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Cont... Martingales-11

1. (a) (20 marks) We toss a coin infinitely many times, and write Ω = {H,T}N as the
sample space and ω = (ω1ω2 . . .) for a typical outcome. We define

F := σ({ω : ωn = W} : n ∈ N,W ∈ {H,T}),

i.e. F is generated by outcomes of each throw. Let Xn be the outcome of the nth

throw.

(i.) (8 marks) Write down all elements in σ-fields σ(X1), σ(X2), and σ(X1, X2).

(ii.) (8 marks) Show that random variable X1 is measurable in σ(X1), σ(X1, X2) but
not σ(X2). Give precise mathematical arguments, not intuition.

(iii.) (4 marks) Is the set
A = {ω : ωk = H ∀k ∈ N}

an event (i.e. is it measurable under F)? How about the set

B = {ω : ω1 = ωk ∀k ∈ N}?

Justify your answer rigorously.

Proof (parts i and ii course work, part iii unseen but straightforward): (i)
We have [2 marks]

[2 marks]

[4 marks]

σ(X1) = {∅, {H ∗ ∗ ∗ . . .}, {T ∗ ∗ ∗ . . .},Ω}
σ(X2) = {∅, {∗H ∗ ∗ . . .}, {∗T ∗ ∗ . . .},Ω}

σ(X1, X2) = σ({{HH ∗ ∗ . . .}, {TH ∗ ∗ . . .}, {HT ∗ ∗ . . .}, {TT ∗ ∗ . . .}})
= {∅, {HH ∗ ∗ . . .}, {TH ∗ ∗ . . .}, {HT ∗ ∗ . . .}, {TT ∗ ∗ . . .},
{H ∗ ∗ ∗ . . .}, {T ∗ ∗ ∗ . . .}, {∗H ∗ ∗ . . .}, {∗T ∗ ∗ . . .},{
HH
TT

∗ ∗ . . . ,
}
,

{
HT
TH

∗ ∗ . . . ,
}
,

{HH ∗ ∗ . . .}c, {TH ∗ ∗ . . .}c, {HT ∗ ∗ . . .}c, {TT ∗ ∗ . . .}c,Ω},

where ∗ means that it can take on either H or T , so {H ∗ ∗ ∗ . . .} = {ω : ω1 = H}.
(ii) X1 is measurable in a σ-field G if X−1(H) and X−1(T ) are both in G. [2 marks]

X1 is measurable in σ(X1) is by definition. [2 marks]

X1 is measurable in σ(X1, X2) since X−1(H) = {H ∗ ∗ ∗ . . .} is in σ(X1, X2). [2 marks]

X1 is not measurable in σ(X2) since X−1(H) = {H ∗ ∗ ∗ . . .} is not in σ(X2). [2 marks]

(iii) Both A and B are measurable in F , since

A =
⋂
k

{ω : ωk = H},

i.e. infinite intersection of events in F , and [2 marks]

B =
⋃

w∈{H,T}

⋂
k

{ω : ωk = w},

[2 marks]
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(b) (20 marks) Let X be an L1 random variable on (Ω,F ,P) and G be a sub-σ-field of
F . Define the conditional expectation E (X | G) (5 marks) and prove the following
properties of conditional expectation:

(i.) (5 marks) E (E (X | G)) = E (X)

(ii.) (5 marks) E (X | constant) = E (X)

(iii.) (5 marks) E (E (X |Y ) |Y ) = E (X |Y ).

Solution (coursework and homework): The conditional expectation E (X | G) is
defined to be the random variable Y such that: [5 marks]

i. Y is G-measurable,

ii. Y ∈ L1,

iii. for every G ∈ G, we have E (Y 1G) = E (X1G).

If Ỹ is another random variable that satisfies these properties, then Ỹ = Y a.s..

(i) To show E (E (X | G)) = E (X), we calculate

E (E (X | G)) = E (E (X | G)1Ω) = E (X1Ω) = E (X),

where the middle equality is due to the definition of conditional expectation. [5 marks]

(ii) To show E (X | constant) := E (X |σ(constant)) = E (X), we observe that σ(constant) =
{∅,Ω}, hence E (X | constant) must be a constant. It is plain that E (E (X | constant)1Ω) =
E (X1Ω) = E (X) = E (E (X)1Ω), where the first equality is due to the definition of
conditional expectation, the second due to 1Ω ≡ 1. If one replaces Ω by ∅ in the
previous calculation, then everything is 0. Therefore E (X | {∅,Ω}) = E (X). [5 marks]

(iii) To show E (E (X |Y ) |Y ) = E (X |Y ), we take A ∈ σ(Y ), then by the definition
of conditional expectation,

E (E (E (X |Y ) |Y )1A) = E (E (X |Y )1A).

Since A ∈ σ(Y ) is arbitrary, we conclude that E (E (X |Y ) |Y ) = E (X |Y ). [5 marks]

(c) (10 marks) Let X1, X2, . . . be i.i.d. random variables with the same distribution as
the random variable X, where E (|X|) <∞. Let Sn := X1 +X2 + . . .+Xn, and define

Gn := σ(Sn, Sn+1, . . .).

Calculate E (X1 | Gn).

Solution (unseen): Since Gn = σ(Sn, Sn+1, . . .) = σ(Sn, Xn+1, Xn+2, . . .) and X1

is independent of Xn+1, Xn+2, . . ., we use the independence property of conditional
expectation (If H is independent of σ(X,G), then E (X |σ(G,H)) = E (X | G)) to
conclude that

E (X1 | Gn) = E (X1|Sn).

By symmetry, [5 marks]

E (X1 |Sn) = E (X2 |Sn) = . . . = E (Xn |Sn).

Therefore [3 marks]

E (X1 |Sn) = Sn/n.

[2 marks]

Continued...
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Cont... Martingales-11

2. (a) (38 marks)
At time 0, an urn contains 1 black ball and 1 white ball. At each time 1, 2, 3, . . ., a
ball is chosen at random from the urn and returned to the urn. At the same time, a
new ball of the same colour as the chosen ball is added to the urn. Just after time n,
there are n + 2 balls in the urn, of which Bn + 1 are black, where Bn is the number
of black balls chosen by time n.

Let Mn := (Bn + 1)/(n+ 2) be the proportion of black balls in the urn just after time
n.

(i.) (8 marks) Show that (relative to a natural filtration that you should specify) M
is a martingale.

(ii.) (12 marks) Show that P(Bn = k) = 1/(n + 1) for 0 ≤ k ≤ n. (Hint: find the
probability that one chooses k black balls at times 1, 2, . . . , k and n − k white
balls at times k + 1, k + 2, . . . , n. What about the probability of getting k black
balls in a different order?)

(iii.) (6 marks) Does M∞ := limMn exist? If it does, what is its distribution?

(iv.) (12 marks) Let T be the number of balls drawn until the first black ball appears.
Use the optional stopping theorem to show that E ( 1

T+2
) = 1/4. You need to

justify your usage of the optional stopping theorem rigorously.

Solution (parts i-iii from homework, part iv unseen): (i) Let Fn = σ(M1, . . . ,Mn).
Let Wn be the number of white balls chosen by time n, then Bn +Wn = n, and [4 marks]

E (Mn+1 | Fn) =
Bn + 1

n+ 2

Bn + 1 + 1

n+ 2 + 1
+
Wn + 1

n+ 2

Bn + 1

n+ 2 + 1

[4 marks]

(Bn + 1)(Bn +Wn + 3)

(n+ 2)(n+ 3)
=
Bn + 1

n+ 2
= Mn,

hence M is a martingale.

(ii) The probability of getting black on the first m draws and then white on the next
l = n−m draws is:

1

2

2

3
. . .

m

m+ 1

1

m+ 2

2

m+ 3
. . .

l

n+ 1
=

m!l!

(n+ 1)!
.

Notice that any other outcome of the first n draws with m white and n−m black balls [4 marks]

has the same probability since the denominator stays the same and the numerator is
permuted. Hence [4 marks]

P(Bn = k) =

(
n

k

)
k!(n− k)!

(n+ 1)!
=

1

n+ 1
.

[4 marks]

(iii) We first note that by the martingale convergence theorem, M∞ is well defined,
since M is a non-negative martingale. And M∞ is evidently distributed according the [3 marks]

uniform distribution in [0, 1], since P(Bn = k) = 1
n+1

. [3 marks]

(iv) Right after the stopping time T , there are 2 black balls in the urn, out of a total
of T + 2 balls. The martingale M is bounded (in [0, 1] in fact), and [2 marks]

[2 marks]

P(T > n) =
1

2

2

3
. . .

n

n+ 1
=

1

n+ 1
→ 0
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as n→∞, therefore T <∞ a.s. Therefore by the optional stopping theorem, [5 marks]

1

2
= E (M0) = E (MT ) = E (

2

T + 2
),

from which the desired result follows easily. [3 marks]

(b) (12 marks) Give an example of a martingale Yn with Yn → −∞ a.s. (Hint: Let
Yn = X1 + X2 + . . . + Xn where Xn are independent but not identically distributed
and E (Xn) = 0.) You may find the first and second Borel-Cantelli lemmas useful:

(1) Let En be a sequence of events such that
∑

n P(En) <∞, then P(En i.o.) = 0;

(2) Let En be a sequence of independent events such that
∑

n P(En) = ∞, then
P(En i.o.) = 1.

Solution (unseen) There are infinitely many possible answers. One possible answer:
let Yn = X2 + . . .+Xn, where each Xn is distributed

Xk =

{
−k log k, with probability 1

k log k
k log k

k log k−1
, with probability 1− 1

k log k

.

(Marking key: 3 marks for coming up with similar form for Xk) Then E (Xn) = 0 [4 marks]

therefore Y is a martingale. If Xn = −n log n, then

Yn = X1 + . . .+Xn ≤ −n log n+
n−1∑
k=2

(1 +
1

k log k − 1
)

≤ −n log n+ (n− 2) +
n−1∑
k=2

1

k
≤ −n log n+ (n− 2) + log n+ 1

≤ −n(log n− 2)

for sufficiently large n, where we have used the estimate
∑n

k=1 1/k ≤ log n + 1. But
since

∑
k P(Xk = −k log k) =∞, by the second Borel-Cantelli lemma, Xk = −k log k

i.o., therefore Yn ≤ −n(log n− 2) i.o., which implies that Yn → −∞ a.s. [8 marks]

Continued...
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Cont... Martingales-11

3. (a) (10 marks) Let ξ be an L1 random variable on (Ω,F ,P), Fn ⊂ F be a filtration,
and F∞ = σ(∪nFn). Define Mn := E (ξ | Fn). Then M is a UI martingale. Show that
Mn → η := E (ξ | F∞) almost surely and in L1.

Solution (coursework): Since M is a UI martingale, M∞ := limn→∞Mn exists a.s.
and is in L1. Thus we only need to show that M∞ = η. We first note that both M∞ [3 marks]

and η are F∞ measurable, hence in order to show that M∞ = η a.s., it suffices to show
that for all F ∈ F∞,

E (M∞1F ) = E (η1F ).

Since F∞ = σ(∪nFn), it suffices to show that for all n and F ∈ Fn, the above identity [3 marks]

holds. This follows from the following calculation:

E (η1F ) = E (ξ1F ) = E (Mn1F ) = E (M∞1F ),

the last equality due to a property of UI martingales: Mn = E (M∞ | Fn). [4 marks]

(b) (20 marks) At each time n ∈ N, we toss a coin, with outcome either H or T (head
or tail).

(i.) (15 marks) Let S1 be the first time when we obtain a sequence of two H’s, i.e.
if the first 5 tosses are TTHHT, then S1 = 4. Use martingale technique to find
E (S1).

(ii.) (5 marks) Let S2 be the first time when we obtain an H followed by a T, i.e. if the
first 5 tosses are TTHHT, then S2 = 5. Use martingale technique to find E (S2).

Solution (similar to a problem presented in class but slightly tricky): Let
us assume that just before each time n = 1, 2 . . ., a new gambler arrives and bets £1
that

the nth toss will be H

If he loses, he leaves. If he wins, he receives £2, all of which he bets on the event that

the (n+ 1)th toss will be H.

Let M (n) be the winning of the nth gambler (hence M
(n)
k = 0 for k < n since the nth

gambler has not even started gambling before time n), then each M (n) is a martingale,

and so is Mn :=
∑n

k=1 M
(k)
n . Furthermore, M has uniformly bounded increments. And [5 marks]

E (S1) <∞, since the stopping time [4 marks]

K = min{k : (2k − 1)th toss is H and (2k)th toss is H}

is geometrically distributed with mean 4 and 2S1 ≤ K. At the stopping time S1, the
first HH has just appeared, therefore Doob’s optional stopping theorem implies

0 = E (MS1) = E

(
S1∑
n=1

M
(n)
S1

)
= E ((22 − 1) + (2− 1) + (−1)(S1 − 2)),

where the S1th gambler has won £4, the (S1−1)th gambler has won £2, and everybody
else has lost £1. Hence E (S1) = 6. [6 marks]

(ii) With similar reasoning, the nth gambler bets
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the nth toss will be H

If he loses, he leaves. If he wins, he receives £2, all of which he bets on the event that

the (n+ 1)th toss will be T.
[3 marks]

As in the previous part, M has uniformly bounded increments and E (S2) <∞. At the
stopping time S2, the first HT has just appeared, therefore Doob’s optional stopping
theorem implies

0 = E (MS2) = E

(
S2∑
n=1

M
(n)
S2

)
= E ((22 − 1) + (−1)(S2 − 1)),

where the S2th gambler has won £4 and everybody else has lost £1. Hence E (S2) = 4.
[2 marks]

(c) (20 marks) Let Sn be a simple symmetric random walk, i.e. Sn = X1 +X2 + . . .+Xn

where each Xk independently takes on ±1 with probability 1/2. Let T = inf{n : Sn /∈
(−a, a)} where a is an integer. You can assume that T <∞ a.s.

(i.) (10 marks) Show that S2
n − n is a martingale and show that E (T ) = a2.

(ii.) (10 marks) Find constants b and c such that Yn = S4
n − 6nS2

n + bn2 + cn is a
martingale and use this to compute E (T 2).

Solution (unseen): (i) Since

E (S2
n − n | Fn−1) = E (S2

n−1 + 2Sn−1Xn +X2
n − n | Fn−1)

= S2
n−1 + 2Sn−1E (Xn | Fn−1) + E (X2

n | Fn−1)− n
= S2

n−1 − (n− 1),

S2
n − n is a martingale. By the optional stopping theorem, [4 marks]

E (S2
T∧n) = E (T ∧ n).

Dominated convergence theorem applied to the LHS (bounded above by a2) and mono- [4 marks]

tone convergence theorem applied to the RHS implies that

a2 = E (S2
T ) = E (T ).

[2 marks]

(ii) We have

E (S4
n − 6nS2

n + bn2 + cn | Fn−1)

= S4
n−1 + 6S2

n−1 + 1− 6n(S2
n−1 + 1) + bn2 + cn

= S4
n−1 − 6(n− 1)S2

n−1 + bn2 + cn− 6n+ 1

= S4
n−1 − 6(n− 1)S2

n−1 + b(n− 1)2 + (2b+ c− 6)n− b+ 1

= S4
n−1 − 6(n− 1)S2

n−1 + b(n− 1)2 + (2b+ c− 6)(n− 1) + b+ c− 5,

Solving 2b+c−6 = c and b+c−5 = 0 yields b = 3 and c = 2, hence S4
n−6nS2

n+3n2+2n [4 marks]

is a martingale. A similar argument to the one used in (i) yields:

E (S4
T∧n − 6(T ∧ n)S2

T∧n + 3(T ∧ n)2 + 2(T ∧ n)) = 0.

Now we can apply dominated convergence the first two terms on the LHS above (dom-
inated by a and aT , respectively, where part (i) implies E (aT ) < ∞) and monotone
convergence to the last two terms, to obtain [4 marks]

0 = E (a4 − 6Ta2 + 3T 2 + 2T ) = 3E (T 2) + a4 − (6a2 − 2)E (T ),

hence E (T 2) = 1
3
((6a2 − 2)a2 − a4) = 1

3
a2(5a2 − 2). [2 marks]

End of examination.
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Sample question for the exam Martingales-11

1. (20 marks) We toss a coin twice and write Ω = {H,T}2 as the sample space and ω =
(ω1ω2) for a typical outcome. Let Xn be the outcome of the nth throw.

(i.) (8 marks) Write down all elements in σ-fields σ(X1), σ(X2), and σ(X1, X2).

(ii.) (8 marks) Show that random variable X1 is measurable in σ(X1), σ(X1, X2) but not
σ(X2). Give precise mathematical arguments, not intuition.

(iii.) (4 marks) Is the set
A = {ω : ω : ω1 = ωk}

an event under σ(X1)? How about under σ(X1, X2)? Justify your answer.

2. (26 marks) Let {Sn;n ≥ 0} be a simple symmetric random walk with 0 < S0 < N . Let T
be the first time Sn hits either 0 or N .

(i.) (8 marks) Use the optional stopping theorem to find P(ST = N).

(ii.) (8 marks) Show that S2
n − n is a martingale.

(iii.) (10 marks) Use the optional stopping theorem to find E (T ).

You need to justify your usage of the optional stopping theorem rigorously.

3. (14 marks) You play a game by betting on outcome of i.i.d. random variables Xn, n ∈ Z+,
where

P(Xn = 1) = p, P(Xn = −1) = q = 1− p, 1

2
< p < 1.

Let Zn be your fortune at time n. The bet Cn you place on game n must be in [0, Zn−1]
(i.e. you cannot borrow money to place bets). Your objective is to maximise the expected
‘interest rate’ E (log(ZN/Z0)), where N (the length of the game) and Z0 (your initial
fortune) are both fixed. Let Fn = σ(X1, . . . , Xn). Show that if C is a previsible strategy,
then logZn − nα is a supermartingale, where

α = p log p+ q log q + log 2,

so that E log(Zn/Z0) ≤ Nα. Also show that for a certain strategy, logZn − nα is a
martingale. What is this strategy?


