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1 Introduction

1.1 About this course

Lecturer: Carl Dettmann, contact info at
https://people.maths.bris.ac.uk/∼macpd/

Unit home page: See
https://people.maths.bris.ac.uk/∼macpd/ads/

Small text (including footnotes) is supplementary non-

examinable material. It will improve your understanding of the rest

of the course material.

1.2 Books etc

None are essential, and there are very many other good
books and internet resources available.

• J. C. Sprott, “Chaos and time series analysis,” OUP
2003. Applied and computational approach, also with
detail on a very large number of example models ap-
pearing in the literature.

• R. L. Devaney “An introduction to chaotic dynam-
ical systems,” Westview Press 2003. More rigorous,
focused on discrete dynamical systems.

• B. Hasselblatt and A. Katok, “A first course in dy-
namics,” CUP 2003. Also more rigorous. Leads to
the more advanced “Introduction to the modern the-
ory of dynamical systems” by the same authors.

• P. Cvitanović et al “Classical and quantum chaos”
www.chaosbook.org. A free online book detailing
periodic orbit methods for classical and quantum
chaos; we are mostly interested in the introductory
section (Part I).

• G. Teschl “Ordinary differential equations and dy-
namical systems” available online at
www.mat.univie.ac.at/~gerald/ftp/book-ode/

You may also want reference/revision works on program-
ming and numerical methods; online information and
workshops in Bristol are available at
https://www.acrc.bris.ac.uk/acrc/training.htm .

Finally, some of the footnotes refer to the primary re-
search literature (journal articles etc). These may be
accessed by searching for the journal website and then
searching or browsing. Many require a subscription, so
must be accessed from a university computer. Arxiv
preprints are always available free, but may not (yet) have
been refereed. A reference arxiv:1234.5678 refers to the url
arxiv.org/abs/1234.5678 .

1.3 Introduction

If there is a central idea in dynamical systems, it is prob-
ably that rather than describing the, often irregular, be-
haviour x(t) of some real world variable in time directly,
scientific laws often correspond to determining how the
state of the system varies, in the form

ẋ = f(x)

for continuous time t ∈ R (the dot denotes differentiation
with respect to time t), or

xt+1 = Φ(xt)

for discrete time t ∈ Z. We can then hope to understand
how the complicated function x(t) arises from the explic-
itly known f(x) or Φ(x).

Dynamical systems really go back to Newton’s laws of
motion and gravitation (late 17th century), which cor-
respond to ordinary differential equations describing the
motions of N massive bodies such as planets:

miq̈i =
∑
j 6=i

Gmimj

|qi − qj |3
(qj − qi)

where the index i is over masses, each qi ∈ R3 and | · | is
Euclidean distance on R3. G is a Newton’s gravitational
constant. Any second order equation can be written as
coupled first order equations by making dqi/dt a separate
variable. In mechanics we typically specify an initial value
problem giving positions qi and velocities q̇i or momenta
miq̇i at the initial time. Newton’s equations are an ex-
ample of Hamiltonian dynamics, which has a number of
consequences such as a conserved quantity (the energy)
that we will discuss towards the end of the course.

The two body problem (eg sun and earth) has an exact
solution, which describes well the main features of plan-
etary motion (elliptical orbits etc). Laplace (early 19th
century) realised some philosophical implications of such
an approach:

“We may regard the present state of the universe
as the effect of its past and the cause of its future.
An intellect which at a certain moment would
know all forces that set nature in motion, and
all positions of all items of which nature is com-
posed, if this intellect were also vast enough to
submit these data to analysis, it would embrace
in a single formula the movements of the great-
est bodies of the universe and those of the tiniest
atom; for such an intellect nothing would be un-
certain and the future just like the past would be
present before its eyes.”

Mathematically, we could support this by noting that
the ODEs together with initial conditions on positions and
velocities satisfy conditions for the existence and unique-
ness of solutions, at least for short times:
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Definition 1.1. A function f : M → M is Lip-
schitz continuous if there is a constant λ so that
d(f(x), f(y)) < λd(x, y) for all x and y.

Here, M is a metric space with distance d(x, y); if M =
Rn, d is usually Euclidean distance. If we want to be more
precise, we can describe f as λ-Lipshitz.

Theorem 1.2. Picard-Lindelöf theorem: Given the
initial value problem x′(t) = f(x(t), t), x(0) = x0 ∈ Rn,
if f is Lipshitz continuous in x and continuous in t, there
exists ε > 0 so that the solution exists and is unique for
t ∈ [−ε, ε].

Thus, given regular initial conditions (ie masses at dis-
tinct locations), we are guaranteed to have a unique so-
lution until/unless either there is a collision or particles
escape to infinity at some finite time.1 For more than
two masses the solutions seemed more difficult to find. In
1887 the king of Sweden offered a prize for the solution to
the three body problem, which was won by Poincaré who
demonstrated its intractability, in the process developing
many of the ideas of modern dynamical systems.2

The mathematics of dynamical systems continued to
develop throughout the first half of the twentieth cen-
tury, but the impetus for applications was the advent of
computer simulation and visualisation. Lorenz (1963) ob-
served for a simple model of the atmosphere, the Lorenz
equations

ẋ = σ(y − x), ẏ = x(ρ− z)− y, ż = xy − βz

with constants σ = 10, β = 8/3, ρ = 28 that a small
change in initial conditions led to drastic changes in be-
haviour at later times, the so-called “butterfly effect” in
which a butterfly flapping its wings in Brazil may cause a
hurricane some weeks later in Texas.3

Mitchell Feigenbaum, using only a hand-held calcula-
tor, discovered in 1975 the existence of new mathematical
constants controlling the transition from regular to un-
predictable behaviour in a whole class of discrete time dy-
namical systems, including the extremely simple-looking

1Escape to infinity in finite time was shown to be possible for five
or more masses in Z. Xia, Ann. Math. 135, 411-468 (1992).

2Sensitivity to initial conditions was previously articulated by
Maxwell in his 1873 essay on determinism and free will: It is mani-
fest that the existence of unstable conditions renders impossible the
prediction of future events, if our knowledge of the present state is
only approximate and not accurate. Now, we understand that equa-
tions of motion such as those of Newton approximate a probabilistic
quantum theory, which prevents exact initial conditions of position
and velocity in principle, although classical equations are still a very
good approximation for many processes involving more than a few
elementary particles and many systems with a few particles can be
partly understood “semi-classically,” that is, by relating them to
corresponding classical systems, the field of quantum chaos.

3The Lorenz equations are still under active investigation, for
example new results for the mixing properties (covered later in this
course) are found in V. Araujo, I. Melbourne and P. Varandas, Com-
mun. Math. Phys. 340, 901-938 (2015).

Figure 1: The Lorenz attractor

(and simplified) model arising from population biology,
the logistic map

xn+1 = rxn(1− xn)

while in the same year, Li and Yorke published a paper4

in which they showed

Theorem 1.3. Period three theorem: If I ⊂ R is an
interval and Φ : I → I is continuous and has a period
three point, then Φ has periodic points of all periods.

Here, we use notation Φn to indicate the n-fold compo-
sition Φ ◦ Φ ◦ . . .Φ, so Φ0 is the identity transformation
and Φ1 = Φ. A periodic point x is a point such that
Φp(x) = x, and its period is the smallest such p ≥ 1.

This last theorem suggests that chaos is not only pos-
sible, it is pervasive. Ulam is quoted as saying

Using a term like nonlinear science is like refer-
ring to the bulk of zoology as the study of non-
elephant animals.

In fact, very few systems of at least this minimal size -
three dimensions in continuous time, one in discrete time
- are completely regular, although such solvable systems
dominate many introductory courses in mechanics and
other fields. A few other systems are completely chaotic,
that we will discuss. Much useful understanding can be
gained from small perturbations about both of these lim-
its. But the “generic” situation of mixed regularity and
chaos, is very incompletely understood.

In the same way as for dynamical systems, geometric
structures now associated with chaotic systems were pro-
posed by mathematicians in the late 19th century; note

4T.-Y. Li and J. A. Yorke, “Period three implies chaos” Amer.
Math. Month. 82, 985-992 (1975). The title is the first use of
“chaos” in a dynamical context. Later, they discovered that their
result was a special case of a result proved in O. Sharkovsky, Ukr.
Mat. Zh. 16, 61-71 (1964).
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Figure 2: The bifurcation diagram of the logistic map

particularly Cantor sets, such as the set of real numbers
of the form

∑
j aj3−j with aj ∈ {0, 2}, which is uncount-

able, zero measure, nowhere dense, closed and totally dis-
connected. According to most methods of defining non-
integer dimensions, it has dimension ln 2/ ln 3 ≈ 0.631.
Similarly the Koch snowflake (1904) is a nowhere differen-
tiable continuous curve with infinite length and dimension
ln 4/ ln 3 ≈ 1.262. The relevance to many physical and bi-
ological phenomena was appreciated and popularised by
Mandelbrot in the 1960s, again with the aid of computer
graphics; he also coined the term fractal.

We discussed astronomy, meteorology and population
biology as having examples of dynamical systems with
interesting behaviour. Many of these have in fact many
degrees of freedom, as do systems of many atoms (molecu-
lar biology and nanotechnology) and “complex systems”5

such as social and financial networks. These kinds of sys-
tems can involve low dimensional dynamics at two lev-
els - where they are built from microscopic interactions
(although may have different collective behaviour), and
where the macroscopic behaviour can be well described
using only a few well-chosen variables. There is both
theoretical and experimental evidence for this, for exam-
ple “centre manifold theory of infinite dimensional sys-
tems”6 and Libchaber’s experiments in the early 80s on
Rayleigh-Benard (convective) fluid systems, confirming

5Note “complex dynamics” often refers to dynamics on C. This
leads to such interesting objects as the Mandelbrot set, but occurs
relatively rarely in applications and unfortunately we will not have
time to discuss it. There is some discussion in the recommended
texts.

6M. Haragus and G. Iooss, “Local bifurcations, center mani-
folds and normal forms in infinite-dimensional dynamical systems”
Springer, 2010.

Feigenbaum’s theory for a transition to turbulence.7

Thus low dimensional dynamical systems is strongly rel-
evant to current research in

• theory - mathematics, theoretical and computational
physics

• few degree of freedom systems - astronomy, popula-
tion biology

• small quantum systems - quantum chaos

• effectively small systems - transition to turbulence,
meteorology, chaotic lasers for secure communication
and random number generation

• complex systems - nanoscience, biological, social, fi-
nancial and communications networks

This is a too-brief summary. For example, biology is a
vast source of dynamical problems at all levels consider-
ing interaction and movement of atoms, proteins, cells,
tissues, organs, organisms and entire species.

In this course we will pose and answer some of the ques-
tions: Why does chaos appear in one-dimensional discrete
time systems, but need three dimensions if the time is con-
tinuous? Why are some systems regular, while others are
chaotic? How do fractals arise from dynamics and how
to characterise them? What practical analytical and nu-
merical methods are there for understanding dynamical
systems and fractals?

Finally, we return to the fundamental questions about
determinism and predictability. For regular systems a
small perturbation of the initial conditions leads to only
to bounded or slowly growing deviations in the trajectory,
while for strongly chaotic systems the deviation grows ex-
ponentially. However if we consider not the trajectory it-
self but its average properties, these are perturbed for the
regular system, but typically unchanged for the chaotic
system. Thus a problem with weather prediction is the
presence of chaos, while a problem for climate change pre-
diction is the presence of regularity.

7A Libchaber, C Laroche, S Fauve. “Period doubling cascade in
mercury, a quantitative measurement”, Journal de Physique Lettres,
43, 211-216 (1982).
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