fit into this category of examples. We have

already seen several of them.

• Roll a biased die. Choose Ω = {1, 2, 3, 4, 5, 6}, F = P(Ω) and define P by setting P[i] = 1
8

for i = 1, 2, 3, 4, 5 and P[6] = 3
8 .

• Toss a coin twice, independently. Choose Ω = {HH,TH,HT, TT}, F = P(Ω). Define P
by setting P[∗∗] = 1

4 , where each instance of ∗ denotes either H or T .

For a sub-σ-field G of F , the triplet (Ω,G,PG) is also a probability space. Here PG : G → [0, 1]

simply means P restricted to G, i.e. PG [A] = P[A].

If G 6= F , some random variables X : Ω→ R are G-measurable and others are not. Intuitively,

a random variable X is G-measurable if we can deduce the value of X(ω) from knowing only,

for all G ∈ G, if ω ∈ G. Each G ∈ G represents a piece of information that G gives us have

access too (and this piece of information is whether or not ω ∈ G); if G gives us access to enough

information then we can determine the value of X(ω) for all ω, in which case we say that X is

G-measurable.

Rigorously, to check if a given random variable is G measurable, we can either check each

pre-image directly, or (usually better) use Lemma 1.2.2 and/or Proposition 1.2.6. To show that

a given random variable X is not G-measurable, we just need to find a < b ∈ R such that

X−1(a, b) /∈ G.
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1.3.2 An example with infinite Ω

Now we flex our muscles a bit, and look at an example where Ω is infinite. We toss a coin

infinitely many times, then Ω = {H,T}N and we write ω = (ω1, ω2, . . .) for a typical outcome.

We define the random variables Xn(ω) = ωn, so as Xn represents the results of the nth throw.

We take

F = σ(X1, X2, . . .)

i.e. F is smallest σ-field with respect to which all the Xn are random variables. Then

σ(X1) = {∅, {H ∗ ∗ ∗ . . .}, {T ∗ ∗ ∗ . . .},Ω}
σ(X1, X2) = σ({{HH ∗ ∗ . . .}, {TH ∗ ∗ . . .}, {HT ∗ ∗ . . .}, {TT ∗ ∗ . . .}})

= {∅, {HH ∗ ∗ . . .}, {TH ∗ ∗ . . .}, {HT ∗ ∗ . . .}, {TT ∗ ∗ . . .},

{H ∗ ∗ ∗ . . .}, {T ∗ ∗ ∗ . . .}, {∗H ∗ ∗ . . .}, {∗T ∗ ∗ . . .},

{
HH

TT
∗ ∗ . . . ,

}
,

{
HT

TH
∗ ∗ . . . ,

}
,

{HH ∗ ∗ . . .}c, {TH ∗ ∗ . . .}c, {HT ∗ ∗ . . .}c, {TT ∗ ∗ . . .}c,Ω},

where ∗ means that it can take on either H or T , so {H ∗ ∗ ∗ . . .} = {ω : ω1 = H}.
With the information available to us in σ(X1, X2), we can distinguish between ω’s where

the first (or second) outcomes are different. But if two ω’s have the same first and second

outcomes, they fall into exactly the same subset(s) of σ(X1, X2). Consequently, if a random

variable depends on anything more than the first and second outcomes, it will not be σ(X1, X2)

measurable.

It is not immediately clear if we can define a probability measure on F ! Since Ω is un-

countable, we cannot follow the scheme in Section 1.3.1 and define P in terms of P[ω] for each

individual ω ∈ Ω. Equation (1.4) simply would not make sense; there is no such thing as an

uncountable sum.

To define a probability measure in this case requires a significant amount of machinery, from

measure theory and Lebesgue integration. It is outside of the scope of this course. For our

purposes, whenever we need to use an infinite Ω you will be given a probability measure and

some of its helpful properties. For example, in this case there exists a probability measure

P : F → [0, 1] such that

• P[Xn = H] = P[Xn = T ] = 1
2 for all n ∈ N.

• Each Xn is independent.

From this, you can work with P without having to know how P was constructed. You don’t even

need to know exactly which subsets of Ω are in F , because Proposition 1.2.6 gives you access to

plenty of random variables.

Remark 1.3.1 (?) In this case F is much smaller than P(Ω). If we tried to take F = P(Ω), we

would (after some significant effort) discover that there is no probability measure Q : P(Ω) →
[0, 1] satisfying the two conditions we wanted above for P. This is irritating, and we just have

to live with it.
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1.4 Analysis background

In this section we survey some material that you should already know from previous courses,

and give a rough outline of some results that are closely related to the present course but are

part of other areas of mathematics.

1.4.1 Convergence of random variables

Recall the different modes of convergence of random variables: almost sure, in probability, in

distribution, and in Lp.

Also, recall the definitions of limsup and liminf. Let (xn, n ∈ N) be a sequence of real

numbers,

lim supxn = inf
m

{
sup
n≥m

xn

}
∈ [−∞,∞]

lim inf xn = sup
m

{
inf
n≥m

xn

}
∈ [−∞,∞]

Recall also that xn → x ∈ R if and only if lim supn xn = lim infn xn = x.

1.4.2 Integration and Expectation

The expectation of a discrete random variable X that takes on values in {xi : i ∈ N} is given by

E[X] =
∑
xi

xiP[X = xi].

For a continuous random variable, the expectation uses an integral against the probability

density function. This is not very elegant as a definition, since it requires different formulae

under only slightly different circumstances. With Lebesgue integration, the expectation can be

defined elegantly using a single definition for both discrete and continuous (or other even more

exotic) random variables. The detail of such a definition is beyond the scope of this course, but

we will give a rough idea of how it is done, along with some properties of the construction.

Definition 1.4.1 (?) A simple random variable X is one that takes on finitely many positive

values, i.e. X =
∑n

k=1 ak1Ak where ak ∈ (0,∞) and Ak ∈ F .

Definition 1.4.2 (?) The definition of E comes in four incremental steps.

1. Indicator functions: for a measurable set A, define E[1A] = P[A].

2. Simple RVs: Write X =
∑n

k=1 ak1Ak for measurable sets A1, . . . , Ak and a1, . . . , ak > 0.

Define E[X] =
∑n

k=1 akP[Ak]. Note that this agrees with the ‘usual’ definition of E for

discrete random variables.

3. Non-negative RVs: Find (somehow...) a sequence of simple random variables Xn such

that Xn ↗ X almost surely and define E[X] =↑ limE[Xn] (which might be +∞).

4. ‘Integrable’ RVs: Write X = X+ − X− where X+ and X− are non-negative random

variables. If both E[X+] and E[X−] <∞ then we define E[X] = E[X+]− E[X−].
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This definition leaves many questions unanswered; for example several different approximat-

ing sequences could be used in the third step and might potentially define different values of

E[X]. However, it can be shown that they do not. The above procedure is well defined.

For purposes of this course, it is useful to have seen the above steps, but there is no need to

remember them in detail. What you should know is: As a result of the above definition, E[X] is

defined for all X such that (1) E[|X|] <∞, or (2) X ≥ 0. You may assume that all the ‘usual’

properties of E hold (linearity, positivity, etc). Also,

Definition 1.4.3 Let p ∈ [1,∞). We say say that X ∈ Lp if E[|X|p] <∞.

You should also know the following convergence theorems. They provide conditions for

showing L1 convergence given a.s. convergence. They are some of the most useful tools in

probability theory.

Proposition 1.4.4 (Fatou’s Lemma) If Xn ≥ 0, then E[lim inf Xn] ≤ lim inf E[Xn].

Proposition 1.4.5 (Monotone Convergence Theorem) If Xn ↑ X a.s. and Xn ≥ 0 for all

n, then E(Xn) ↑ E(X).

Proposition 1.4.6 (Dominated Convergence Theorem) If Xn → X a.s., |Xn| < Y for

all n, and E[Y ] <∞, then E[Xn]→ E[X].

A special case of the Dominated Convergence Theorem is the case where there is some

(deterministic) M ∈ R such that |Xn| ≤ M almost surely for all n. In this case, which is

sometimes known as the Bounded Convergence Theorem, we may simply take Y = M ∈ R.

Lastly, we have an inequality which relates E to convex functions. Recall that a function

c : R→ R is convex if the set {(x, y) ∈ R2 ; y ≥ c(x)} is a convex set.

Proposition 1.4.7 (Jensen’s Inequality) Let X ∈ L1, and suppose c : R → R is a convex

function. Suppose also that E[c(X)] <∞. Then

c(E[X]) ≤ E[c(X)].

11



1.5 The Borel-Cantelli Lemmas

The Borel-Cantelli lemmas are a tool for understanding the tail behaviour (which may or may

not extend to convergence) of a sequence of events En. The key definitions are

{En i.o.} = {En, infinitely often} =
⋂
m

⋃
n≥m

En = {ω : ω ∈ En for infinitely many n}

{En e.v.} = {En, eventually} =
⋃
m

⋂
n≥m

En = {ω : ω ∈ En for all sufficiently large n}.

Note that by straightforward set algebra,

Ω \ {En i.o.} = {Ω \ En e.v.}. (1.5)

The Borel-Cantelli lemmas, respectively, give conditions under which the probability of {En i.o.}
is either 0 or 1. To be precise:

Proposition 1.5.1 (First Borel-Cantelli Lemma) Let (En)n∈N be a sequence of events and

suppose
∑∞

n=1 P[En] <∞. Then P[En i.o.] = 0.

Proof: Since
∑∞

n=1 P[En] <∞, we have limN→∞
∑∞

n=N P[En] = 0. Hence, infN
∑∞

n=N P[EN ] =

0. We have

P

⋂
N

⋃
n≥N

En

 ≤ inf
N

P

 ⋃
n≥N

EN

 ≤ inf
N

∞∑
n=N

P [En] = 0,

which completes the proof. �

For example, suppose that (Xn) are {0, 1} valued random variables and that P[Xn = 1] = 1
n2

for all n. Then
∑

n P[Xn = 1] < ∞ so, by Lemma 1.5.1, P[Xn = 1 i.o.] = 0, which means that

P[Xn = 0 e.v.] = 1. Note that we did not require the (Xn) to be independent!

Proposition 1.5.2 (Second Borel-Cantelli Lemma) Let (En)n∈N be a sequence of indepen-

dent events and suppose that
∑∞

n=1 P[En] =∞. Then P[En i.o.] = 1.

Proof: Write Ecn = Ω \ En. We will show that P[Ecn e.v.] = 1, which by (1.5) implies the

stated result. Note that

P[Ecn e.v.] ≤
∞∑
N=1

P

 ⋂
n≥N

Ecn

 . (1.6)

Moreover, since the (En) are independent, so are the (Ecn), so

P

 ⋂
n≥N

Ecn

 =

∞∏
n=N

P[Ecn] =

∞∏
n=N

(1− P[En]) ≤
∞∏
n=N

e−P [En] = exp

(
−
∞∑
n=N

P[En]

)
= 0.

Here we use that 1− x ≤ e−x for x ∈ [0, 1]. �

For example, suppose that (Xn) are i.i.d. random variables such that P[Xn = 1] = 1
2 and

P[Xn = −1] = 1
2 . Then

∑
n P[Xn = 1] =∞ and, by Lemma 1.5.2, P[Xn = 1 i.o.] = 1.

12



1.6 Conditional Expectation

Suppose X and Z are random variables that take on only finitely many values {x1, . . . , xm} and

{z1, . . . , zn}, respectively. In earlier courses, ‘conditional expectation’ was defined as follows:

P[X = xi |Z = zj ] = P[X = xi, Z = zj ]/P[Z = zj ]

E[X |Z = zj ] =
∑
i

xiP[X = xi |Z = zj ]

Y = E[X |Z] where: if Z(ω) = zj , then Y (ω) = E[X |Z = zj ] (1.7)

You will also have seen a second definition, using probability density functions, for continuous

random variables. These definition are problematic, for several reasons, chiefly (1) its not

immediately clear (or simple to write down) how the two definitions interact and (2) we don’t

want to be restricted to handling only discrete or continuous random variables.

In this section, we define the conditional expectation of random variables using σ-fields.

In this setting we are able to give a unified definition which is valid for general random vari-

ables. The definition is originally due to Kolmogorov (in 1933), and is sometimes referred to

as Kolmogorov’s conditional expectation. It is one of the most important concepts in modern

probability theory.

Conditional expectation is a mathematical tool with the following function. We have a

probability space (Ω,F ,P) and a random variable X : Ω→ R. However, F is large and we want

to work with a sub-σ-algebra G, instead. As a result, we want to have a random variable Y such

that

1. Y is G-measurable

2. Y is ‘the best’ way to approximate X with a G-measurable random variable

The second statement on this wish-list does not fully make sense; there are many different ways

in which we could compare X to potential Y .

Why might we want to do this? Imagine we are conducting an experiment in which we

gradually gain information about the result X. This corresponds to gradually seeing a larger

and larger G, with access to more and more information. At all times we want to keep a

prediction of what the future looks like, based on the currently available information. This

prediction is Y .

It turns out there is only one natural way in which to realize our wish-list (which is convenient,

and somewhat surprising). It is the following:

Theorem 1.6.1 (Conditional Expectation) Let X be an L1 random variable on (Ω,F ,P).

Let G be a sub-σ-field of F . Then there exists a random variable Y ∈ L1 such that

1. Y is G-measurable,

2. for every G ∈ G, we have E[Y 1G] = E[X1G].

Moreover, if Y ′ ∈ L1 is a second random variable satisfying these conditions, P[Y = Y ′] = 1.

The first and second statements here correspond respectively to the items on our wish-list.

Definition 1.6.2 We refer to Y as a version of the conditional expectation of X given G.
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Since any two such Y are almost surely equal so we sometimes refer to Y simply as the

conditional expectation of X. This is a slight abuse of notation, but it is commonplace and

harmless.

Proof of Theorem 1.6.1 is beyond the scope of this course. Loosely speaking, there is an

abstract recipe which constructs E[X|G]. It begins with the random variable X, and then

averages out over all the information that is not accessible to G, leaving only as much randomness

as G can support, resulting in E[X|G]. In this sense the map X 7→ E[X|G] simplifies (i.e. reduces

the amount of randomness in) X in a very particular way, to make it G measurable.

It is important to remember that E[X|G] is (in general) a random variable. It is also important

to remember that the two objects

E[X|G] and E[X|Z = z]

are quite different. They are both useful. We will explore the connection between them in

Section 1.6.1. Before doing so, let us look at a basic example.

Let X1, X2 be independent random variables such that P[Xi = 0] = P[Xi = 1] = 1
2 . Set

F1 = σ(X1). We will show that

E[X1 +X2|σ(X1)] = X1. (1.8)

To do so, we should check that X1 satisfies the two conditions in Theorem 1.6.1, with X =

X1 + X2, Y = X1 and G = σ(X1). The first condition is immediate, since by Lemma 1.2.5

X1 is σ(X1)-measurable. To see the second condition, let G ∈ σ(X1). Then 1G ∈ σ(X1) and

X2 ∈ σ(X2), which are independent, so 1G and X2 are independent. Hence

E[(X1 +X2)1G] = E[X11G] + E[1G]E[X2]

= E[X11G] + P[G].0

= E[X11G].

Thus, by Theorem 1.6.1 we have X1 = E[X1 +X2|σ(X1)] almost surely. The intuition for this,

which is plainly visible in our calculation, is that X2 is independent of σ(X1) so, thinking of

conditional expectation as an operation which averages out all randomness in X = X1 +X2 that

is not G = σ(X1) measurable, we would average out X2 completely i.e. E[X2] = 0.

1.6.1 Relationship to the naive definition

Conditional expectation extends the ‘naive’ definition of (1.7). Essentially the relationship is

that

what you have previously called E[X|Z], we now call E[X|σ(Z)].

In this course we always write E[X|σ(Z)] to make clear that we are taking conditional expectation

with respect to a σ-field. Naturally, the ‘new’ conditional expectation is much more general (and

it is what the theory of martingales requires us to have), but we should still take the time to

relate it to the naive definition.

To see the connection, we focus on the case where X,Z are random variables with finite

sets of values {x1, . . . , xn}, {z1, . . . , zm}. Let Y be the naive version of conditional expectation

defined in (1.7). That is,

Y (ω) =
∑
j

1{Z(ω) = zj}E[X|Z = zj ].
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We can use Theorem 1.6.1 to check that, in fact, Y is a version of E[X|σ(Z)]. We want to check

that Y satisfies the two properties listed in Theorem 1.6.1.

• Since Z only takes finitely many values {z1, . . . , zm}, from the above equation we have that

Y only takes finitely many values. These values are {y1, . . . , ym} where yj = E[X|Z = zj ].

We note

Y −1(yj) = {ω ∈ Ω ; Y (ω) = E[X|Z = zj ]}
= {ω ∈ Ω ; Z(ω) = zj}
= Z−1(zj) ∈ σ(Z).

Hence, by Lemma 1.2.2, Y is σ(Z)-measurable.

• We can calculate

E[Y 1{Z = zj}] = yjE[1{Z = zj}]
= yjP[Z = zj ]

=
∑
i

xiP[X = xi|Z = zj ]P[Zj = zj ]

=
∑
i

xiP[X = xi and Z = zj ]

=
∑
i,j

xi1{Z = zj}P[X = xi and Z = zj ]

= E[X1{Z = zj}].

(?) Properly, to check that Y satisfies the second property in Theorem 1.6.1, we need to

check E[Y 1G] = E[X1G] for a general G ∈ σ(Z) and not just G = {Z = zj}. However, for

reasons beyond the scope of this course, in this case (thanks to the fact that Z is finite)

its enough to consider only G of the form {Z = zj}.

Therefore, we have Y = E[X|σ(Z)] almost surely. In this course we favour writing E[X|σ(Z)]

instead of E[X|Z], to make it clear that we are looking at conditional expectation with respect

to a σ-field. We could equally think of X1 as being our best guess for X1 + X2, given only

information in σ(X1), since E[X2] = 0. In general, guessing E[X|G] is not so easy!

1.6.2 Properties of conditional expectation

In all but the easiest cases, calculating conditional expectations explicitly from Theorem 1.6.1

is not feasible. Instead, we are able to work with them via a set of useful properties, provided

by the following proposition.

Proposition 1.6.3 Let G,H be sub-σ-fields of F and X ∈ L1.

(a) E[E[X | G]] = E[X] and, in particular E[X | {∅,Ω}] = E[X],

(b) If X is G-measurable, then E[X | G] = X.

(Linearity) E[a1X1 + a2X2 | G] = a1E[X1 | G] + a2E[X2 | G].

(Positivity) If X ≥ 0, then E[X|G] ≥ 0.

(Taking out what is known) If Z is G measurable, then E[ZX | G] = ZE[X | G].

(Tower) If H ⊂ G then E[E[X | G] |H] = E[X |H].

(Independence) If H is independent of σ(X,G), then E[X |σ(G,H)] = E[X | G]
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Proof: We will prove the first three properties; proof of the others is beyond the scope of the

course.

(a): See Problem Sheet 1.

(b): We check the two conditions of Theorem 1.6.1. Clearly E[X|G] is G-measurable. Also, for

any G ∈ G Proposition 1.2.6 tells us that E[X|G]1G is G-measurable. Since E[X1G] = E[X1G],

we are done.

(Linearity): Again, we check the two conditions of Theorem 1.6.1. By Proposition 1.2.6,

a1E[X1 | G] + a2E[X2 | G] is G-measurable. Then, by linearity of E, for any G ∈ G,

E
[
(a1E[X1 | G] + a2E[X2 | G])1G

]
= a1E[E[X1|G]1G] + a2E[E[X2|G]1G]

= a1E[X11G] + a2E[X21G]

= E[(a1X1 +A2X2)1G]

Here, the second line follows by the same method as we used in (b), and the third line follows

from the second by linearity of E. �

Note that Property (b) is really a special case of the ‘taking out what is known’ rule (take

Z = 1). It is also useful to note a special case of the independence property: take G = {∅,Ω}
and, using (a), we have that if X is independent of H, E[X|H] = E[X].

Remark 1.6.4 Although we have not proved the last four properties in Proposition 1.6.3, they

are intuitive properties for conditional expectation to have.

For example, in the taking out what is known property, we can think of Z as already being

simple enough to be G measurable, so we’d expect that taking conditional expectation with respect

to G doesn’t need to affect it.

In the tower property for E[E[X|G]|H], we start with X, simplify it to be G measurable and

simplify it to be H measurable. But since H ⊆ G, we might as well have just simplified X enough

to be H measurable in a single step, which would be E[X|H].

Positivity is clearly intuitive. You might like to think of an explanation, in the same non-

rigorous style, for the independence property.

The conditional expectation Y = E[X | G] is the ‘best least-squares estimator’ of X, based

on the information available in G. We can state this rigorously and use our toolkit from Propo-

sition 1.6.3 prove it. This demonstrates another way in which Y is ‘the best’ G-measurable

approximation to X.

Lemma 1.6.5 Let G be a sub-σ-field of F . Let X be an F-measurable random variable and let

Y = E[X|G]. Suppose that Y ′ is a G-measurable, random variable. Then

E[(X − Y )2] ≤ E[(X − Y ′)2].

Proof: We note that

E[(X − Y ′)2] = E[(X − Y + Y − Y ′)2]
= E[(X − Y )2] + 2E[(X − Y )(Y − Y ′)] + E[(Y − Y ′)2]. (1.9)
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In the middle term above, we can write

E[(X − Y )(Y − Y ′)] = E[E[(X − Y )(Y − Y ′)|G]]

= E[(Y − Y ′)E[X − Y |G]]

= E[(Y − Y ′)(E[X|G]− Y )].

Here, in the first step we used the ‘tower’ rule, in the second step we used Proposition 1.2.6 to

tell us that Y − Y ′ is G-measurable, followed by the ‘taking out what is known’ rule. In the

final step we used linearity and property (b). Since E[X|G] = Y almost surely, we obtain that

E[(X − Y )(Y − Y ′)] = 0. Hence, since E[(Y − Y ′)2] ≥ 0, from (1.9) we obtain E[(X − Y ′)2] ≥
E[(X − Y )2]. �

The equivalents of the convergence theorems for E and Jensen’s inequality also hold for

conditional expectation.

Proposition 1.6.6 Let G be a sub-σ-field of F and let (Xn) be random variables.

(MON) If 0 ≤ Xn ↑ X almost surely, then E[Xn | G] ↑ E[Xn | G].

(FATOU) If 0 ≤ Xn, then E[lim inf Xn | G] ≤ lim inf E[Xn | G].

(DOM) If |Xn| ≤ V , Xn → X almost surely, and E[V ] <∞, then E[Xn | G]→ E[X | G].

(JENSEN) If f is convex, then E[f(X) | G] ≥ f [E(X | G)].

Proof of Proposition 1.6.6 is beyond the scope of this course.
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Chapter 2

Martingales

In this chapter we introduce martingales. We prove the Optional Stopping Theorem for mar-

tingales, and use it to analyse some common stochastic processes.

As usual, let (Ω,F ,P) be a probability space. We adopt the convention that, whenever we

say ‘X is a random variable’, we mean that X is F-measurable.

We refer to a sequence of random variables (Sn)∞n=0 as a stochastic process. In this course

we only deal with discrete time stochastic processes. We say that a stochastic process (Sn) is

bounded if there exists c ∈ R such that |Sn(ω)| ≤ c for all n, ω.

2.1 Filtrations and martingales

We have previously discussed the idea of gradually learning more and more information about

the outcome of some experiment, through seeing the information visible from gradually larger

σ-fields. We formalize this concept as follows.

Definition 2.1.1 A countable set of σ-fields (Fn)∞n=0 is known as a filtration if F0 ⊂ F1 . . . ⊂ F .

Definition 2.1.2 We say that a stochastic process X = (Xn) is adapted to the filtration (Fn)

if, for all n, Xn is Fn measurable.

We should think of the filtration Fn as telling us which information we have access too at

time t = n. Thus, an adapted process is a process whose random value we know at all times

n ∈ N.

We are now ready to give the definition of a martingale.

Definition 2.1.3 A process M = (Mn)∞n=0 is martingale if

1. if (Mn) is adapted,

2. Mn ∈ L1 for all n,

3. E[Mn+1 | Fn−1] = Mn almost surely, for all n.

We say that M is a submartingale if, instead of 3, we have E[Mn | Fn−1] ≥Mn−1 almost surely.

We say that M is a supermartingale if, instead of 3, we have E[Mn | Fn−1] ≤ Mn−1 almost

surely.

Remark 2.1.4 The second condition in Definition 2.1.3 is needed for the third to make sense.
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A martingale is the mathematical idealization of a fair game. It is best to understand what

we mean by this through an example.

Let (Xn) be a sequence of i.i.d. random variables such that P[Xi = 1] = P[Xi = −1] = 1
2 .

Define Fn = σ(X1, . . . , Xn) and F0 = {∅,Ω}. Then (Fn) is a filtration. Define

Sn =

n∑
i=1

Xn

(and S0 = 0). We claim that Sn is a martingale. To see this, we check the three properties in

the definition. (1) Since X1, X2, . . . , Xn ∈ σ(X1, . . . , Xn) we have that Sn ∈ Fn for all n ∈ N.

(2) Since |Sn| ≤ n for all n ∈ N, E[|Sn|] ≤ n for all n, so Sn ∈ L1 for all n. (3) We have

E [Sn+1 | Fn−1] = E[Xn+1 | Fn] + E[Sn | Fn]

= E[Xn+1] + Sn

= Sn.

Here, in the first line we used the linearity of conditional expectation. To deduce the second line

we used the relationship between independence and conditional expectation (for the first term)

and the tower rule (for the second term). To deduce the final line we used that E[Xn+1] = 0.

We can think of Sn as a game in the following way. At each time n = 1, 2, . . . we toss a coin.

We the nth round if the coin is heads, and lose if it is tails. Each time we win we score 1, each

time we lose we score −1. Thus, Sn is our score after n rounds.

At time n we have seen the result of rounds 1, 2, . . . , n, so the information we currently have

access to is given by Fn. This means that at time n we know S1, . . . , Sn. But we don’t know

Sn+1, because Sn+1 is not Fn-measurable. However, using our current information we can make

our best guess at what Sn+1 will be, which naturally is E[Sn+1|Fn]. Since the game is fair, in

the future, on average we do not expect to win more than we lose, that is E[Sn+1|Fn] = Sn.

Of course, Sn is a simple random walk. In this chapter we will see many examples of

martingales, and we will gradually build up an intuition for how to recognize a martingale. There

is, however, one easy sufficient (but not necessary) condition under which we can recognize that

a stochastic process is not a martingale.

Lemma 2.1.5 Let (Fn) be a filtration and suppose that X = (Xn) is an Fn-martingale. Then

E[Xn] = E[X1]

for all n ∈ N.

Proof: We have E[Xn+1|Fn] = Xn. Taking expectations and using property (a) of Proposition

1.6.3, we have E[Xn+1] = E[Xn]. The result follows by a trivial induction. �

Suppose, now, that (Xn) is an i.i.d. sequence of random variables such that P[Xi = 2] =

P[Xi = −1] = 1
2 . Note that E[Xn] > 0. Define Sn and Fn as before. Now, E[Sn] =

∑n
1 E[Xn],

which is not constant, so Sn is not a martingale.

However, as before, Sn is Fn-measurable, and |Sn| ≤ 2n so Sn ∈ L1, essentially as before.

We have

E[Sn+1|Fn] = E[Xn+1|Fn] + E[Sn|Fn]

= E[Xn+1] + Sn

≥ Sn.
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Hence Sn is a submartingale.

Note that submartingales, on average, increase, whereas supermartingale, on average, de-

crease. As first glance this is the wrong way round. There is a good reason for this, but we

won’t cover it in this course.

Remark 2.1.6 Our definition of a filtration and a martingale both make sense if we look at only

a finite set of times n = 1, . . . , N . We sometimes also use the terms filtration and martingale

in this situation.

We end this section with two more important examples of martingales. You can check the

conditions yourself.

Example 2.1.7 Let (Xn) be a sequence of i.i.d. random variables such that E[Xn] = 1 for all

n, and there exists c ∈ R such that |Xn| ≤ c for all n. Define Fn = σ(X1, . . . , Xn). Then

Mn =

n∏
i=1

Xn

is a martingale.

Example 2.1.8 Let Z ∈ L1 be a random variable and let (Fn) be a filtration. Then

Mn = E[Z|Fn]

is a martingale.
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2.2 The Optional Stopping Theorem

It is inconvenient to continually write ‘(Fn) martingale’ instead of simply ‘martingale’, and in

many situations it is clear which filtration we mean to use. We will often omit the ‘(Fn)’ for

this reason.

Definition 2.2.1 A quadruplet (Ω,F , (Fn),P) is said to be a filtered space if (Ω,F ,P) is a

probability space equipped with a filtration (Fn).

If a filtration and probability space are not explicitly specified, it is a standard convention in

martingale theory to assume that we are working over a filtered space (Ω,F , (Fn),P), and that

(Fn) is the filtration with respect to which our martingales are martingales.

The following definition is similar to the definition of a filtration.

Definition 2.2.2 A process C = (Cn)∞n=1 is said to be previsible if, for all n, Cn is Fn−1
measurable.

The difference is that, in an adpated process (Xn), the value of X becomes fully known to

us, using information from Fn, at time n. In a previsible process (Cn), the value of Cn becomes

known at time n− 1.

If M is a stochastic process and C is previsible process, we define the martingale transform

of S by M

(C ◦M)n =

n∑
i=1

Ci(Mi −Mi−1).

Here, by convention, we set (C ◦M)0 = 0.

Remark 2.2.3 (?) The process C ◦M is the discrete time analogue of the stochastic integral∫
C dM , which is covered in the fourth year stochastic analysis course. In fact, if S is a

deterministic sequence, C ◦ S is a discrete analogue of the Lebesgue (or Riemann) integral.

If M is a martingale, the process (C ◦M)n can be thought of as our winnings after n plays

of a game. Here, at round i, a bet of Ci is made, and the change to our resulting wealth is

Ci(Mi −Mi−1). For example, if Ci ≡ 1 and Mn is the simple random walk Mn =
∑n

1 Xi then

Mi−Mi−1 = Xi−1, so we win/lose each round with even chances; we bet 1 on each round, if we

win we get our money back doubled, if we lose we get nothing back.

Theorem 2.2.4 If M is a martingale and C is previsible and bounded, then (C ◦M)n is also a

martingale.

Similarly, if M is a supermartingale (resp. submartingale), and C is previsible, bounded and

non-negative, then (C ◦M)n is also a supermartingale martingale (resp. submartingale).

Proof: Let M be a martingale. Write Y = C ◦M . We have Cn ∈ Fn−1 and Xn ∈ Fn, so

Proposition 1.2.6 implies that Yn ∈ mFn. Since |C| ≤ c for some c, we have

E|Yn| ≤
n∑
k=1

E|Ck(Mk −Mk−1)| ≤ c
n∑
k=1

E|Mk|+ E|Mk−1| <∞.
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So Yn ∈ L1. Since Cn is Fn−1-measurable, by linearity of conditional expectation, the taking

out what is known rule and the martingale property of M , we have

E[Yn | Fn−1] = E[Yn−1 + Cn(Mn −Mn−1) | Fn−1]
= Yn−1 + CnE[Mn −Mn−1 | Fn−1]
= Yn−1 + Cn(E[Mn|Fn−1]−Mn−1)

= Yn−1.

Hence Y is a martingale.

The argument is easily adapted to prove the second statement, e.g. for a supermartingale M ,

E[Mn −Mn−1 | Fn−1] ≤ 0. Note that in these cases it is important that C is non-negative. �

Definition 2.2.5 A map T : Ω → {0, 1, 2, . . . ,∞} is called a (Fn) stopping time if, for all n,

{T = n} is Fn measurable.

Equivalently, we could say that T is a stopping time if {T ≤ n} is Fn measurable for all n. To

see why, recall the definition of a σ-algebra and note that

{T ≤ n} =
⋃
i≤n
{T = i}, {T = n} = {T ≤ n} \ {T ≤ n− 1}.

A stopping time is a random time with the property that, if we have only information from Fn
accessible to us at time n, we are able to decide at any n whether or not T has already happened.

The simplest example of a stopping time is a constant random variable; if t ∈ R and T = t

then {T = n} = {t = n}, which is empty if t 6= n and equal to Ω if t = n. However, in general

stopping times are useful because they allow us to describe the random behaviour of stochastic

processes.

Example 2.2.6 Let Sn =
∑n

i=1Xi be the simple symmetric random walk, with P[Xi = 1] =

P[Xi = −1] = 1
2 . Let Fn = σ(X1, . . . , Xn). Then, for any a ∈ N, the time

T = inf{n ≥ 0 ; Sn = a},

which is the first time Sn takes the value a, is a stopping time. It is commonly called the hitting

time of a. To see that T is a stopping time we note that

{T = n} = {Sn = a} ∩ {Si 6= a for all i < a}

= S−1n (a) ∩

(
n−1⋂
i=0

Ω \ S−1n (a)

)
.

Since Sn is Fn measurable (by Proposition 1.2.6), the above equation shows that {T = n} ∈ Fn.

Lemma 2.2.7 Let S and T be stopping times with respect to the filtration (Fn). Then S ∧ T is

also a (Fn) stopping time.

Proof: Problem sheet 2, question 4. �

If T is a stopping time and M is a stochastic process, we define MT to be the process

MT
n = Mn∧T .
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Here a∧b denotes the minimum of a and b. To be precise, this means that MT
n (ω) = Mn∧T (ω)(ω)

for all ω ∈ Ω. In Example 2.2.6, ST would be the random walk S which is stopped (i.e. never

moves again) when (if!) it reaches state a.

Lemma 2.2.8 Let Mn be a martingale (resp. supmartingale, supermartingale) and let T be a

stopping time. Then MT is also a martingale (resp. supmartingale, supermartingale).

Proof: Let Cn := 1{T ≥ n}. Note that {Cn = 0} = {T ≤ n−1} and {Cn = 1} = Ω\{Cn = 0},
so Cn is Fn−1 measurable by Proposition 1.2.2. Hence (Cn) is a previsible process. Moreover,

(C ◦M)n =

n∑
k=1

1k≤T (Mk −Mk−1) =

n∧T∑
k=1

(Mk −Mk−1) = MT∧n −MT∧0.

Hence, if M is a martingale (resp. submartingale, supermartingale), C ◦M is also a martingale

(resp. submartingale, supermartingale) by Theorem 2.2.4. �

Theorem 2.2.9 (Doob’s Optional Stopping Theorem) Let M be martingale (resp. sub-

martingale, supermartingale) and let T be a stopping time. Then

E[XT ] = E[X0]

(resp. ≥, ≤) if any one of the following conditions hold:

a. T is bounded.

b. M is bounded and P[T <∞] = 1.

c. E[T ] <∞ and there exists c ∈ R such that |Mn −Mn−1| ≤ c for all n.

Proof: We’ll prove this for the supermartingale case. The submartingale case then follows by

considering −M , and the martingale case follows since martingales are both supermartingales

and submartingales.

Note that

E[Mn∧T −M0] ≤ 0,

because MT is a supermartingale, by Lemma 2.2.8. For (a), we take n = supω T (ω) and the

conclusion follows. For (b), we use the Bounded Convergence Theorem and let n → ∞ (note

that n ∧ T (ω) is a.s. eventually equal to T (ω) as n → ∞, so Mn∧T → MT a.s.). For (c), we

observe that

|Xn∧T −X0| =

∣∣∣∣∣
n∧T∑
k=1

(Xk −Xk−1)

∣∣∣∣∣ ≤ T sup
n∈N
|Xn −Xn−1|.

Since E[T (supn |Xn −Xn−1|)] ≤ cE[T ] < ∞, we can use the Dominated Convergence Theorem

as n→∞ to obtain the result. �
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2.3 Examples I

We can now use the optional stopping theorem to tell us about hitting probability and expected

hitting times of various stochastic processes. In this section we focus on the simple random

walk. Many more examples (branching processes, urn processes, shuffling processes, etc) appear

on the problem sheets. In Section 2.3.3 we will explain how to calculate (in principle) the length

of time it would take for a monkey to type out the complete works of Shakespeare.

2.3.1 Asymmetric simple random walks

Let (Xi)
∞
i=1 be a sequence of i.i.d. random variables. Let p+ q = 1 with p, q ∈ [0, 1], p 6= q and

suppose that

P[Xi = 1] = p, P[Xi = −1] = q.

Set Fn = σ(X1, . . . , Xn) and note that (Fn) is a filtration. The asymmetric simple random walk

is the stochastic process

Sn =

n∑
i=1

Xi.

We define

Mn = (q/p)Sn .

We will show that Mn is a martingale. Since Xi ∈ mFn for all i ≤ n, by Proposition 1.2.6 we

have Mn ∈ mFn. We have |Xi| ≤ 1 so |Mn| ≤ (q/p)n, which implies that Sn ∈ L1 for all n.

Moreover,

E[Mn+1|Fn] = (q/p)SnE[(q/p)Xn+1 |Fn]

= (q/p)SnE[(q/p)Xn+1 ]

= (q/p)Sn = Mn.

Here we use the taking out what is known rule, followed by the fact that Xn+1 is independent

of Fn and the relationship between conditional expectation and independence. To deduce the

final step we use that E[(q/p)Xn+1 ] = p(q/p)1 + q(q/p)−1 = p+ q = 1.

Let Ta = inf{n : Sn = a} and T = Ta ∧ Tb for integer a < 0 < b. We can show that Ta is a

stopping time by noting that

{Ta ≤ n} =

n⋃
i=0

{Sn ≤ a}.

Similarly, Tb is a stopping time and it follows from Lemma 2.2.7 that T is also a stopping time.

Since T ∧ n is a bounded stopping time (by Lemma 2.2.7), we have the condition (a) of the

optional stopping theorem for (Mn) and T ∧ n. So

1 = M0 = E[MT∧n].

We will show as part of question 2 on problem sheet 3 that P[T <∞] = 1, which implies that n∧T
is eventually equal to T as n→∞. Hence Mn∧T →MT almost surely as n→∞. Since MT∧n is

bounded between (q/p)a and (q/p)b, by the bounded convergence theorem, E[MT∧n] → E[MT ]

as n→∞, so that

1 = E[MT ].
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Since P[T <∞] = 1, we have that P[T = Ta] + P[T = Tb] = 1. By partitioning the expectation

on whether or not {T = Ta} (which is equal to {Ta < Tb} = {ST = a}), we can deduce

1 = P[T = Ta]

(
q

p

)a
+ P[T = Tb])

(
q

p

)b
.

Solving these two linear equations (recall that p 6= q) gives that

P[T = Ta] =
(q/p)b − 1

(q/p)b − (q/p)a
. (2.1)

Let us now assume that

p > q.

Heuristically, this would mean we expect our random walk to drift upwards, towards ∞. Of

course we could analyse the case q < p by symmetry.

Note that Tb ≥ b, since it takes b steps to reach height b from height 0. Thus, as b→∞,

1{T = Ta} = 1{Ta < Tb} → 1{Ta <∞}

almost surely. Applying the bounded convergence theorem to (2.1) as b→∞, we have (q/p)b →
0 and thus obtain

P[Ta <∞] = (q/p)−a.

Since {Ta <∞} = {minn Sn < a}, this allows us to explicitly calculate E[minn Sn].

E[min
n
Sn] = −

∞∑
x=0

xP[min
n
Sn = −x]

= −
∞∑
x=1

x
(
(q/p)x−1 − (q/p)x

)
= −

∞∑
x=1

x

(
q

p
− 1

)
(q/p)x.

In particular we have E[minn Sn] > −∞, so minn Sn ∈ L1.

Similarly, from (2.1) we have

P[Tb = T ] =
1− (q/p)a

(q/p)b − (q/p)a

and letting a→ −∞ (with justification similar to above, which is left to you) we have (q/p)a →
∞ and thus obtain that P[Tb <∞] = 1.

We can also use martingales to calculate E[Tb]. Since Xn = Sn− (p− q)n is also a martingale

(I leave it to you to prove this), and Tb ∧ n is a bounded stopping time, the optional stopping

theorem implies that 0 = E[STb∧n − (p− q)(Tb ∧ n)], which we rearrange to

E[STb∧n] = (p− q)E[Tb ∧ n].

We take limits as n → ∞ on both sides of this equation. Since P[Tb < ∞] = 1, as n → ∞ we

have Tb∧n = Tb eventually, so Tb∧n↗ Tb almost surely and the monotone convergence theorem

implies that E[Tb ∧ n]→ E[Tb]. Note that STb∧n is bounded above by b and below by minm Sm,

both of which are in L1, so by the dominated convergence theorem, E[STb∧n] → E[STb ] = b as

n→∞. Hence

E[Tb] = b/(p− q).
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2.3.2 Simple symmetric random walks

Let (Xi)
∞
i=1 be a sequence of i.i.d. random variables where

P[Xi = 1] = P[Xi = −1] =
1

2
.

Set Fn = σ(X1, . . . , Xn) and note that (Fn) is a filtration. The asymmetric simple random walk

is the stochastic process

Sn =

n∑
i=1

Xi.

We have already seen that Sn is a martingale. There are also some non-obvious martingales

associated to Sn.

Let θ ∈ R and define

M (θ)
n :=

eθSn

(cosh θ)n
,

and note that M
(θ)
n :=

∏n
i=1(e

θXi/ cosh θ). Since Xi ∈ mFn for all i ≤ n, Sn ∈ mFn for all n by

Proposition 1.2.6. Since |Sn| ≤ n we have |Mn| ≤ eθn

(cosh θ)n < ∞, hence Mn ∈ L1. We have also

that

E[Sn+1|Fn] =

(
n∏
i=1

eθXi

cosh θ

)
E
[
eθXn+1

cosh θ

∣∣∣Fn]
= MnE

[
eθXn+1

cosh θ

]
= Mn.

Here we use the taking out what is known rule, the fact that Xn+1 is independent of Fn and

the relationship between conditional expectation and independence. To deduce the final line we

note that E[eθXi/ cosh θ] = 1
2(eθ + e−θ)/ cosh θ = 1.

Let

T = inf{n ; Sn = 1},

which we have seen is a stopping time in Example 2.2.6. It is not obvious whether P[T =∞] is

equal to or greater than zero, but with the help of Mn and the optional stopping theorem we

can show:

Lemma 2.3.1 It holds that P[T <∞] = 1.

Proof: By Lemma 2.2.7, T ∧ n is a stopping time, and since T ∧ n ≤ n it is a bounded

stopping time. We therefore have condition (a) of the optional stopping theorem and can apply

it to deduce that

E[M0] = 1 = E
[
M

(θ)
T∧n

]
.

We now apply the bounded convergence theorem to let n→∞ in the rightmost term. To do so

we make two observations: (1) MT∧n = eθST∧n/(cosh θ)n is bounded above by eθ since cosh θ ≥ 1

and ST∧n ∈ (−∞, 1]; (2) as n→∞, M
(θ)
T∧n →M

(θ)
T , where the latter is defined to be 0 if T =∞.

So bounded convergence theorem implies

1 = E
[
M

(θ)
T

]
.
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Noting that M
(θ)
T = eθST /(cosh θ)T and ST = 1, we thus have

E[(cosh θ)−T ] = e−θ (2.2)

for θ > 0.

If T = ∞, then (cosh θ)−T = 0 for all θ 6= 0. If T < ∞, then (cosh θ)−T → 1 as θ → 0.

Noting that 0 ≤ (cosh θ)−T ≤ 1, we can apply the bounded convergence theorem and let θ → 0,

with the result that

E[1{T <∞}] = lim
θ→0

e−θ = 1.

Hence P[T <∞] = 1. �

With Lemma 2.3.1 in hand, we can go even further and work out the distribution of T . Put

α = 1/ cosh θ = 2/(eθ + e−θ), and then some simple algebra tells us that e−θ = 1
α(1−

√
1− α2).

Hence, from (2.2),

E[αT ] = E[(cosh θ)−T ] = e−θ =
1

α
(1−

√
1− α2) =

∑
n

αnP[T = n].

The final two terms of the above equation give us a formula for the moment generating function

of T . Since for arbitrary α ∈ C,

(1 + x)α =

∞∑
k=0

(
α

k

)
xk,

where
(
α
k

)
:= α(α− 1) . . . (α− k + 1)/k!, we have (after a short calculation) that

P[T = 2m− 1] = (−1)m+1

(
1/2

m

)
, (2.3)

Note that P[T = 2m] = 0, because 2m is even and 1 is odd.

Remark 2.3.2 (?) Strictly speaking, to justify obtaining (2.3) by comparing coefficients of αn

in the generating function we should use e.g. the continuity theorem for moment generating

functions.

Even though we now know that P[T < ∞] = 1, we are not able to apply optional stopping

to (Sn) and T ; because (Sn) is unbounded and we do not know if E[T ] <∞. In fact, E[T ] =∞,

so the optional stopping theorem does not apply here. But, we can use the optional stopping

theorem to deduce that E[T ] =∞, as follows.

Suppose, for a contradiction, that E[T ] < ∞. Then we could apply the optional stopping

theorem to (Sn) and T using the condition (c). Hence E[S0] = 0 = E[ST ]. But, P[T < ∞] = 1

which means, by definition of T , that ST = 1 almost surely. This is a contradiction so we must

have E[T ] =∞.
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2.3.3 Monkeys

At each time 1, 2, 3, . . ., a monkey types a single capital letter (out of a choice of 26), chosen

independently of the letters it has previously typed. We would like to find out how long one

expects to wait before the monkey types the word ABRACADABRA.

Just before each time n = 1, 2 . . ., a new gambler arrives and bets £1 that

the nth letter will be “A”.

If he loses, he leaves. If he wins, he receives £26, all of which he bets on the event that

the (n+ 1)th letter will be “B”.

If he loses, he leaves. If he wins, he bets his whole fortune of £262 that

the (n+ 2)th letter will be “R”,

and so through the sequence ABRACADABRA. Let M (n) be the winning of the nth gambler

(hence M
(n)
k = 0 for k < n since the nth gambler has not even started gambling before time n),

then each M (n) is a martingale, and so is Mn :=
∑n

k=1M
(k)
n . Furthermore, M has uniformly

bounded increments. Let T be the first time by which the monkey has produced the consecutive

sequence ABRACADABRA, then E[T ] <∞.

At time T , ABRACADABRA has just been typed. All gamblers except those who started at

times T − 11, T − 4 and T − 1 have lost their £1. Thus, the optional stopping theorem implies

that

0 = E[MT ] = E

[
T∑
n=1

M
(n)
T

]
= E[(2611 − 1) + (264 − 1) + (26− 1) + (−1)(T − 3)],

hence E(T ) = 2611 + 264 + 26.

Remark 2.3.3 If, instead, we that require our monkey types out the complete works of Shake-

speare, it will take a very long time.
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2.4 The Martingale Convergence Theorem

In this section, we are concerned with almost sure convergence of supermartingales (Mn) as

n → ∞. Naturally, martingales are a special case and submartingales can be handled through

multiplying by −1. In particular, we will prove the (first version of the) martingale convergence

theorem. We will look at L1 convergence of supermartingales in Section 2.6.

Let (Mn) be a stochastic process and fix a < b. We define UN [a, b] to be the number of

upcrossings made in the interval [a, b] by M1, . . . ,MN . That is, Un[a, b] is the largest k such

there exists

0 ≤ s1 < t2 < . . . < sk < tk ≤ N such that Msi ≤ a,Mti > b for all i = 1, . . . , k.

Studying upcrossings is key to establishing almost sure convergence of supermartingales. To see

why upcrossings are important, note that if (cn) ⊆ R is a (deterministic) sequence and cn → c,

for some c ∈ R, then there is no interval [a, b] a < b such that (cn)∞n=1 makes infinitely many

upcrossings of [a, b]; if there was then (cn) would oscillate and couldn’t converge.

Lemma 2.4.1 (Doob’s Upcrossing Lemma) Let M be a supermartingale. Then

(b− a)E(UN [a, b]) ≤ E((MN − a)−).

Proof: Let C1 = 1{M0 < a} and recursively define

Cn = 1{Cn−1 = 1,Mn−1 ≤ b}+ 1{Cn−1 = 0,Mn−1 < a}.

The behaviour of Cn is that, when X enters the region below a, Cn starts taking the value 1. It

will continue to take the value 1 until M enters the region above b, at which point Cn will start

taking the value 0. It will continue to take the value 0 until M enters the region below a, and

so on. Hence,

(C ◦M)N =

N∑
k=1

Ck(Xk+1 −Xk) ≥ (b− a)UN [a, b]− (MN − a)−.

That is, each upcrossing of [a, b] by X picks up at least (b − a); the final term corresponds to

an upcrossing that X might have started but not finished.

Note that C is previsible, bounded and non-negative. Hence, by Theorem 2.2.4 we have that

C ◦X is a supermartingale. Thus E((C ◦M)N ) ≤ 0, which proves the given result. �

Note that UN [a, b] is an increasing function of N , and define U∞[a, b] by

U∞[a, b](ω) = lim
N↑∞

UN [a, b](ω).

With this definition, U∞[a, b] could potentially be infinite, but we can prove that it is not. Recall

that a stochastic process (Xn) is bounded in Lp if supn E[|Xn|p] <∞.

Lemma 2.4.2 Suppose M is a supermartingale that is bounded in L1. Then P [U∞[a, b] =∞] =

0.

Proof: From Lemma 2.4.1 we have

(b− a)E[UN [a, b]] ≤ |a|+ sup
n∈N

E|Mn| <∞.
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Hence, by the bounded convergence theorem we have

(b− a)E[U∞[a, b]] ≤ |a|+ sup
n∈N

E|Mn| <∞,

which implies that P[U∞[a, b] <∞] = 1. �

Essentially, Lemma 2.4.2 says that the paths of M cannot oscillate indefinitely. This is the

crucial ingredient of the martingale convergence theorem.

Theorem 2.4.3 (Martingale Convergence Theorem I) Suppose M is a supermartingale

bounded in L1. Then the almost sure limit M∞ = limn→∞Mn exists and P[|M∞| <∞] = 1.

Proof: Define

Λa,b = {ω : lim inf
n

Mn(ω) < a < b < lim sup
n

Mn(ω)}.

We observe that Λa,b ⊂ {U∞[a, b] =∞}, which has probability 0 by Lemma 2.4.2. But since

{ω : Mn(ω) does not converge to a limit in [−∞,∞]} =
⋃
a,b∈Q

Λa,b,

we have that lim infnMn = lim supnMn almost surely, so

P[Mn converges to some M∞ ∈ [−∞,+∞]] = 1.

To finish, by Fatou’s Lemma,

E[|M∞|] = E[lim inf
n→∞

|Mn|] ≤ lim inf
n→∞

E[|Mn|] ≤ sup
n

E[|Mn|] <∞,

which means that P[|M∞| <∞] = 1. �

Note that if Mn is a non-negative supermartingale then we have E[|Mn|] = E[Mn] ≤ E[M0],

so M is automatically bounded in L1 and the martingale convergence theorem applies.
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2.5 Examples II

The martingale convergence theorem can tell us about the long term behaviour of stochastic

processes.

2.5.1 Galton-Watson processes

Let Xn
i , where n, i ≥ 1, be i.i.d. nonnegative integer-valued random variables. Define a sequence

(Zn)) by Z1 = 1 and

Zn+1 =

{
Xn+1

1 + . . .+Xn+1
Zn

, if Zn > 0

0, if Zn = 0

Then Z is known as a branching process, or Galton-Watson process. Typically, we think of

Zn as representing the number of individuals in the nth generation of some population, each of

whom gives birth to an i.i.d. number of children in the (n + 1)th generation. The (common)

distribution of the Xn
i is known as the offspring distribution.

Let µ = E(Xn
i ), and let Fn = σ(Xm,i ; i ∈ N,m ≤ n). Then Zn/µ

n ∈ mFn (I leave it for you

to prove this), and it is easily seen that E[Zn+1] = µE[Zn] so as E[|Zn|] = E[Zn] = µn−1 for all

n. Also,

E[Zn+1 | Fn] =

∞∑
k=1

E[Zn+11{Zn = k} |Fn]

=

∞∑
k=1

E
[(
Xn+1

1 + . . .+Xn+1
k

)
1{Zn = k} |Fn

]
=

∞∑
k=1

1{Zn = k}E
[
Xn+1

1 + . . .+Xn+1
k | Fn

]
=

∞∑
k=1

kµ1{Zn = k}

= µZn.

Next, we will show that the process Z dies out (i.e. it becomes 0 eventually) if µ ≤ 1. We

will look at the case µ > 1 on Problem Sheet 3.

For µ < 1, we note that

P[Zn > 0] ≤ E[Zn1{Zn ≥ 0}] = E[Zn] = µn.

Since µ < 1, we have
∑∞

n=1 P[Zn > 0] < ∞, therefore by the first Borel-Cantelli lemma,

P[Zn > 0 i.o.] = 0, or in other words P[Zn = 0 e.v.] = 1. Note that we did not use martingales

for this!

For µ = 1, the situation is more delicate and we will need the martingale convergence theorem.

In this case, Zn itself is a non-negative martingale, hence by the martingale convergence theorem

there exists Z∞ such that Zn → Z∞ almost surely. Since Z is integer valued, we must have

Zn = Z∞ eventually (i.e. for all ω, n there exists N(ω) such that Zn(ω) = Z∞(ω) for all

n ≥ N(ω)). We now have two cases to consider:

• If the offspring distribution is not deterministic, by definition of Z it must be that Z∞ ≡ 0.
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Note that in this case E[Zn] = 1 for all n, we have just sown that Zn → 0 as n→∞. This

is similar to the picture that emerged for the simple symmetric random walk, stopped at

1, in Section 2.3.2; we had that Sn∧T → St = 1 almost surely but E[Sn∧T ] = 0 for all n.

• If the offspring distribution is deterministic, then since E[Xn
i ] = 1 we must have Xn

i = 1,

which in turn means that Zn = 1 almost surely for all n. Hence Zn → Z∞ = 1 almost

surely.

2.5.2 An Urn Process

On Q3 of Problem Sheet 2, we looked at the following urn process. At time 0, an urn contains

1 black ball and 1 white ball. At each time n = 1, 2, 3, . . . ,, a ball is chosen from the urn and

returned to the urn. At the same time, a new ball of the same colour as the chosen ball is added

to the urn. Just after time n, there are n+ 2 balls in the urn, of which Bn + 1 are black, where

Bn is the number of black balls added into the urn at or before time n.

Let

Mn =
Bn + 1

n+ 2

be the proportion of balls in the urn that are black, at time n. Note that Mn ∈ [0, 1]. We showed

that Mn was a martingale. Note that Mn is non-negative, hence by the martingale convergence

theorem there exists a real valued random variable M∞ such that Mn →M∞ almost surely. In

fact, we showed as part of the problem sheet that limn P[Mn ≤ p] = p for all p ∈ [0, 1]. Hence,

M∞ is uniformly distributed on [0, 1].
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2.6 Uniformly Integrable Martingales

The martingale convergence theorem, as stated in Theorem 2.4.3, doesn’t provide any informa-

tion about what the limit M∞ is. In some cases, like that of Section 2.5.2, we can calculate

the limit explicitly, but often it is not possible to do so. In these cases we can still ask simple

questions about M∞, such as if M∞ is almost surely zero, or not. In this section we look at

one way to show that, under suitable extra conditions, P[M∞ > 0] > 0. To do so, we will

prove a version of the martingale convergence theorem which, under a suitable extra condition,

guarantees that Mn →M∞ in L1.

Definition 2.6.1 A set C of random variables is said to be uniformly integrable if, for all ε > 0,

there exists K ∈ [0,∞) such that for all X ∈ C,

E[|X|1{|X| > K}] < ε.

A martingale (or, more generally, a stochastic process) (Mn) is said to be uniformly integrable

if {Mn : n = 0, 1, . . .} is uniformly integrable.

The reason we are interested in uniformly integrable martingales is that, roughly speaking,

uniformly integrability is what is needed to upgrade convergence in probability into L1 conver-

gence. To be precise we have the following theorem, which we state without proof.

Proposition 2.6.2 Let (Xn) be a sequence of L1 random variables and let X∞ ∈ L1. Then,

Xn → X∞ in L1 if and only if the following two conditions hold:

1. Xn → X∞ in probability,

2. (Xn) is uniformly integrable.

Recall that a set C of random variables is bounded in L1 if there exists K ∈ R such that

E[|X|] ≤ K for all X ∈ C. Uniform integrability is a stronger condition that L1 boundedness:

Lemma 2.6.3 Let C be a set of uniformly integrable random variables. Then C is bounded in

L1.

Proof: Let K ∈ N be such that, for all X ∈ C, E
[
|X|1{|X| ≥ K}

]
< 1. Then, for all X ∈ C,

E[|X|] = E
[
|X|1{|X| ≥ K}

]
+ E

[
|X|1{|Xn| < K}

]
≤ 1 +K

and the proof is complete. �

The converse of Lemma 2.6.3 is not true. For example, consider the set C = {Xn ; n ∈ N}
where Xn has distribution P[Xn = n] = 1

n and P[Xn = 0] = 1− 1
n . Then Xn = |Xn|, E[|Xn|] = 1

for all n, so as C is bounded in L1, but

E[Xn1{Xn > K}] = n
1{K > n}

n
= 1{K > n}

so C is not uniformly integrable.

An important class of examples of uniformly integrable random variables is given by the

following lemma.

33



Lemma 2.6.4 Let (Ω,F ,P) be a probability space and let X ∈ L1. Then the set

C = {E[X | G] : G is a sub-σ-field of F}

is uniformly integrable.

Proof: (?) Let ε > 0. By a ‘standard’ result (see e.g. Lemma 13.1 of ‘Probability with

Martingales’ by David Williams), choose δ > 0 so that, for all F ∈ F , if P(F ) < δ then

E[ |X |1F ] < ε. Choose also some K ∈ R such that E[|X|] < Kδ.

Let G be a sub-σ-field of F and write Y = E[X | G]. Then, by Jensen’s inequality, using that

| · | is a convex function,

|Y | ≤ E[|X| | G]. (2.4)

Hence E[|Y |] ≤ E[|X|] and by Markov’s inequality we have

KP[|Y | > K] ≤ E[|Y |] ≤ E[|X|].

Hence, by definition of K we have P[|Y | > K] < δ. By (2.4), the tower rule and the definition

of δ,

E[|Y |1{|Y | ≥ K}] ≤ E[|X|1{|Y | ≥ K}] < ε.

Since Y and ε were arbitrary, C is uniformly integrable. �

We are now ready to prove the second version of the martingale convergence theorem, which

extends Theorem 2.4.3; it requires the extra condition of uniform integrability and provides the

extra conclusion of L1 convergence.

Theorem 2.6.5 (Martingale Convergence Theorem II) Let M be a uniformly integrable

martingale. Then there exists a real valued random variable M∞ such that Mn → M∞ almost

surely and in L1. Moreover, Mn = E[M∞ | Fn].

Proof: The existence of M∞ and the almost sure convergence Mn → M∞ are immediate

from the (first version of the) Martingale Convergence Theorem. Since almost sure convergence

implies convergence in probability, this means that Mn → M∞ in probability. By Fatou’s

Lemma,

E[|M∞|] ≤ lim inf
n→∞

E[|Mn|]

and, by Lemma 2.6.3, we have that M∞ ∈ L1. Hence, we can apply Proposition 2.6.2 and

deduce that Mn →M∞ in L1.

To prove the second statement, take F ∈ Fn and m ≥ n. Then, the taking out what is known

rule and the martingale property of M implies that that

E[Mm1F ] = E[E[Mm|Fn]1F ] = E[Mn1F ]. (2.5)

But note that

|E[Mm1F ]− E[M∞1F ]| ≤ E[|Mm −M∞|1F ] ≤ E[|Mm −M∞|],

which, by the first part of the proof, converges to 0 as m→∞. Hence, letting m→∞ in (2.5)

we obtain

E[M∞1F ] = E[Mn1F ].
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Since Mn is Fn measurable, by definition of conditional expectation, E[M∞|Fn] = Mn. �

When Theorem 2.6.5 holds, we have Mn → M∞ in L1, and hence also E[Mn] → E[M∞].

Because (Mn) is a martingale, we have E[M∞] = E[M0], and if E[M∞] 6= 0 then we can conclude

that P[M∞ 6= 0] > 0.

Note that, as we saw in Section 2.3.2, if (Mn) is not uniformly integrable then we might not

have E[Mn]→ E[M∞].

The next theorem provides a converse for Theorem 2.6.5.

Theorem 2.6.6 (Levy’s Upward Theorem) Let ξ be an L1 random variable, let (Fn) be a

filtration and define Mn := E[ξ | Fn]. Then M is a uniformly integrable martingale.

Further, Mn → E[ξ | F∞] almost surely and in L1, as n→∞, where F∞ = σ(Fn ; n ∈ N).

Proof: We have Mn ∈ mFn and Mn ∈ L1 for all n, by definition of conditional expectation.

By the tower property,

E[Mn+1|Fn] = E[E[ξ|Fn+1]|Fn] = E[ξ|Fn] = Mn.

Hence (Mn) is a martingale. By Lemma 2.6.4, (Mn) is uniformly integrable. Hence, by the

(second version of the) Martingale Convergence Theorem, we have that there exists M∞ such

that Mn →M∞ almost surely and in L1. It remains only to show that M∞ = E[ξ|F∞].

Both M∞ and η = E[ξ|F∞] are F∞ measurable. Therefore, by definition of conditional

expectation, in order to show that M∞ = η a.s it suffices to show that

E[M∞1F ] = E[η1F ]. (2.6)

for all F ∈ F∞.

(?) Since F∞ = σ(∪nFn), by a standard result from measure theory (see Lemma 1.6(b)

in ‘Probability with Martingales’ by David Williams) it suffices to show that (2.6) holds for

all F ∈ ∪nFn. To see this, fix F ∈ Fn, and note that by the tower property of conditional

expectation we have

E[η1F ] = E[ξ1F ] = E[Mn1F ] = E[M∞1F ],

where the last equality holds by Theorem 2.6.5. �
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2.7 Two applications of uniformly integrable martingales

In this section we look at two very different ways in which uniformly integrable martingales can

be used.

2.7.1 Learning from noisy observations

Let Z1, Z2, . . . be i.i.d. L1 random variables with mean 0. Let θ be an L1 random variable,

independent of all the Zi. Let

Yi = θ + Zi

and Fn = σ(Y1, . . . , Yn).

We think of θ as a random value that we would like to estimate. Unfortunately, all we can see

are so-called noisy samples θ + Zi, where Zi is said to be the noise. A fundamental problem in

statistics is producing good estimates of the distribution of θ from a sequence of such samples.

Often, the distribution of θ is called the prior distribution, and P[θ ∈ · | Fn] is called the

posterior distribution after n observations. We can use martingale techniques to show that

E[θ | Fn]→ θ almost surely (2.7)

as n → ∞. Therefore, we know that it is possible to estimate θ, using the information that

comes from the observations (Yi).

To see (2.7), by Lemma 2.6.4 we have that Mn := E[θ | Fn] is a UI martingale and hence, by

Theorem 2.6.6, converges to some M∞ both a.s. and in L1. Further, M∞ = E[θ | F∞], which is

equal to θ if we can show that θ is F∞ measurable. This is indeed the case since for an arbitrary

a,

{θ ≤ a} =

∞⋂
k=1

{
1

n

n∑
i=1

Yi ≤ a+
1

k
e.v.

}
∈ F∞. (2.8)

Hence M∞ = θ almost surely, and we are done.

Remark 2.7.1 (?) How we would best estimate θ using the observations Yi is another matter.

But this is a question for statisticians; there are sophisticated methods for computing (i.e. using

a computer!) estimates of the distribution of E[θ|Fn], which as we include more samples become

better and better estimates for the distribution of θ.

2.7.2 Kolmogorov’s 0-1 law

Uniformly integrable martingales can be used to give a short proof of the Kolmogorov’s 0-1 law.

Let (Xi) be a sequence of random variables, and define Fn = σ(Xi ; i ≤ n).

Definition 2.7.2 The tail σ-field T of (Xn) is

T =
⋂
n

Tn where Tn = σ(Xn+1, Xn+2, . . .).

Note that T is a σ-field by Lemma 1.1.5. If (Xn) is adapted to (Fn), then the tail σ-field contains

many important events involving the limiting behaviour of Xn as n→∞. For example, for any

N ∈ N we have

E1 = {ω ; lim
n
Xn(ω) exists} = {ω ; lim

n
Xn+N (ω) exists} ∈ TN ,
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which implies that E1 ∈ T . Using similar methods, we could show that the sets

E2 =

{
ω ;

∞∑
n=1

Xn converges

}
,

E3 =

{
lim sup
n→∞

Xn ≤ c
}

(or lim inf ),

E4 =

{
lim sup
n→∞

1

n

n∑
i=1

Xn ≤ c

}
(or lim inf ),

and many more, are elements of T . Heuristically, any event which depends only on the tail

behaviour of (Xn) will be T measurable. Note that as a consequence lim supnXn (or lim inf)

and lim supn
1
n

∑n
1 Xi (or lim inf) are T measurable.

It is easily seen that T ⊆ F∞ = σ(Fn ; n ∈ N). Now, suppose that the (Xi) are indepedent,

and then since

T ⊆
⋂
n≥N
Tn = σ(XN+1, XN+2, . . .)

we have that T is independent of FN for all N ∈ N. For this reason, we might suspect that in

this case there is ‘no information’ in T ; this is made rigorous in the following result.

Theorem 2.7.3 (Kolmogorov’s 0-1 law) Let X1, X2, . . . be a sequence of independent ran-

dom variables and T be the corresponding tail σ-field. If F ∈ T , then P[F ] = 0 or 1.

Proof: Define Fn := σ(X1, . . . , Xn), then Fn is independent of Tn. Let F ∈ T ⊂ F∞ and

η = 1F . By Levy’s Upward Theorem,

η = E[η | F∞] = lim
n→∞

E[η | Fn].

Since η is independent of every Fn, E[η | Fn] = E[η] = P[F ]. Hence η = P(F ), almost surely.

Since η can only take on values 0 or 1, the result follows. �

Corollary 2.7.4 Let X1, X2, . . . be a sequence of independent random variables and let T be

the associated tail σ-field. Suppose Y is a T measurable random variable. Then there exists

c ∈ [−∞,∞] such that P[Y = c] = 1.

Proof: By Kolmogorov’s 0-1 law we have that P[Y ≤ y] ∈ {0, 1} for all y ∈ R. Note

thaty 7→ P[Y ≤ y] is an increasing function, we have of Y and set c := inf{y : P[Y ≤ y] = 1}.
Here, as usual, the infimum of the empty set is +∞. Then

P[Y ≤ y] =

{
0 if y < c

1 if y > c.

Hence, P[Y = c] = 1. �
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2.8 L2 Martingales

A martingale M is said to be bounded in L2 if supn E[M2
n] <∞. In this section we briefly look

at the properties of martingales that are bounded in L2.

Remark 2.8.1 (?) It is often easier to work in L2 than in L1, primarily because L2 is a Hilbert

space whereas L1 is not.

Since E[Mn]2 ≤ E[M2
n] (which follows from Jensen’s inequality, or the Cauchy-Schwarz in-

equality), a set of random variables that is bounded in L2 is automatically bounded in L1.

The following lemma shows that L2 bounded sets of random variables are also uniformly inte-

grable. In view of Lemma 2.6.3, we can therefore describe the relationship between these various

conditions as:

L2 bounded ⇒ uniformly integrable ⇒ L1 bounded.

Lemma 2.8.2 Let C be a set of random variables which is bounded in L2. Then C is uniformly

integrable.

Proof: Let M ∈ R be such that E[|X|2] ≤M for all X ∈ C. Let ε > 0. Then, for any K ∈ N
we have

E [|X|1{|X| ≥ K}] ≤ 1

K
E
[
K|X|1{|X| ≥ K}

]
≤ 1

K
E[X2] ≤ M

K
.

So, if we choose K ∈ N such that M
K < ε, and then for all X ∈ C we have E [|X|1{|X| ≥ K}] < ε.

Hence C is uniformly integrable. �

Let (Mn) be a martingale such that Mn ∈ L2 for all n. Note that we are not (yet) assuming

that (Mn) is L2 bounded. Using the linearity of conditional expectation, the taking out what is

known rule, and the martingale property of Mn, we have

E[(Mn+1 −Mn)2|Fn] = E[M2
n+1 − 2Mn+1Mn +M2

n|Fn]‘

= E[M2
n+1|Fn]− 2MnE[Mn+1|Fn] +M2

n

= E[M2
n+1 −M2

n|Fn]. (2.9)

The above identity makes martingales in L2 very tractable, from the point of view of doing

calculations; it is rare to be able to treat x 7→ x2 as though it was a linear function! Breaking

the symmetry of the above formula, we can rearrange to obtain

E[M2
n+1|Fn] = M2

n + E[(Mn+1 −Mn)2|Fn].

We can use this identity to prove a useful condition for L2 boundedness.

Lemma 2.8.3 Let (Mn) be a martingale such that Mn ∈ L2 for all n. Then

(Mn) is bounded in L2 if and only if

∞∑
i=1

E[(Mi −Mi−1)
2] <∞.

Proof: Note that

M2
n = M2

0 +

n∑
i=1

M2
i −M2

i−1
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and from (2.9) we have that

E[(Mi −Mi−1)
2] = E[M2

i −M2
i−1].

Putting these two equations together, we obtain

E[M2
n] = E[M2

0 ] +

n∑
i=1

E[(Mi −Mi−1)
2].

The right hand side is an increasing function of n, hence so is the left hand side. Thus,

sup
n∈N

E[M2
n] = E[M2

0 ] +

∞∑
i=1

E[(Mi −Mi−1)
2].

The stated result follows immediately. �

To finish, we state a third version of the martingale convergence theorem, which applies to

L2 bounded martingales.

Theorem 2.8.4 (Martingale Convergence Theorem III) Let (Mn) be a martingale which

is bounded in L2. Then there exists a real valued random variable M∞ such that Mn → M∞
almost surely and in L2.

The proof of this theorem is beyond the scope of the course. Recall that we were able to use

the second version of the Martingale Convergence Theorem (which asserted L1 convergence) to

deduce information about the limit M∞. Having a stronger mode of convergence, namely L2

convergence, potentially allows us to deduce even more information about M∞. In particular,

when Theorem 2.8.4 holds, we have

var[Mn]→ var[M∞],

which might allow us to determine whether or not M∞ is deterministic; of course M∞ is deter-

ministic if and only if var[M∞] = 0.
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