UNIVERSITY OF BRISTOL

Examination for the Degrees of B.Sci., M.Sci. and M.Res. (Level 3 and Level M)

Martingale Theory with Applications MATH 36204 and M6204 (Paper Code MATH-36204 and MATH-M6204)

May/June 2015

This paper contains three questions The best **TWO** answers will be used for assessment.

On this examination, the marking scheme is indicative and is intended only as a guide to the relative weighting of the questions.

Calculators are **not** permitted in this examination.

Do not turn over until instructed.

- 1. (a) (18 marks) Let Ω be a set.
 - i. State the definition of a σ -field.
 - ii. Let I be a set and for each $i \in I$ let \mathcal{F}_i be a σ -field on Ω . Show that $\mathcal{F} = \bigcap_{i \in I} \mathcal{F}_i$ is a σ -field.
 - iii. Let $X, Y : \Omega \to \mathbb{R}$. Define $\sigma(X, Y)$, the σ -field generated by X and Y.
 - (b) (12 marks) Let $\Omega = \{0, 1, 2\}^{\mathbb{N}}$ and write $\omega \in \Omega$ as $\omega = \omega_1 \omega_2 \dots$ where $\omega_n \in \{0, 1, 2\}$. For each $n \in \mathbb{N}$ define $X_n : \Omega \to \mathbb{R}$ by $X_n(\omega) = \omega_n$ and let $\mathcal{F} = \sigma(X_n : n \in \mathbb{N})$.
 - i. List all the elements of $\sigma(X_1)$.
 - ii. Show that

$$K = \{ \text{for all } n \in \mathbb{N}, X_n \neq 0 \}, \\ J = \{ \exists N \in \mathbb{N}, \text{ for all } n \ge N, X_n \neq 2 \}.$$

are both \mathcal{F} measurable.

You may assume that a countable intersection of measurable sets is measurable.

(c) (20 marks) Let Ω , \mathcal{F} and X_n be as in (b). Let $\mathbb{P} : \mathcal{F} \to [0, 1]$ be a probability measure and suppose X_1, X_2, \ldots are independent random variables such that

$$\mathbb{P}[X_n = i] = \begin{cases} e^{-n} & \text{if } i = 0\\ 1 - 2e^{-n} & \text{if } i = 1\\ e^{-n} & \text{if } i = 2. \end{cases}$$

Let $Y_n = X_1 X_2 \dots X_n$.

- i. Show that Y_n is a martingale, relative to a natural filtration that you should specify.
- ii. State the Martingale Convergence Theorem and use it to show that there exists a real valued random variable Y_{∞} such that $Y_n \to Y_{\infty}$ almost surely as $n \to \infty$.
- iii. Show that $\mathbb{P}[J \cup K^c] = 1$, where J and K are the events defined in (b).
- iv. Construct a random variable Z_{∞} such that $\mathbb{P}[\sup_{n \in \mathbb{N}} Y_n \leq Z_{\infty} < \infty] = 1$.

Continued...

Cont...

- 2. (a) (12 marks) Let M_n be a bounded martingale.
 - i. Show that M_n^2 is a submartingale.
 - ii. Give an example of a submartingale that is not a martingale.
 - (b) (20 marks) Let $S_n = X_1 + \ldots + X_n$, where the X_i are independent random variables with common distribution

$$\mathbb{P}[X_i = 1] = p, \qquad \mathbb{P}[X_i = -1] = q, \qquad p + q = 1,$$

where $p \neq q$ and p, q > 0. Let $\mathcal{F}_n = \sigma(X_i : i \leq n)$.

- i. Show that $M_n = (q/p)^{S_n}$ is a \mathcal{F}_n martingale.
- ii. Let $a \in \mathbb{N}$ and let $T = \inf\{n \in \mathbb{N} : |S_n| = a\}$. Show that T is a \mathcal{F}_n stopping time.
- iii. You may assume $T < \infty$ almost surely. Find $\mathbb{E}[(q/p)^{S_T}]$ and hence show that

$$\mathbb{P}[S_T = a] = \frac{1 - (p/q)^a}{(q/p)^a - (p/q)^a}$$

- (c) (18 marks) Let (Ω, \mathcal{F}, P) be a probability space. Let \mathcal{G} be a sub- σ -field of \mathcal{F} and let $X, Y \in L^1(\Omega, \mathcal{F}, \mathbb{P})$.
 - i. State the definition of $\mathbb{E}[X|\mathcal{G}]$.
 - ii. State the definition of independence of two σ -fields \mathcal{F}_1 and \mathcal{F}_2 .
 - iii. Use standard properties of conditional expectation to show that, of the following statements, $(1) \Rightarrow (2) \Rightarrow (3)$.
 - (1) X and Y are independent,
 - (2) $\mathbb{E}[X|\sigma(Y)] = \mathbb{E}[X]$ almost surely,
 - (3) $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$
 - iv. Give counterexamples to show that the reverse implications $(3) \Rightarrow (2)$ and $(2) \Rightarrow (1)$ do not hold.

Cont...

- 3. (a) (12 marks) Let X_1, X_2, \ldots be independent random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P}).$
 - i. Define the tail σ -field of (X_n) .
 - ii. State Kolmogorov's 0-1 law and use it to show that $\mathbb{P}[E] \in \{0, 1\}$ where

$$E = \left\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) \text{ exists} \right\}.$$

- (b) (12 marks) Let C be a set of real valued random variables.
 - i. What does it mean to say that \mathcal{C} is uniformly integrable?
 - ii. Show that if there exists $M < \infty$ such that $\mathbb{E}[X^2] \leq M$ for all $X \in \mathcal{C}$, then \mathcal{C} is uniformly integrable.
- (c) (26 marks) Let Z_n be a Galton-Watson process, with offspring distribution G taking values in $\{0, 1, \ldots, \}$. That is, $Z_1 = 1$ and

$$Z_{n+1} = \sum_{i=1}^{Z_n} X_{n+1,i}$$

where $(X_{n,i})_{n,i\in\mathbb{N}}$ are i.i.d. random variables with the same distribution as G. Let $\mathcal{F}_n = \sigma(X_{m,i} : m \leq n, i \in \mathbb{N}).$

Suppose that $\mathbb{E}[G] = \mu \in (1, \infty)$ and $\operatorname{var}[G] = \sigma^2 < \infty$.

- i. Show that $M_n = \frac{Z_n}{\mu^n}$ is a \mathcal{F}_n martingale.
- ii. Show that

$$\mathbb{E}\left[M_{n+1}^2|\mathcal{F}_n\right] = M_n^2 + \mathbb{E}\left[(M_{n+1} - M_n)^2|\mathcal{F}_n\right].$$

Hence show that

$$\mathbb{E}\left[M_{n+1}^2\right] = \mathbb{E}\left[M_n^2\right] + \frac{\sigma^2}{\mu^{n+3}}$$

- iii. Deduce that there exists a real valued random variable M_{∞} such that $M_n \to M_{\infty}$ almost surely as $n \to \infty$ and $\mathbb{P}[M_{\infty} \neq 0] > 0$.
- iv. Show that G is deterministic if and only if $\mathbb{P}[M_{\infty} = \frac{1}{\mu}] = 1$.

End of examination.